Beyond binary prediction

Prediction error / zero-one loss

\(P \) is a distribution over \(\mathcal{X} \times \{ -1, +1 \} \), and \((X, Y) \sim P\).

For any classifier \(f: \mathcal{X} \rightarrow \{ -1, +1 \} \),

\[
\text{err}(f) = P(f(X) \neq Y) = \mathbb{E}[\ell_{0/1}(Y f(X))].
\]

Also works with real-valued predictors \(f: \mathcal{X} \rightarrow \mathbb{R} \); for example:

- **k-NN**: average of \(y \)-values of \(k \) nearest neighbors.
- **Trees**: leaf nodes with a real-valued output (e.g., average of \(y \)-values of training examples that reach a leaf). “Regression trees”
- **Linear classifiers**: \(x \mapsto \langle w, x \rangle - t \).
- **Classifiers from generative models**: \(x \mapsto P_{\theta}(Y = +1 | X = x) - 1/2 \).

Often useful to adjust threshold (e.g., \(t \) and \(1/2 \) above).

Thresholds

Uses for adjusting threshold \(t \)

Often have **different costs for different kinds of mistakes** (recall HW1):

<table>
<thead>
<tr>
<th>(Y = -1)</th>
<th>(f(X) \leq t)</th>
<th>(f(X) > t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y = +1)</td>
<td>(0)</td>
<td>(c)</td>
</tr>
</tbody>
</table>

\(1 - c \) | \(0 \)

Also, often interested in **different performance criteria**.

- **Precision**:
 \(P(Y = +1 | f(X) > t) \)

- **Recall (a.k.a. Sensitivity, True Positive Rate)**:
 \(P(f(X) > t | Y = +1) \)

- **Specificity**:
 \(P(f(X) \leq t | Y = -1) \)

- **False Positive Rate**:
 \(P(f(X) > t | Y = -1) \)

Conditional probability estimation

Sometimes would like real-valued predictor \(f \) to be related to the **conditional probability function** \(\eta \)

\[
\eta(x) = P(Y = +1 | X = x).
\]

- Straightforward when using generative models.
- Can use a loss function that is minimized by \(\eta \) (or some invertible transformation thereof).
Goal: loss function that is minimized by (some invertible transformation of) the conditional probability function

\[\eta(x) = P(Y = +1 | X = x) . \]

Examples

Loss functions and their minimizers

- **Square loss**: \(\ell_{sq}(z) = (1-z)^2 \)

 \[\mathbb{E}[\ell_{sq}(Yf(x)) | X = x] \text{ is minimized by } f(x) = 2\eta(x) - 1. \]

 So \(\eta(x) = (f(x) + 1)/2. \)

- **Logistic loss**: \(\ell_{\log}(z) = \ln(1 + \exp(-z)) \)

 \[\mathbb{E}[\ell_{\log}(Yf(x)) | X = x] \text{ is minimized by } f(x) = \ln \left(\frac{\eta(x)}{1 - \eta(x)} \right). \]

 So \(\eta(x) = (1 + \exp(-f(x)))^{-1}. \)

Non-example

- **Hinge loss**: \(\ell_{hinge}(z) = \max\{0, 1 - z\} \)

 \[\mathbb{E}[\ell_{hinge}(Yf(x)) | X = x] \text{ is minimized by } f(x) = \text{sign}(2\eta(x) - 1). \]

 Can’t recover \(\eta(x) \) from \(f(x) \).

Caveat

Might not be possible to represent

\[x \mapsto 2\eta(x) - 1 \quad \text{or} \quad x \mapsto \ln \left(\frac{\eta(x)}{1 - \eta(x)} \right) \]

as (say) a linear function \(x \mapsto \langle w, x \rangle \).

Common remedies: enhance the feature space via feature expansion or kernels, or use more flexible models (e.g., tree models).
Structured output spaces

Sometimes Y is not just $\{0, 1\}$ or $\{1, 2, \ldots, K\}$, but rather a collection of structured objects.

Example: sequence tagging
- X: sequences of English words
- Y: sequences of parts-of-speech

```
the/D man/N saw/V the/D dog/N
```

(Verbs tend to follow Nouns.)

Many other examples:
- sentence parse trees
- web search result ranking
- visual scene labeling
- . . .

Structured output prediction

Featurization
Create several input-output feature maps $\phi_1, \phi_2, \ldots, \phi_d: X \times Y \rightarrow \mathbb{R}$.

- e.g., $\phi_{1000}(x, y) = I\{i\text{-th word in } x \text{ is "the"}, \text{ and } i\text{-th POS in } y \text{ is "D"}\}$

For each possible $y \in Y$, consider an input-output feature vector:

```
\Phi(x, y) := (\phi_1(x, y), \phi_2(x, y), \ldots, \phi_d(x, y)) \in \mathbb{R}^d.
```

Note: often d is enormous, but $\phi_i(x, y) = 0$ for most i.

Model
Prediction model is based on linear functions of input-output feature vectors:

```
x \mapsto \arg \max_{y \in Y} \langle w, \Phi(x, y) \rangle
```

for weight vector $w \in \mathbb{R}^d$.

Note: the $\arg \max$ can often be computed efficiently (e.g., via dynamic programming), even when Y is enormous.

Structured Perceptron training (Collins, 2002)

Online Structured Perceptron

input Labeled examples $\{(x_i, y_i)\}_{i=1}^n$ from $X \times Y$.

1: **initialize** $\hat{w}_1 := 0$.
2: for $t = 1, 2, \ldots,$ do
3: Predict: $\hat{y}_t := \arg \max_{y \in Y} \langle \hat{w}_{t-1}, \Phi(x_t, y) \rangle$
4: if $\hat{y}_t \neq y_t$ then
5: Update:

```
\hat{w}_t := \hat{w}_{t-1} + \Phi(x_t, y_t) - \Phi(x_t, \hat{y}_t).
```

6: else
7: No update: $\hat{w}_t := \hat{w}_{t-1}$
8: end if
9: end for

Can also help to make multiple passes through data, and also to employ averaging (as in Averaged Perceptron).