Clustering and dictionary learning

Unsupervised classification / clustering

Input: $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.

Output: function $f: \mathbb{R}^d \rightarrow \{1, 2, \ldots, k\} =: [k]$.

Typical semantics: hidden subpopulation structure.

Clustering

Input: $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.

Output: partitioning of x_1, x_2, \ldots, x_n into k groups.

Often done via unsupervised classification; ⇒ “clustering” often synonymous with “unsupervised classification”.

Sometimes also have a “representative” $c_j \in \mathbb{R}^d$ for each $j \in [k]$ (e.g., average of the x_i in jth group) → quantization.

Uses of clustering: feature representations

“One-hot” / “dummy variable” encoding of $f(x)$

$$
\phi(x) = \begin{bmatrix}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{bmatrix}
$$

(Often used together with other features.)

$f(x)$ position
Uses of Clustering: Feature Representations

Histogram representation

- Cut up each $x_i \in \mathbb{R}^d$ into different parts $x_{i,1}, x_{i,2}, \ldots, x_{i,m} \in \mathbb{R}^p$ (e.g., small patches of an image).
- Cluster all the parts $x_{i,j}$: get k representatives $c_1, c_2, \ldots, c_k \in \mathbb{R}^p$.
- Represent x_i by a histogram over $\{1, 2, \ldots, k\}$ based on assignments of x_i's parts to representatives.

Uses of Clustering: Compression

Quantization

Replace each x_i with its representative

$$x_i \mapsto c_{f(x_i)}.$$

Example: quantization at image patch level.

k-Means Clustering

Problem

- **Input:** $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- **Output:** k representatives ("centers", "means") $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$.
- **Objective:** choose $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^{n} \min_{j \in [k]} \|x_i - c_j\|_2^2.$$

Natural assignment function

$$f(x) := \arg \min_{j \in [k]} \|x - c_j\|_2^2.$$

NP-hard, even if $k = 2$ or $d = 2$.
The easy cases

k-means clustering for $k = 1$

Problem: Pick $c \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^{n} \|x_i - c\|^2_2.$$

Solution: “bias/variance decomposition”

$$\frac{1}{n} \sum_{i=1}^{n} \|x_i - c\|^2 = \|\mu - c\|^2 + \frac{1}{n} \sum_{i=1}^{n} \|x_i - \mu\|^2_2$$

where $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$.

Therefore, optimal choice for c is μ.

k-means clustering for $d = 1$

Dynamic programming in time $O(n^2 k)$.

Alternating optimization algorithm

Assignment variables

For each data point x_i, let $\phi_i \in \{0, 1\}^k$ denote its “one-hot” representation:

$$\phi_{i,j} = 1 \{x_i \text{ is assigned to cluster } j\}.$$

Objective becomes (for optimal setting of ϕ_i’s)

$$\sum_{i=1}^{n} \min_{j \in [k]} \|x_i - c_j\|^2_2 = \sum_{i=1}^{n} \left\{ \sum_{j=1}^{k} \phi_{i,j} \|x_i - c_j\|^2_2 \right\}.$$

Lloyd’s algorithm (sometimes called the k-means algorithm)

Initialize $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ somehow. Then repeat until convergence:

- Holding c_1, c_2, \ldots, c_k fixed, pick optimal $\phi_1, \phi_2, \ldots, \phi_n$.
 - Set ϕ_i so x_i is assigned to closest c_j.

- Holding $\phi_1, \phi_2, \ldots, \phi_n$ fixed, pick optimal c_1, c_2, \ldots, c_k.
 - Set c_j to be the average of the x_i assigned to cluster j.

Sample run of Lloyd’s algorithm

Arbitrary initialization of c_1 and c_2.

Initializing Lloyd’s algorithm

Basic idea: Choose initial centers to have good coverage of the data points.

Farthest-first traversal

For $j = 1, 2, \ldots, k$:

- Pick $c_j \in \mathbb{R}^d$ from among x_1, x_2, \ldots, x_n farthest from previously chosen $c_1, c_2, \ldots, c_{j-1}$.
 - (c_1 chosen arbitrarily.)

But this can be thrown off by outliers...

A better idea:

D^2 sampling (a.k.a. “k-means++”)

For $j = 1, 2, \ldots, k$:

- Randomly pick $c_j \in \mathbb{R}^d$ from among x_1, x_2, \ldots, x_n according to distribution
 $$\Pr(c_j = x_i) \propto \min_{j' < j} \|x_i - c_{j'}\|^2_2.$$

 (Uniform distribution when $j = 1$.)
Choosing \(k \)

- Usually by hold-out validation / cross-validation on auxiliary task (e.g., supervised learning task).
- **Heuristic:** Find large gap between \(k-1 \)-means cost and \(k \)-means cost.

