Feature maps and kernels

COMS 4771 Fall 2023

Upgrading linear models

Upgrade linear models by being creative about features

- (Where do numerical features really come from anyway?)
- Example: text data
- One feature per word: but what numerical value to assign?
- Stemming: map words with the same "stem" to the same canonical form
- Stop word filtering: Ignore words like "the", "a", etc.
- Not specific to linear models

Suppose you already have numerical features $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d} \ldots$

- Instead of using x directly in linear model, can use $\varphi(x)$ for some feature map

$$
\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}
$$

(with p possibly different, perhaps larger, than d)

- Feature space (corresponding to φ): image of φ

Any univariate polynomial in x of degree $\leq k$ can be written as

$$
w^{\top} \varphi(x)=w_{0}+w_{1} x+w_{2} x^{2}+\cdots+w_{k} x^{k}
$$

where feature map $\varphi: \mathbb{R} \rightarrow \mathbb{R}^{k+1}$ is given by

$$
\varphi(x)=\left(1, x, x^{2}, \ldots, x^{k}\right)
$$

Any multivariate quadratic can be written as

$$
w^{\top} \varphi(x)
$$

where feature map $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{1+2 d+\binom{d}{2}}$ is given by

$$
\varphi(x)=\left(1, x_{1}, \ldots, x_{d}, x_{1}^{2}, \ldots, x_{d}^{2}, x_{1} x_{2}, \ldots, x_{d-1} x_{d}\right)
$$

Can generalize to arbitrary multivariate polynomials

Using feature maps with linear classifiers:

$$
f_{w}(x)= \begin{cases}1 & \text { if } w^{\top} \varphi(x)>0 \\ 0 & \text { if } w^{\top} \varphi(x) \leq 0\end{cases}
$$

Can get decision boundaries that are not just (affine) hyperplanes!

Not linearly separable

Using $\varphi(x)=\left(1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}\right) \longrightarrow$ conic sections

Question: How can we choose the feature map to use?

Perceptron with feature map $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$:

- Start with $w=0$ (p-dimensional vector)
- While there exists $(x, y) \in \mathcal{S}$ such that $f_{w}(x) \neq y$:
- Let $(x, y) \in \mathcal{S}$ be any such example
- Update w :

$$
w \leftarrow \begin{cases}w+\varphi(x) & \text { if } y=1 \\ w-\varphi(x) & \text { if } y=0\end{cases}
$$

- Return w

Possible concern: feature space dimension p can be large

- Example: NIST dataset of handwritten digits
- $d=784$ pixels $\rightarrow p=308505$ with quadratic feature map
- Large number of parameters
- Time to evaluate linear functions $w^{\top} \varphi(x)$ may grow with p

Kernel trick

Kernel trick is a way to use feature maps $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$ with linear models but avoid (explicitly) doing the following:

- represent weight vector $w \in \mathbb{R}^{p}$
- compute $\varphi(x)$ for any x

Only works with certain learning algorithms, called kernel methods:

- Main requirement: algorithm only uses feature vectors through inner products

$$
\varphi(x)^{\top} \varphi(z)
$$

(Variant of) quadratic feature map $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{1+2 d+\binom{d}{2}}$:

$$
\varphi(x)=\left(1, \sqrt{2} x_{1}, \ldots, \sqrt{2} x_{d}, x_{1}^{2}, \ldots, x_{d}^{2}, \sqrt{2} x_{1} x_{2}, \ldots, \sqrt{2} x_{d-1} x_{d}\right)
$$

- Naïve method for computing inner product $\varphi(x)^{\top} \varphi(z)$: \qquad time
- Form $\varphi(x)$
- Form $\varphi(z)$
- Compute $\varphi(x)^{\top} \varphi(z)$
- Kernel trick: for any $x, z \in \mathbb{R}^{d}$,

$$
\left(1+x^{\top} z\right)^{2}=\varphi(x)^{\top} \varphi(z)
$$

Time to evaluate: \qquad
(Similar trick/speed-up available for polynomial expansions of degree $k>2$)

Kernel Perceptron

Kernel Perceptron with feature map $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$:

