Neural networks

COMS 4771 Fall 2023

Feature maps revisited

Justification for simple statistical models (e.g., logistic regression):

- They are reasonable with a judicious choice of features or feature map
- In linear models, best prediction of Y given $X=x$ is based entirely on

$$
w^{\top} \varphi(x)
$$

where φ is the feature map

Weierstrass approximation theorem: For any continuous function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, any bounded region $B \subset \mathbb{R}^{d}$, and any $\varepsilon>0$, there exists a polynomial $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

$$
\max _{x \in B}|f(x)-g(x)| \leq \varepsilon
$$

- Polynomials give good approximations uniformly over an interval (Cf. Taylor's theorem: only guarantees local approximations)
- Universal justification of polynomial expansion + linear functions
- Caveat: Degree of g may be large (e.g., growing with d and $1 / \varepsilon$)
- Somewhat ameliorated by kernel methods + regularization

Kernel machine: function learned by kernel method

$$
g(x)=\sum_{i=1}^{n} \alpha_{i} \mathrm{k}\left(x, x^{(i)}\right)
$$

where $\mathrm{k}(\cdot, \cdot)$ is the kernel function, and $x^{(1)}, \ldots, x^{(n)}$ are the training examples

Stone-Weierstrass approximation theorem: For any continuous function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, any bounded region $B \subset \mathbb{R}^{d}$, and any $\varepsilon>0$, there exists a function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ of the form

$$
g(x)=\sum_{i=1}^{p} \alpha_{i} \exp \left(x^{\top} w^{(i)}\right)
$$

such that

$$
\max _{x \in B}|f(x)-g(x)| \leq \varepsilon
$$

- Can replace "exp" with other "activation functions"
- Caveat: p may be large
- Another interpretation: linear function $\alpha^{\top} \varphi(x)$ with feature map

$$
\varphi(x)=\left(\exp \left(x^{\top} w^{(1)}\right), \ldots, \exp \left(x^{\top} w^{(p)}\right)\right)
$$

Except the $w^{(i)}$'s may need to depend on f

- This kind of function is called a (two-layer) neural network

Kernel machine

$$
g(x)=\sum_{i=1}^{n} \alpha_{i} \mathrm{k}\left(x, x^{(i)}\right)
$$

- Only α_{i} 's are learned using data
(Two-layer) neural network

$$
g(x)=\sum_{i=1}^{p} \alpha_{i} \exp \left(x^{\top} w^{(i)}\right)
$$

- Both α_{i} 's and $w^{(i)}$'s are learned
- Can use $p>n$

Very abbreviated history:

- McCulloch and Pitts (early 1940s):

Neural networks as computational model for brain

- Arnold and Kolmogorov (late 1950s):

Solved Hilbert's 13th problem (about polynomial roots) using neural networks

- Modern use of neural networks with Linnainmaa's autodiff (early 1970s) started with Werbos (early 1980s)
- Many other researchers have since discovered other approximation-theoretic properties and practical uses of neural networks (e.g., Cybenko, Rumelhart and Hinton, LeCun)

Today, for machine learning purposes: a neural network is any function f such that $f(x)$ can be computed by a straight-line program

```
K = torch.randn(d, p, requires_grad=True)
Q = torch.randn(d, p, requires_grad=True)
V = torch.randn(d, p, requires_grad=True)
def f(x):
    k = x @ K
    q = x @ Q
    a = torch.softmax(k @ q.T, dim=1)
    return a @ x @ V
```


Example:

$f(x)=\alpha_{0}+\sum_{i=1}^{p} \alpha_{i} \sigma\left(x^{\top} w^{(i)}+b^{(i)}\right) \quad \begin{aligned} & v_{1}:= \\ & v_{2}:=\end{aligned}$ \qquad

$$
\begin{aligned}
v_{p} & := \\
\hat{y} & :=\overline{\alpha_{0}+\alpha_{1} \times v_{1}+\alpha_{2}} \times v_{2}+\cdots+\alpha_{p} \times v_{p}
\end{aligned}
$$

v_{1}, \ldots, v_{p} called hidden units (antiquated terminology)

- Using modern numerical software (e.g., pytorch):

$$
\hat{y}:=\alpha_{0}+\alpha^{\top} \sigma(W x+b)
$$

$\left(W \in \mathbb{R}^{p \times d}, b, \alpha \in \mathbb{R}^{p}, \alpha_{0} \in \mathbb{R}\right.$, and $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is applied component-wise $)$

In practice, neural network "architectures" (i.e., program "templates") are built using/composing component modules