Clustering at multiple scales

\(k = 2 \) or \(k = 3 \)?

Hierarchical clustering: encode clusterings for all values of \(k \) in a tree.

Caveat: not always possible.

Example: phylogenetic tree

Hierarchical clustering

Divisive (top-down) clustering

- Partition data into two groups (e.g., via \(k \)-means clustering with \(k = 2 \)).
- Recurse on each part.

Agglomerative (bottom-up) clustering

- Start with every point \(x_i \) in its own cluster.
- Repeatedly merge “closest” pair of clusters.

Example: **Ward’s average linkage method**

\[
\text{dist}(C, \tilde{C}) := \frac{|C| \cdot |\tilde{C}|}{|C| + |\tilde{C}|} \left\| \text{mean}(C) - \text{mean}(\tilde{C}) \right\|^2
\]

(the increase in \(k \)-means cost caused by merging \(C \) and \(\tilde{C} \)).
Dictionary learning
(a.k.a. sparse coding)

Goal: Find representatives \(c_1, c_2, \ldots, c_k \in \mathbb{R}^d\) such that each \(x_i\) is “well-represented” by a linear combination of \(\leq s\) such representatives \(c_j\).

Special case: \(s = 1 \implies\) clustering/quantization.

Generalizing \(k\)-means

\(k\)-means objective

\[
\min_{C, \Phi} \sum_{i=1}^{n} \|x_i - C\Phi_i\|_2^2
\]

- \(\Phi = [\phi_1| \phi_2| \cdots| \phi_n] \in \{0, 1\}^{k \times n}\) are the cluster assignments.
- \(C = [c_1| c_2| \cdots| c_k] \in \mathbb{R}^{d \times k}\) are the cluster representatives.

Lloyd’s algorithm:

Initialize \(C\) somehow. Then repeat:

- Holding \(C\) fixed, pick (near) optimal \(\Phi\).
- Holding \(\Phi\) fixed, pick optimal \(C\).

Generalization

Permit each \(\phi_i\) to have up to \(s\) non-zero entries (not necessarily equal to 1).

Dictionary learning

Common dictionary learning objective

\[
\min_{C, \Phi} \sum_{i=1}^{n} \|x_i - C\Phi_i\|_2^2
\]

Generalization of Lloyd’s algorithm:

Initialize \(C\) somehow. Then repeat:

- Holding \(C\) fixed, pick (near) optimal \(\Phi\).
- Holding \(\Phi\) fixed, pick optimal \(C\).

Ordinary least squares solution:

\[
C^\top := (\Phi\Phi^\top)^{-1}\Phi X
\]

where \(i\)-th row of \(X\) is \(x_i^\top\).

Typical initialization: random (e.g., i.i.d. \(N(0, 1)\) entries), or \(D^2\) sampling.
EXAMPLE: mixed-membership model

Represent corpus of documents by counts of words they contain:

<table>
<thead>
<tr>
<th></th>
<th>aardvark</th>
<th>abacus</th>
<th>abalone</th>
</tr>
</thead>
<tbody>
<tr>
<td>doc. 1</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>doc. 2</td>
<td>7</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>doc. 3</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Modeling assumption:

- \(k \) “topics”, each represented by a distribution over vocabulary words \(\beta_1, \beta_2, \ldots, \beta_k \in \mathbb{R}^d \).
- Each document \(i \) is associated with \(\leq s \) topics.

 Document \(i \)'s count vector is drawn from a multinomial distribution with probabilities given by \(\sum_{t=1}^k w_{i,t} \beta_t \) where \(w_i \) is a probability vector with \(\leq s \) non-zero entries.

In expectation:

\[
\mathbb{E}(A^\top) = \Phi
\]

\(A \) \((d \times n) \)

\(\Phi \) \((k \times n) \)

- \(\phi_{i,t} = w_{i,t} \times \text{length of document } i \).
- \(\beta_t = t\text{-th column of } B \)

Applying dictionary learning:

Identify \(\beta_1, \beta_2, \ldots, \beta_k \) as “representatives” \(c_1, c_2, \ldots, c_k \in \mathbb{R}^d \).

Recap

- Uses of clustering:
 - Unsupervised classification (“hidden subpopulations”).
 - Quantization
 - …
- \(k \)-means clustering: popular objective for clustering and quantization.
- Lloyd’s algorithm: alternating optimization, needs good initialization.
- Hierarchical clustering: clustering at multiple levels of granularity.