Optimization by gradient methods

COMS 4771 Fall 2023

Unconstrained optimization problems

Common form of optimization problem in machine learning:

$$
\min _{w \in \mathbb{R}^{d}} J(w)
$$

We would like an algorithm that, given the objective function J, finds particular setting of w so that $J(w)$ is as small as possible

- What does it mean to be "given J "?
- What types of objective functions can we hope to minimize?

Review of multivariate differential calculus

A function $J: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is differentiable if, for every $u \in \mathbb{R}^{d}$, there is an affine function $A: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

$$
\lim _{w \rightarrow u} \frac{J(w)-A(w)}{\|w-u\|}=0
$$

Affine function A is called the (best) affine approximation of J at u

A may depend on u-i.e., possibly a different A for each u

About the affine approximation:

- Since A is affine, we can write it as

$$
A(w)=
$$

\qquad

- $m \in \mathbb{R}^{d}$ is the "slope" (and specifies a linear function)
- $b \in \mathbb{R}$ is the "intercept"
- The intercept must be $b=$ \qquad because

$$
J(u)=
$$

- So we can write A as

$$
A(w)=J(u)+m^{\top}(w-u)
$$

About the affine approximation:

Letting $e^{(1)}, \ldots, e^{(d)}$ be standard coordinate basis for \mathbb{R}^{d}, write $m=\sum_{i=1}^{d} m_{i} e^{(i)}$
Since $A(w)=J(u)+m^{\top}(w-u)$ is best affine approximation of J at u,

$$
0=\lim _{t \rightarrow 0} \frac{J\left(u+t e^{(i)}\right)-A\left(u+t e^{(i)}\right)}{|t|}=\lim _{t \rightarrow 0} \frac{J\left(u+t e^{(i)}\right)-\left(J(u)+t m_{i}\right)}{|t|}
$$

since $u+t e^{(i)}$ differs from u by $t \in \mathbb{R}$ in the i-th coordinate
Whether t approaches zero from left or right, we find

$$
m_{i}=\lim _{t \rightarrow 0}=
$$

Vector-valued function (a.k.a. vector field) of all partial derivatives of J is called the gradient of J, written $\nabla J: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$

$$
\nabla J(u)=\left(\frac{\partial J}{\partial w_{1}}(u), \ldots, \frac{\partial J}{\partial w_{d}}(u)\right)
$$

Summary: If $J: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is differentiable, then for any $u \in \mathbb{R}^{d}$,

$$
\lim _{w \rightarrow u} \frac{J(w)-\left(J(u)+\nabla J(u)^{\top}(w-u)\right)}{\|w-u\|}=0
$$

Gradient descent
(Back to $\min _{w \in \mathbb{R}^{d}} J(w)$ where J is differentiable)
Question: Given candidate setting of variables $w=u \in \mathbb{R}^{d}$, achieving objective value $J(u)$, how can we change u to achieve a lower objective value?

Upshot: Modify u by subtracting $\eta \nabla J(u)$ for some $\eta>0$

Caveat: Approximations in our argument are OK only if "change" is "small enough" (which means η should be "small enough")

Gradient descent: iterative method that attempts to minimize $J: \mathbb{R}^{d} \rightarrow \mathbb{R}$

- Initialize $w^{(0)} \in \mathbb{R}^{d}$
- For iteration $t=1,2, \ldots$ until "stopping condition" is satisfied:

$$
w^{(t)} \leftarrow w^{(t-1)}-\eta_{t} \nabla J\left(w^{(t-1)}\right)
$$

- Return final $w^{(t)}$

What's missing in this algorithm description?

