Linear regression

COMS 4771 Fall 2023

Dartmouth student dataset

Dataset of 750 Dartmouth students' (first-year) college GPA ${ }^{1}$

Mean 2.47
Standard deviation 0.75

[^0]Dartmouth dataset also has high school GPA of each student Question: Is high school GPA predictive of college GPA?

Attempting to exploit "local regularity" using NN

Possible "global" modeling assumption:

- Increase in high school GPA by Δ should give an increase in (expected) college GPA by $\propto \Delta$
- In other words,

$$
\mathbb{E}[\text { college GPA | high school GPA }]
$$

is \qquad function of high school GPA

Least squares linear regression
$f: \mathbb{R} \rightarrow \mathbb{R}$ is linear if it is of the form

$$
f(x)=m x+b
$$

for some parameters $m, b \in \mathbb{R}$

Problem: given a dataset \mathcal{S} from $\mathbb{R} \times \mathbb{R}$, find (parameters of) a linear function $f(x)=m x+b$ of minimal sum of squared errors (SSE)

$$
\operatorname{sse}[m, b]=\sum_{(x, y) \in \mathcal{S}}(m x+b-y)^{2}
$$

Method of solution is called ordinary least squares (OLS)

Minimizers of SSE must be zeros of the two partial derivative functions:

$$
\begin{aligned}
& \frac{\partial \mathrm{sse}}{\partial m}[m, b]=2 \sum_{(x, y) \in \mathcal{S}}(m x+b-y) x=0 \\
& \frac{\partial \mathrm{sse}}{\partial b}[m, b]=2 \sum_{(x, y) \in \mathcal{S}}(m x+b-y)=0
\end{aligned}
$$

Two linear equations in two unknowns

Together, the equations are called the normal equations

Equivalent form:

$$
\begin{aligned}
\operatorname{avg}\left(x^{2}\right) m & + & \operatorname{avg}(x) b & =\operatorname{avg}(x y) \\
\operatorname{avg}(x) m & + & b & =\operatorname{avg}(y)
\end{aligned}
$$

where

$$
\begin{aligned}
\operatorname{avg}(x) & =\frac{1}{|\mathcal{S}|} \sum_{(x, y) \in \mathcal{S}} x, & \operatorname{avg}\left(x^{2}\right)=\frac{1}{|\mathcal{S}|} \sum_{(x, y) \in \mathcal{S}} x^{2}, \\
\operatorname{avg}(x y) & =\frac{1}{|\mathcal{S}|} \sum_{(x, y) \in \mathcal{S}} x y, & \operatorname{avg}(y)=\frac{1}{|\mathcal{S}|} \sum_{(x, y) \in \mathcal{S}} y
\end{aligned}
$$

Solution to normal equations:

$$
\begin{aligned}
m & =\frac{\operatorname{avg}(x y)-\operatorname{avg}(x) \cdot \operatorname{avg}(y)}{\operatorname{avg}\left(x^{2}\right)-\operatorname{avg}(x)^{2}} \\
b & =\operatorname{avg}(y)-m \cdot \operatorname{avg}(x)
\end{aligned}
$$

What if $\operatorname{avg}\left(x^{2}\right)=\operatorname{avg}(x)^{2} ?$

For Dartmouth dataset:

$$
m=0.751, \quad b=0.067
$$

RMSE:

$$
\sqrt{\frac{1}{|\mathcal{S}|} \operatorname{sse}[m, b ; \mathcal{S}]}=0.629
$$

(Recall standard deviation of college GPA is 0.75)

Bivariate linear regression

Dartmouth dataset also includes SAT verbal percentiles

Linear function of two variables x_{1} and x_{2} :

$$
f\left(x_{1}, x_{2}\right)=m_{1} x_{1}+m_{2} x_{2}+b
$$

Problem: given a dataset \mathcal{S} from $\mathbb{R}^{2} \times \mathbb{R}$, find (parameters of) a linear function $f\left(x_{1}, x_{2}\right)=m_{1} x_{1}+m_{2} x_{2}+b$ of minimal sum of squared errors

$$
\operatorname{sse}[m, b ; \mathcal{S}]=\sum_{\left(x_{1}, x_{2}, y\right) \in \mathcal{S}}\left(m_{1} x_{1}+m_{2} x_{2}+b-y\right)^{2}
$$

Normal equations: three linear equations in three unknowns (m_{1}, m_{2}, b)

$$
\left[\begin{array}{ccc}
\operatorname{avg}\left(x_{1}^{2}\right) & \operatorname{avg}\left(x_{1} x_{2}\right) & \operatorname{avg}\left(x_{1}\right) \\
\operatorname{avg}\left(x_{2} x_{1}\right) & \operatorname{avg}\left(x_{2}^{2}\right) & \operatorname{avg}\left(x_{2}\right) \\
\operatorname{avg}\left(x_{1}\right) & \operatorname{avg}\left(x_{2}\right) & 1
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
b
\end{array}\right]=\left[\begin{array}{c}
\operatorname{avg}\left(x_{1} y\right) \\
\operatorname{avg}\left(x_{2} y\right) \\
\operatorname{avg}(y)
\end{array}\right]
$$

