Nearest neighbor classifiers

COMS 4721
Example: OCR for digits

- Classify images of handwritten digits by the (actual) digits they depict.
- Classification problem: $\mathcal{Y} = \text{discrete set}$
Nearest neighbor (NN) classifier

• **Given**: labeled examples $D := \{(x_i, y_i)\}_{i=1}^n \subset \mathcal{X} \times \mathcal{Y}$

• **Predictor** $\hat{f}_D: \mathcal{X} \to \mathcal{Y}$:

 On input $x \in \mathcal{X}$:
 1. Find the point x_i among $\{x_i\}_{i=1}^n$ "closest" to x (nearest neighbor)
 2. Return y_i
How to measure distance?

• For points in \mathbb{R}^d, a default choice for distance is the *Euclidean distance* (also called ℓ_2 distance).

$$
\|u - v\|_2 = \sqrt{\sum_{j=1}^{d} (u_j - v_j)^2}
$$

Grayscale 28×28 pixel images. Treat as *vectors* (of 784 features) that live in \mathbb{R}^{784}.
Example: OCR for digits with NN classifier

• Classify images of handwritten digits by the digits they depict.

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
\]

• \(\mathcal{X} = \mathbb{R}^{768}, \mathcal{Y} = \{0,1,2,3,4,5,6,7,8,9\} \)

• **Given:** labeled examples \(D := \{(x_i, y_i)\}_{i=1}^n \subset \mathcal{X} \times \mathcal{Y} \).

• Construct NN classifier \(\hat{f}_D \) using \(D \).

• **Question:** How good is this classifier?
Error rate

• **Error rate** of classifier f on a set of labeled examples D:

$$\text{err}_D(f) := \frac{|\{(x, y) \in D : f(x) \neq y\}|}{|D|}$$

(on what fraction of D does f disagree with the paired label?)

• (Sometimes, we’ll write this as $\text{err}(f, D)$.)

• **Question**: What is $\text{err}_D(\hat{f}_D)$?
A better way to evaluate the classifier

• Split the labeled examples \(\{(x_i, y_i)\}_{i=1}^{n} \) into two sets
 • Training data (\(S \))
 • Test data (\(T \))

• Only use \textit{training data} to construct the NN classifier \(\hat{f}_S \).
 • Training error rate of \(\hat{f}_S \): \(\text{err}_S(\hat{f}_S) = 0\% \)

• Use \textit{test data} to evaluate accuracy of \(\hat{f}_S \).
 • Test error rate of \(\hat{f}_S \): \(\text{err}_T(\hat{f}_S) = 3.09\% \)
Diagnostics

• Some examples of NN classifier mistakes (test point in T, nearest neighbor in S)

 28 35 54

• First mistake (correct label is “2”) could’ve been avoided by looking at the three nearest neighbors (whose labels are “8”, “2”, and “2”):

 2 8 2 2

 Test point Three nearest neighbors
k-nearest neighbors (k-NN) classifier

- **Given:** labeled examples $D := \{(x_i, y_i)\}_{i=1}^n \subset \mathcal{X} \times \mathcal{Y}$

- **Predictor** $\hat{f}_{D,k} : \mathcal{X} \rightarrow \mathcal{Y}$:

 On input $x \in \mathcal{X}$:
 1. Find the k points $x_{i_1}, x_{i_2}, ..., x_{i_k}$ among $\{x_i\}_{i=1}^n$ “closest” to x (the k nearest neighbors)
 2. Return plurality of $y_{i_1}, y_{i_2}, ..., y_{i_k}$

(Break ties arbitrarily in both steps.)
Effect of k

- Smaller k: smaller training error.
- Larger k: higher training error, but predictions are more “stable” due to voting.

OCR digits classification:

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test error rate</td>
<td>3.09%</td>
<td>2.95%</td>
<td>3.12%</td>
<td>3.06%</td>
<td>3.41%</td>
</tr>
</tbody>
</table>
Picking k

• **Simplest approach: use a hold-out set:**
 1. Pick a subset $V \subset S$ (*hold-out set, or validation set*).
 2. For each $k \in \{1, 3, 5, \ldots\}$:
 - Construct k-NN classifier $\hat{f}_{S \setminus V, k}$ using $S \setminus V$
 - Compute error rate of $\hat{f}_{S \setminus V, k}$ on V ("hold-out error rate")
 3. Pick the k that gives the smallest hold-out error rate.
Some better distances

- **Strings: edit distance**
 - $d(u, v) = \# \text{ insertions/deletions/mutations needed to change } u \text{ to } v$