Simplest module is fully-connected layer:

$$
h \mapsto \sigma(W h+b)
$$

(affine transformation followed by non-linear transformation)
Some examples of σ :

- Rectified linear unit: $\operatorname{relu}(t)=[t]_{+}=\max \{0, t\}$
- Hyperbolic tangent: $\tanh (t)=2 \operatorname{logistic}(t)-1$
- Softmax: softmax: $\mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$, where $\operatorname{softmax}(u)_{i}=\frac{\exp \left(u_{i}\right)}{\sum_{j=1}^{k} \exp \left(u_{j}\right)}$

Training neural networks

Problem: How to fit neural network f (with parameters θ) to training data?

- A few more lines in straight-line program gives

$$
J:=\sum_{i=1}^{n} \operatorname{loss}\left(f\left(x^{(i)}\right), y^{(i)}\right)
$$

loss $=$ torch.nn. NLLLoss(reduction='sum')
$\mathrm{J}=\operatorname{loss}(\mathrm{f}(\mathrm{x}), \mathrm{y})$

- So autodiff can compute gradient of J with respect to all parameters θ
- This enables use of gradient-based optimization algorithms!

Major challenge: objective function $J(\theta)$ might not be convex, so use of gradient-based optimization is more complicated (e.g., initialization, step sizes)

- Many tips and tricks (e.g., "Efficient BackProp", LeCun et al, 1998)
- Experimentation may still be required

Synthetic example

Data: classes are two concentric circles, 50 examples per class

Feature transformation: standardization

- Neural net: $f(x)=\operatorname{softmax}(A \operatorname{relu}(W x+b)+c)$
- Parameters: $W \in \mathbb{R}^{p \times 2}, b \in \mathbb{R}^{p}, A \in \mathbb{R}^{2 \times p}, c \in \mathbb{R}^{2}$ (We will vary the "width" p)
- k-th output is prediction of $\operatorname{Pr}(Y=k \mid X=x)$

Use gradient descent on average logarithmic loss on training data

- Random initialization:

$$
W_{i, j}, b_{i} \stackrel{\text { i.i.d. }}{\sim} \mathrm{N}\left(0, \frac{1}{3}\right), \quad A_{i, j}, c_{i} \stackrel{\text { i.i.d. }}{\sim} \mathrm{N}\left(0, \frac{2}{p+1}\right)
$$

- Step size: $\eta_{t}=0.1$

Results: $p=2$

$14 / 33$
Results: $p=2$

Results: $p=2$

- Behaves like a linear classifier
- First component of relu $(W x+b)$ is constant (0) over training data
- Only second component of relu $(W x+b)$ varies over training data

Results: $p=2-$ second component of $\operatorname{relu}(W x+b)$

Results: $p=2$ (different initialization)

Results: $p=2$ (different initialization)

Results: $p=2$ (different initialization) - first component of $\operatorname{relu}(W x+b)$

Results: $p=2$ (different initialization) - second component of relu $(W x+b)$

Results: $p=3$

Results: $p=3$

Results: $p=3$ - first component of $\operatorname{relu}(W x+b)$

Results: $p=3$ - second component of relu $(W x+b)$

Results: $p=3$ - third component of $\operatorname{relu}(W x+b)$

Results: $p=1000$

Iris data classifier

Features:

$$
x_{1}=\text { sepal width } / \text { sepal length }, \quad x_{2}=\text { petal } \text { width } / \text { petal length }
$$

- Neural net: $f(x)=\operatorname{softmax}(A \operatorname{relu}(W x+b)+c)$
- Parameters: $W \in \mathbb{R}^{10 \times 2}, b \in \mathbb{R}^{10}, A \in \mathbb{R}^{2 \times 10}, c \in \mathbb{R}^{2}$
- k-th output is prediction of $\operatorname{Pr}(Y=k \mid X=x)$

Feature transformation and training procedure: same as in synthetic example

- Training error rate: 8.33%, test error rate: 10.0%

$29 / 33$

Deep learning lifestyle

Since 2012, use of neural networks++ has exploded in machine learning

- Called "deep learning" due to use of large and "deep" neural networks
- Key factors in latest resurgence and success:
- Graphics processing units (GPUs) to speed-up matrix operations
- Easy-to-use numerical software with autodiff (e.g., pytorch)
- Large benchmark datasets (e.g., ImageNet)

Practice largely guided by heuristics and extensive experimentation

Many different architectural components, e.g.:

- Convolutional layer (in convolutional neural networks)

Attention module (in transformer networks)