Examples of gradient descent algorithms

Sum of squared errors objective from OLS

$$
J(w)=\sum_{(x, y) \in \mathcal{S}}\left(x^{\top} w-y\right)^{2}
$$

for dataset \mathcal{S} from $\mathbb{R}^{d} \times \mathbb{R}$

- Use linearity and chain rule to get formula for $\frac{\partial J}{\partial w_{i}}$:

$$
\frac{\partial J}{\partial w_{i}}(w)=\sum_{(x, y) \in \mathcal{S}}
$$

- Therefore

$$
\nabla J(w)=\sum_{(x, y) \in \mathcal{S}}
$$

- Update rule in iteration t :

$$
w^{(t)} \leftarrow w^{(t-1)}-\eta_{t} \sum_{(x, y) \in \mathcal{S}}
$$

Negative log-likelihood from logistic regression

$$
J(w)=\sum_{(x, y) \in \mathcal{S}}\left(\ln \left(1+e^{x^{\top} w}\right)-y x^{\top} w\right)
$$

for dataset \mathcal{S} from $\mathbb{R}^{d} \times\{0,1\}$

- Use linearity and chain rule to get formula for $\frac{\partial J}{\partial w_{i}}$:

$$
\frac{\partial J}{\partial w_{i}}(w)=\sum_{(x, y) \in \mathcal{S}}
$$

- Therefore

$$
\nabla J(w)=\sum_{(x, y) \in \mathcal{S}}
$$

- Update rule in iteration t :

$$
w^{(t)} \leftarrow w^{(t-1)}-\eta_{t} \sum_{(x, y) \in \mathcal{S}}
$$

```
def learn(train_x, train_y, eta=0.1, num_steps=1000):
    w = np.zeros(train_x.shape[1])
    for t in range(num_steps):
        w += eta * (train_y - 1/(1+np.exp(-train_x.dot(w)))).dot(train_x)
    return w
```

Synthetic example: $X \sim \mathrm{~N}((0,0), I)$, conditional distribution of Y given $X=x$ is Bernoulli $\left(\operatorname{logistic}\left(w^{\top} x\right)\right)$ for $w=(3 / 2,-1 / 2)$

- $n=100$ training examples $S \stackrel{\text { i.i.d. }}{\sim}(X, Y)$

$\eta_{t}=0.1$ starting from $w^{(0)}=(0,0)$

$\eta_{t}=0.1$ starting from $w^{(0)}=(0,0)$

$\eta_{t}=0.05$ starting from $w^{(0)}=(0,0)$

$\eta_{t}=0.01$ starting from $w^{(0)}=(0,0)$

Guarantees about gradient descent

Guarantee about gradient descent updates: If J is "smooth enough", then there is a choice for $\eta>0$ such that, for any $u \in \mathbb{R}^{d}$,

$$
J(u-\eta \nabla J(u)) \leq J(u)-\frac{\eta}{2}\|\nabla J(u)\|^{2}
$$

Guarantee about gradient descent for convex objectives: If J is convex and "smooth enough", then there is a choice for $\eta>0$ such that, for any $w^{(0)} \in \mathbb{R}^{d}$, iterates of gradient descent $w^{(1)}, w^{(2)}, \ldots$ (with $\eta_{t}=\eta$) satisfy

$$
\lim _{t \rightarrow \infty} J\left(w^{(t)}\right)=\min _{w \in \mathbb{R}^{d}} J(w)
$$

Convex functions

A function $J: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if, for all $u, v \in \mathbb{R}^{d}$, and all $\alpha \in[0,1]$,

$$
J((1-\alpha) u+\alpha v) \leq(1-\alpha) J(u)+\alpha J(v)
$$

A differentiable function $J: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if, for all $u, w \in \mathbb{R}^{d}$,

$$
J(w) \geq J(u)+\nabla J(u)^{\top}(w-u)
$$

i.e., J lies above all of its affine approximations

A continuously twice-differentiable function $J: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if, for all $u \in \mathbb{R}^{d}$, the $d \times d$ matrix of second derivatives of J at u is positive semidefinite

Operations that preserve convexity:

- Sum of convex functions $J_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $J_{2}: \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
J(w)=J_{1}(w)+J_{2}(w)
$$

- Non-negative scalar multiple of a convex function $J_{0}: \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
J(w)=c J_{0}(w), \quad c \geq 0
$$

- Max of convex functions $J_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $J_{2}: \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
J(w)=\max \left\{J_{1}(w), J_{2}(w)\right\}
$$