- Maintain "dual variable" $\alpha^{(i)}$ for each example $\left(x^{(i)}, y^{(i)}\right) \in \mathcal{S}$
- Weight vector w is implicitly represented as

$$
w=\sum_{i} \alpha^{(i)} \varphi\left(x^{(i)}\right)
$$

- Start with $\alpha^{(i)}=0$ for all i
- While there exists $(x, y) \in \mathcal{S}$ such that $f_{w}(x) \neq y$:
- Let $\left(x^{(i)}, y^{(i)}\right) \in \mathcal{S}$ be any such example
- Update $\alpha^{(i)}$.

$$
\alpha^{(i)} \leftarrow \begin{cases}\alpha^{(i)}+1 & \text { if } y=1 \\ \alpha^{(i)}-1 & \text { if } y=0\end{cases}
$$

- Return dual variables $\left(\alpha^{(i)}\right)_{i=1}^{n}$

Question: What is time required to compute $f_{w}(x)$ in Kernel Perceptron?
(For concreteness, assume φ is the quadratic feature expansion from before)

Kernel ordinary least squares

Ordinary least squares with feature map $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$

Want to solve normal equations

$$
\left(A^{\top} A\right) w=A^{\top} b
$$

for $w \in \mathbb{R}^{p}$, but using kernel trick

$$
A=\underbrace{\left[\begin{array}{ccc}
\longleftarrow & \varphi\left(x^{(1)}\right)^{\top} & \longrightarrow \\
\vdots \\
\longleftarrow & \varphi\left(x^{(n)}\right)^{\top} & \longrightarrow
\end{array}\right]}_{n \times p}, \quad b=\left[\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(n)}
\end{array}\right]
$$

Key fact: $\operatorname{CS}\left(A^{\top}\right)$ and $\mathrm{NS}(A)$ are orthogonal complements

Therefore, can just look for a solution of the form $w=A^{\top} \alpha$ for some $\alpha \in \mathbb{R}^{n}$

$$
w=A^{\top} \alpha=\sum_{i} \alpha^{(i)} \varphi\left(x^{(i)}\right)
$$

Two steps of OLS:

1. Let \hat{b} be orthogonal projection of b to $\operatorname{CS}(A)$
2. Solve $A w=\hat{b}$ for w

Beyond polynomial expansions

Inner product can be regarded as "similarity function"

- E.g., text example

$$
x_{j}= \begin{cases}1 & \text { if article contains } j \text {-th vocabulary word } \\ 0 & \text { otherwise }\end{cases}
$$

So $x^{\top} z=$ number of words the articles have in common

Kernel methods can be used with any similarity function

$$
\mathrm{k}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}
$$

as long as, for any n and any $x^{(1)}, \ldots, x^{(n)} \in \mathcal{X}$, the $n \times n$ matrix

$$
K=\left[\begin{array}{ccc}
\mathrm{k}\left(x^{(1)}, x^{(1)}\right) & \cdots & \mathrm{k}\left(x^{(1)}, x^{(n)}\right) \\
\vdots & \ddots & \vdots \\
\mathrm{k}\left(x^{(n)}, x^{(1)}\right) & \cdots & \mathrm{k}\left(x^{(n)}, x^{(n)}\right)
\end{array}\right]
$$

is positive semidefinite
(Such a similarity function is called a positive definite kernel)

Aronszajn's theorem: For any positive definite kernel $\mathrm{k}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, there exists a feature map $\varphi: \mathcal{X} \rightarrow H$ such that

$$
\mathrm{k}(x, z)=\varphi(x)^{\top} \varphi(z)
$$

(H may be an infinite-dimensional space)

Gaussian kernel (a.k.a. radial basis function (RBF) kernel)

$$
\mathrm{k}(x, z)=\exp \left(-\frac{\|x-z\|^{2}}{2 \sigma^{2}}\right)
$$

$\sigma>0$ is bandwidth hyperparameter

Laplace kernel

$$
\mathrm{k}(x, z)=\exp \left(-\frac{\|x-z\|}{\sigma}\right)
$$

Comparison to nearest neighbors

- With Gaussian kernel, predictor is of the form

$$
\hat{f}(x)=\sum_{i=1}^{n} \alpha^{(i)} \exp \left(-\frac{\left\|x-x^{(i)}\right\|^{2}}{2 \sigma^{2}}\right)
$$

- What happens if x is close to $x^{(i)}$ but far from all other $x^{(j)}, j \neq i$?