- **Images: shape context distance**
 - $d(u, v) = \text{ how much "warping" is required to change } u \text{ to } v$

OCR digits classification:

<table>
<thead>
<tr>
<th>Distance</th>
<th>ℓ_2</th>
<th>ℓ_3</th>
<th>Tangent</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test error rate</td>
<td>3.09%</td>
<td>2.83%</td>
<td>1.10%</td>
<td>0.63%</td>
</tr>
</tbody>
</table>
Noisy features

Caution: nearest neighbors can be broken by noisy features!
Important questions

1. How good is the classifier learned using NN on your problem?
2. Is NN a good learning algorithm, in general?
Statistical learning theory

• **Basic assumption:** labeled examples \(\{(x_i, y_i)\}_{i=1}^{n} \) come from same source as future unlabeled examples

Collection of labeled examples from \(P \) → **Learning algorithm** → Learned predictor

New unlabeled example from \(P \) → Prediction

Assumption: \(\{(x_i, y_i)\}_{i=1}^{n} \) is an *i.i.d. sample* from a probability distribution \(P \) over \(\mathcal{X} \times \mathcal{Y} \)
Prediction error rate

• Define the (true) error rate of a classifier \(f : \mathcal{X} \rightarrow \mathcal{Y} \) w.r.t. \(P \) to be
 \[
 \text{err}_P(f) := P(f(X) \neq Y)
 \]
 where \((X, Y) \sim P\).

• Let \(\hat{f}_S \) be a classifier trained using labeled examples \(S \).
• The true error rate of \(\hat{f}_S \) is
 \[
 \text{err}_P(\hat{f}_S) = P(\hat{f}_S(X) \neq Y).
 \]
• We cannot compute this without knowing \(P \).
Estimating the true error rate

• Suppose we split \(\{(x_i, y_i)\}_{i=1}^n \) into \(S \) and \(T \), and \(\hat{f}_S \) is only based on \(S \).

• Under the i.i.d. sample assumption, \(\hat{f}_S \) and \(T \) are independent, and test error rate of \(\hat{f}_S \) is an unbiased estimate of true error rate of \(\hat{f}_S \).

• If \(|T| = m \), then the test error rate of \(\hat{f}_S \) is a binomial random variable (scaled by \(1/m \)):

\[
m \cdot \text{err}_T(\hat{f}_S) \sim \text{Bin} \left(m, \text{err}_P(\hat{f}_S) \right)
\]

• The expected value of \(\text{err}_T(\hat{f}_S) \) is \(\text{err}_P(\hat{f}_S) \). (Unbiased estimator)

• Its standard deviation is at most \(1/\sqrt{m} \).
Limits of prediction

• Binary classification: \(Y = \{0, 1\} \)

• Think of \(P \) as being comprised of two parts:
 • Marginal distribution of \(X \) (i.e., a distribution over \(\mathcal{X} \)): call this \(\mu \).
 • Conditional distribution of \(Y \) given \(X = x \), for each \(x \in \mathcal{X} \):
 \[\eta(x) := P(Y = 1|X = x) \]

• If \(\eta(x) \) is 0 or 1 for all \(x \in \mathcal{X} \) where \(\mu(x) > 0 \), then the optimal error rate is zero (i.e., \(\min_{f} \text{err}_{P}(f) = 0 \)).

• Otherwise it is non-zero.
Bayes optimality

• What is the classifier with smallest true error rate?

\[f^*(x) := \begin{cases}
0, & \eta(x) \leq 1/2 \\
1, & \eta(x) > 1/2
\end{cases} \]

• \(f^* \) is called the Bayes (optimal) classifier

\[\text{err}_p(f^*) = \min_{f} \text{err}_p(f) = \mathbb{E}[\min\{\eta(X), 1 - \eta(X)\}] \]

• Its error rate is called the Bayes (optimal) error.
Consistency

• We say a learning algorithm A is consistent if
 \[
 \lim_{n \to \infty} \mathbb{E}[\text{err}_P(\hat{f}_n)] = \min_f \text{err}_P(f)
 \]
 where \hat{f}_n denotes classifier learned by A from i.i.d. sample of size n.

• **Theorem** [e.g., Cover and Hart, 1967]. Assume η is continuous. Then:
 • 1-NN is consistent if $\min_f \text{err}_P(f) = 0$.
 • k-NN is consistent provided that $k := k_n$ is chosen as an increasing but sublinear function of n:
 \[
 \lim_{n \to \infty} k_n = \infty, \quad \lim_{n \to \infty} \frac{k_n}{n} = 0.
 \]