Solve using elimination algorithm

Dartmouth dataset: $x_{1}=$ high school GPA, $x_{2}=$ SAT verbal percentile

$$
m_{1}=0.611, \quad m_{2}=0.024, \quad b=-0.639
$$

RMSE:

$$
\sqrt{\frac{1}{|\mathcal{S}|} \operatorname{sse}\left[m_{1}, m_{2}, b ; \mathcal{S}\right]}=0.603
$$

(Recall standard deviation of college GPA is 0.75)

Linear algebra of ordinary least squares

(Homogeneous) linear function of d variables $x=\left(x_{1}, \ldots, x_{d}\right)$ is parameterize by d-dimensional weight vector $w=\left(w_{1}, \ldots, w_{d}\right)$:

$$
f_{w}(x)=w^{\top} x
$$

To handle inhomogeneous linear functions (i.e., affine functions), include an extra always-1 feature: $x_{d+1}=1$

$$
\begin{aligned}
f_{w}(x) & =w^{\top} x \\
& =\left(w_{1} x_{1}+\cdots+w_{d} x_{d}\right)+
\end{aligned}
$$

\qquad

Problem: given a dataset \mathcal{S} from $\mathbb{R}^{d} \times \mathbb{R}$, find $w \in \mathbb{R}^{d}$ of minimal sum of squared errors

$$
\operatorname{sse}[w ; \mathcal{S}]=\sum_{(x, y) \in \mathcal{S}}\left(w^{\top} x-y\right)^{2}
$$

Method of solution: OLS

Matrix notation: let $\mathcal{S}=\left(\left(x^{(i)}, y^{(i)}\right)\right)_{i=1}^{n}$, and put

$$
A=\left[\begin{array}{ccc}
\longleftarrow & \left(x^{(1)}\right)^{\top} & \longrightarrow \\
\vdots & \\
\longleftarrow & \left(x^{(n)}\right)^{\top} & \longrightarrow
\end{array}\right], \quad b=\left[\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(n)}
\end{array}\right]
$$

so

$$
A w=\left[\begin{array}{c}
w^{\top} x^{(1)} \\
\vdots \\
w^{\top} x^{(n)}
\end{array}\right], \quad A w-b=\left[\begin{array}{c}
w^{\top} x^{(1)}-y^{(1)} \\
\vdots \\
w^{\top} x^{(n)}-y^{(n)}
\end{array}\right]
$$

Therefore

$$
\|A w-b\|^{2}=\sum_{i=1}^{n}
$$

How many ways to write \hat{b} as a linear combination of the columns of A ?

Normal equations in matrix notation
Key fact: $\operatorname{CS}(A)$ and $\mathrm{NS}\left(A^{\top}\right)$ are orthogonal complements

Summary:

- Normal equations: $\left(A^{\top} A\right) w=A^{\top} b$
- If $\operatorname{rank}(A)=d$, then solution is unique
- Else, infinitely-many solutions
- Common choice for tie-breaking: minimum norm solution

$$
\underset{w \in \mathbb{R}^{d}}{\arg \min }\|w\| \text { s.t. }\left(A^{\top} A\right) w=A^{\top} b
$$

```
def learn(train_x, train_y):
    return np.linalg.pinv(train_x).dot(train_y)
def predict(params, test_x):
    return test_x.dot(params)
```


Statistical view of ordinary least squares

Normal linear regression model: Conditional distribution of Y given $X=x$ is

$$
\mathrm{N}\left(w^{\top} x, \sigma^{2}\right)
$$

- w and σ^{2} are parameters of the model
- In this model, best possible MSE is σ^{2}

MLE in normal linear regression model

- Likelihood of w and σ^{2} :

$$
L\left(w, \sigma^{2}\right)=\prod_{(x, y) \in \mathrm{S}} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y-w^{\top} x\right)^{2}}{2 \sigma^{2}}\right)
$$

- Log-likelihood:

$$
\ln L\left(w, \sigma^{2}\right)=-\frac{1}{2 \sigma^{2}} \sum_{(x, y) \in \mathcal{S}}\left(y-w^{\top} x\right)^{2}-\frac{|\mathcal{S}|}{2} \ln \left(2 \pi \sigma^{2}\right)
$$

- In terms of w, maximizing log-likelihood is same as minimizing SSE!

Statistical inference (example)

- Suppose you fit linear regression model to data, and find that $w \neq(0, \ldots, 0)$

How confident are you in this finding?

Generalization

- Suppose $\mathcal{S} \stackrel{\text { i.i.d. }}{\sim}(X, Y)$
- OLS gives minimizer of empirical risk (for square loss, among linear functions)

$$
\widehat{\operatorname{Risk}}[w]=\frac{1}{n} \sum_{(x, y) \in S} \operatorname{loss}_{\mathrm{sq}}\left(w^{\top} x, y\right)
$$

But we actually care about the (true) risk

$$
\operatorname{Risk}[w]=\mathbb{E}\left[\operatorname{loss}_{\mathrm{sq}}\left(w^{\top} X, Y\right)\right]
$$

- Is empirical risk a good estimate of (true) risk?
- Usually only if $|\delta|$ is sufficiently large

Extreme example: $d=1,|\mathcal{S}|=2, \widehat{\operatorname{Risk}}[w]=0$

[^0]: $1_{\text {https://chance.dartmouth.edu/course/Syllabi/Princeton96/ETSValidation.html }}$