- Composition of convex function $J_{0}: \mathbb{R}^{k} \rightarrow \mathbb{R}$ with affine mapping

$$
J(w)=J_{0}(M w+b)
$$

for $M \in \mathbb{R}^{k \times d}$ and $b \in \mathbb{R}^{k}$

Example: sum of squared errors $J(w)=\sum_{(x, y) \in \mathcal{S}}\left(x^{\top} w-y\right)^{2}$

Why convexity of J helps with gradient descent:

- Convexity ensures negative gradient $-\nabla J(u)$ satisfies

$$
(-\nabla J(u))^{\top}(w-u) \geq J(u)-J(w)
$$

for all $u, w \in \mathbb{R}^{d}$

- Suppose w is minimizer of J, and you currently have u in hand
- Ideal direction to move in: $\delta=w-u$

Stochastic gradient descent

Many objective functions in machine learning are decomposable, i.e., can be written as sum

$$
J(w)=\sum_{i=1}^{n} J^{(i)}(w)
$$

E.g., sum of losses on training examples

$$
J^{(i)}(w)=\operatorname{loss}\left(f_{w}\left(x^{(i)}\right), y^{(i)}\right)
$$

Computational cost to compute $\nabla J(w)$?

Alternative: instead of using

$$
\nabla J(w)=\sum_{i=1}^{n} \nabla J^{(i)}(w)
$$

just use one of the terms in the sum (chosen uniformly at random)

Stochastic gradient descent (SGD) for $J(w)=\sum_{i=1}^{n} J^{(i)}(w)$

- Initialize $w^{(0)} \in \mathbb{R}^{d}$
- For iteration $t=1,2, \ldots$ until "stopping condition" is satisfied:

$$
w^{(t)} \leftarrow w^{(t-1)}-\eta_{t} \nabla J^{\left(I_{t}\right)}\left(w^{(t-1)}\right) \quad \text { where } I_{t} \sim \operatorname{Unif}(\{1, \ldots, n\})
$$

- Return final $w^{(t)}$

Some practical variants of SGD:

- Use sampling without replacement to choose $I_{1}, I_{2}, \ldots, I_{n}$ (i.e., go through terms in a uniformly random order)
- Called SGD without replacement
- Instead of updating with gradient of single term, update with sum of gradients for next B terms
- Called minibatch SGD; B is the minibatch size

Iris dataset, treating versicolor and virginica as a single class

- Maximizing log-likelihood in logistic regression with gradient descent and with SGD (both using $\eta_{t}=0.01$, starting from $w^{(0)}=(0,0)$)

Practical considerations

- Conditioning
- Initialization $w^{(0)} \in \mathbb{R}^{d}$
- Choice of "step size" $\eta_{t}>0$ (a.k.a. "learning rate")
- Stopping condition

Automatic differentiation

Primary "technical work" in implementing gradient descent method:

Derive formula and write code for gradient computation ∇J

- Like doing long division by hand (i.e., without electronic calculators)
- Fairly straightforward, but can be tedious and easy to make mistakes

Automatic differentiation (autodiff):

- Method for automatically computing derivatives of functions specified by straight-line programs
- Gradient of a function can be computed this way in the roughly same amount of time it takes to compute the function itself (!)

Example: $J(w)=x^{\top} w$

- For each $j=1, \ldots, d$, compute

$$
\frac{\partial J}{\partial w_{j}}(w)=
$$

- Time to compute function and gradient: \qquad

Example: $J(w)=g(f(w))$ where $f(w)=x^{\top} w$ and $g(t)=\operatorname{logistic}(t)$

- For each $j=1, \ldots, d$, compute

$$
\frac{\partial J}{\partial w_{j}}(w)=
$$

- Time to compute function:
- Time to compute gradient: naïvely $O\left(d^{2}\right)$, but easy to get $O(d)$

Example: tower of exponentials $J(w)=\exp (\exp (\exp (\cdots \exp (x w) \cdots))$ (for scalar x and w)

We only want single number $\left(\frac{\partial J}{\partial w}\right)$, but function is more complicated

- Time to compute tower of exponentials of height h :
- Time to compute derivative:

