Feature maps and kernels

COMS 4771 Fall 2023

Upgrading linear models

Upgrade linear models by being creative about features

- ► (Where do numerical features really come from anyway?)
- Example: text data
 - One feature per word: but what numerical value to assign?

▶ Stemming: map words with the same "stem" to the same canonical form

► Stop word filtering: Ignore words like "the", "a", etc.

Not specific to linear models

Suppose you already have numerical features $x = (x_1, \dots, x_d) \in \mathbb{R}^d \dots$

Instead of using x directly in linear model, can use $\varphi(x)$ for some feature map

$$\varphi \colon \mathbb{R}^d \to \mathbb{R}^p$$

(with p possibly different, perhaps larger, than d)

Feature space (corresponding to φ): image of φ

Any **univariate polynomial** in x of degree $\leq k$ can be written as

$$w^{\mathsf{T}}\varphi(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_k x^k$$

where feature map $\varphi\colon\mathbb{R}\to\mathbb{R}^{k+1}$ is given by

$$\varphi(x) = (1, x, x^2, \dots, x^k)$$

Any multivariate quadratic can be written as

$$w^{\mathsf{T}}\varphi(x)$$

where feature map $\varphi \colon \mathbb{R}^d \to \mathbb{R}^{1+2d+\binom{d}{2}}$ is given by

$$\varphi(x) = (1, x_1, \dots, x_d, x_1^2, \dots, x_d^2, x_1 x_2, \dots, x_{d-1} x_d)$$

Can generalize to arbitrary multivariate polynomials

Using feature maps with linear classifiers:

$$f_w(x) = \begin{cases} 1 & \text{if } w^{\mathsf{T}}\varphi(x) > 0\\ 0 & \text{if } w^{\mathsf{T}}\varphi(x) \le 0 \end{cases}$$

Can get decision boundaries that are not just (affine) hyperplanes!

Not linearly separable

Using $\varphi(x)=(1,x_1,x_2,x_1^2,x_2^2,x_1x_2) \longrightarrow {\rm conic\ sections}$

Question: How can we choose the feature map to use?

Perceptron with feature map $\varphi \colon \mathbb{R}^d \to \mathbb{R}^p$:

- ▶ Start with w = 0 (p-dimensional vector)
- ▶ While there exists $(x,y) \in S$ such that $f_w(x) \neq y$:
 - ▶ Let $(x,y) \in S$ be any such example
 - ▶ Update w:

$$w \leftarrow \begin{cases} w + \varphi(x) & \text{if } y = 1\\ w - \varphi(x) & \text{if } y = 0 \end{cases}$$

ightharpoonup Return w

Possible concern: feature space dimension p can be large

- ► Example: NIST dataset of handwritten digits
 - $lackbox{ } d=784 \text{ pixels}
 ightarrow p=308505 \text{ with quadratic feature map}$
- ► Large number of parameters
- lacktriangle Time to evaluate linear functions $w^{\mathsf{T}}\varphi(x)$ may grow with p

Kernel trick

Kernel trick is a way to use feature maps $\varphi \colon \mathbb{R}^d \to \mathbb{R}^p$ with linear models but avoid (explicitly) doing the following:

- ightharpoonup represent weight vector $w \in \mathbb{R}^p$
- ightharpoonup compute $\varphi(x)$ for any x

Only works with certain learning algorithms, called kernel methods:

▶ Main requirement: algorithm only uses feature vectors through inner products

$$\varphi(x)^{\mathsf{T}}\varphi(z)$$

(Variant of) quadratic feature map $\varphi \colon \mathbb{R}^d \to \mathbb{R}^{1+2d+\binom{d}{2}}$:

$$\varphi(x) = (1, \sqrt{2}x_1, \dots, \sqrt{2}x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_{d-1}x_d)$$

- ▶ Naïve method for computing inner product $\varphi(x)^{\mathsf{T}}\varphi(z)$: time
 - Form $\varphi(x)$
 - Form $\varphi(z)$
 - ▶ Compute $\varphi(x)^{\mathsf{T}}\varphi(z)$
- ightharpoonup Kernel trick: for any $x,z\in\mathbb{R}^d$,

$$(1 + x^{\mathsf{T}}z)^2 = \varphi(x)^{\mathsf{T}}\varphi(z)$$

Time to evaluate: ____

(Similar trick/speed-up available for polynomial expansions of degree k>2)