Example: $J(w)=\exp (x w+\sin (x w))+\sin ^{2}(x w) w$

 (for scalar x and w)

Write as J as a straight-line program: each line declares a new variable as a function of inputs (e.g., w), constants (e.g., x), or previously defined variables

$$
J(w)=\exp (x w+\sin (x w))+\sin ^{2}(x w) w
$$

$$
\begin{aligned}
& v_{1}:=\operatorname{prod}(x, w) \\
& v_{2}:=\sin \left(v_{1}\right) \\
& v_{3}:=\operatorname{sum}\left(v_{1}, v_{2}\right) \\
& v_{4}:=\operatorname{square}\left(v_{2}\right) \\
& v_{5}:=\exp \left(v_{3}\right) \\
& v_{6}:=\operatorname{prod}\left(v_{4}, w\right) \\
& v_{7}:=\operatorname{sum}\left(v_{5}, v_{6}\right)
\end{aligned}
$$

Computation directed acyclic graph $G=(V, E)$

All functions used in straight-line program must come with subroutines for computing "local" partial derivative

Example:

$$
\begin{aligned}
v_{6} & :=\operatorname{prod}\left(v_{4}, w\right) \\
\frac{\partial v_{6}}{\partial v_{4}} & =\frac{\partial \operatorname{prod}\left(v_{4}, w\right)}{\partial v_{4}}=w \\
\frac{\partial v_{6}}{\partial w} & =\frac{\partial \operatorname{prod}\left(v_{4}, w\right)}{\partial w}=v_{4}
\end{aligned}
$$

Stage 1: Forward pass

- Compute value of each node given inputs in a forward pass through the G (starting from inputs x and w)
- Save values at all intermediate nodes

Stage 2: Backward pass

- Compute partial derivative $\frac{\partial v_{7}}{\partial v}$ of output $\left(v_{7}\right)$ with respect to each node variable v, evaluated at current node values
- Do this in reverse topological order; save intermediate results!

$$
\text { Chain rule: } \quad \frac{\partial v_{7}}{\partial v}=\sum_{(v, u) \in E} \frac{\partial v_{7}}{\partial u} \cdot \frac{\partial u}{\partial v}
$$

- Time to compute function and partial derivatives: $O(|V|+|E|)$
- Modern numerical software facilitates construction of computation graph


```
Setup

\section*{Setup}
```

import torch

```
```

import torch

```
```

x = torch.Tensor([1])

```
x = torch.Tensor([1])
w = torch.Tensor([4])
w = torch.Tensor([4])
w.requires_grad = True
```

w.requires_grad = True

```
```

```
def J(w):
```

```
def J(w):
```

```
def J(w):
    v1 = x * w
    v1 = x * w
    v1 = x * w
    v2 = torch.sin(v1)
    v2 = torch.sin(v1)
    v2 = torch.sin(v1)
    v3 = v1 + v2
    v3 = v1 + v2
    v3 = v1 + v2
    v4 = torch.pow(v2, 2)
    v4 = torch.pow(v2, 2)
    v4 = torch.pow(v2, 2)
    v5 = torch.exp(v3)
    v5 = torch.exp(v3)
    v5 = torch.exp(v3)
    v6 = v4 * w
    v6 = v4 * w
    v6 = v4 * w
    v7 = v5 + v6
    v7 = v5 + v6
    v7 = v5 + v6
    return v7
```

```
    return v7
```

```
    return v7
```

```
```

 return v7
    ```
```

```
    return v7
```

```

\section*{Gradient descent code}
```

```
for t in range(22):
```

```
for t in range(22):
    objective_value = J(w)
    objective_value = J(w)
    objective_value.backward()
    objective_value.backward()
    with torch.no_grad():
    with torch.no_grad():
        w -= 0.1 * w.grad
        w -= 0.1 * w.grad
        w.grad.zero_()
```

```
        w.grad.zero_()
```

```

Gradient descent on \(J(w)\), starting from \(w^{(0)}=4\), using \(\eta_{t}=0.1\)


Converges to \(w=-1.847, J(w)=-1.649, \frac{\partial J}{\partial w}(w)=0\)```