Kernel Perceptron

Kernel Perceptron with feature map $\varphi \colon \mathbb{R}^d \to \mathbb{R}^p$:

- \blacktriangleright Maintain "dual variable" $\alpha^{(i)}$ for each example $(x^{(i)},y^{(i)})\in \mathcal{S}$
- ightharpoonup Weight vector w is implicitly represented as

$$w = \sum_{i} \alpha^{(i)} \varphi(x^{(i)})$$

- ▶ Start with $\alpha^{(i)} = 0$ for all i
- ▶ While there exists $(x,y) \in S$ such that $f_w(x) \neq y$:
 - ▶ Let $(x^{(i)}, y^{(i)}) \in S$ be any such example
 - Update $\alpha^{(i)}$:

$$\alpha^{(i)} \leftarrow \begin{cases} \alpha^{(i)} + 1 & \text{if } y = 1\\ \alpha^{(i)} - 1 & \text{if } y = 0 \end{cases}$$

▶ Return dual variables $(\alpha^{(i)})_{i=1}^n$

Question: What is time required to compute $f_w(x)$ in Kernel Perceptron?

(For concreteness, assume φ is the quadratic feature expansion from before)

Kernel ordinary least squares

Ordinary least squares with feature map $\varphi \colon \mathbb{R}^d \to \mathbb{R}^p$

Want to solve normal equations

$$(A^{\mathsf{T}}A)w = A^{\mathsf{T}}b$$

for $w \in \mathbb{R}^p$, but using kernel trick

$$A = \underbrace{\begin{bmatrix} \longleftarrow & \varphi(x^{(1)})^{\mathsf{T}} & \longrightarrow \\ & \vdots & \\ \longleftarrow & \varphi(x^{(n)})^{\mathsf{T}} & \longrightarrow \end{bmatrix}}_{n \times n}, \quad b = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

Key fact: $\mathsf{CS}(A^{\mathsf{T}})$ and $\mathsf{NS}(A)$ are orthogonal complements

Therefore, can just look for a solution of the form $w = A^{\mathsf{T}} \alpha$ for some $\alpha \in \mathbb{R}^n$

$$w = A^{\mathsf{T}} \alpha = \sum_{i} \alpha^{(i)} \varphi(x^{(i)})$$

Two steps of OLS:

1. Let \hat{b} be orthogonal projection of b to $\mathsf{CS}(A)$

2. Solve $Aw = \hat{b}$ for w

Beyond polynomial expansions

Inner product can be regarded as "similarity function"

► E.g., text example

$$x_j = \begin{cases} 1 & \text{if article contains } j\text{-th vocabulary word} \\ 0 & \text{otherwise} \end{cases}$$

So $x^{\mathsf{T}}z = \mathsf{number}$ of words the articles have in common

Kernel methods can be used with any similarity function

$$k \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

as long as, for any n and any $x^{(1)}, \ldots, x^{(n)} \in \mathcal{X}$, the $n \times n$ matrix

$$K = \begin{bmatrix} k(x^{(1)}, x^{(1)}) & \cdots & k(x^{(1)}, x^{(n)}) \\ \vdots & \ddots & \vdots \\ k(x^{(n)}, x^{(1)}) & \cdots & k(x^{(n)}, x^{(n)}) \end{bmatrix}$$

is positive semidefinite

(Such a similarity function is called a positive definite kernel)

Aronszajn's theorem: For any positive definite kernel $k \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, there exists a feature map $\varphi \colon \mathcal{X} \to H$ such that

$$k(x,z) = \varphi(x)^{\mathsf{T}} \varphi(z)$$

(H may be an infinite-dimensional space)

Gaussian kernel (a.k.a. radial basis function (RBF) kernel)

$$k(x,z) = \exp\left(-\frac{\|x-z\|^2}{2\sigma^2}\right)$$

 $\sigma > 0$ is bandwidth hyperparameter

Laplace kernel

$$k(x, z) = \exp\left(-\frac{\|x - z\|}{\sigma}\right)$$

Comparison to nearest neighbors

▶ With Gaussian kernel, predictor is of the form

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha^{(i)} \exp\left(-\frac{\|x - x^{(i)}\|^2}{2\sigma^2}\right)$$

▶ What happens if x is close to $x^{(i)}$ but far from all other $x^{(j)}$, $j \neq i$?