Generalization theory

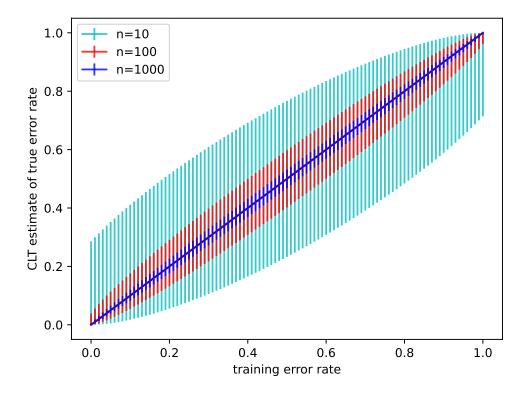
COMS 4771 Fall 2023

In-sample vs. out-of-sample performance

- ▶ Basic premise: training data is sample from population (or distribution)
- ► In-sample: what happens on training data
- Out-of-sample: what happens in overall population
- ▶ Learning algorithm: find classifier f with low training error rate $\widehat{\operatorname{err}}[f]$
 - ▶ Will this classifier f also have low (true) error rate err[f]?
 - lacktriangle Basic answer from statistical learning theory: Yes, if classifier is chosen from a "simple" function class ${\cal F}$

Training error rate of a fixed classifier

Suppose you chose classifier f before even looking at the training data $\mathcal{S} = ((X^{(1)},Y^{(1)}),\dots,(X^{(n)},Y^{(n)})) \overset{\text{i.i.d.}}{\sim} (X,Y)$



Training error rate of learned classifier

Usually, we choose a classifier \hat{f} based on the training data \mathcal{S} Why can't previous analysis apply?

Two different random variables, $\widehat{\mathrm{err}}[\widehat{f}]$ and $\mathrm{err}[\widehat{f}]$:

$$\widehat{\text{err}}[\hat{f}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{\hat{f}(X^{(i)}) \neq Y^{(i)}\}, \qquad \text{err}[\hat{f}] = \Pr(\hat{f}(X) \neq Y \mid \hat{f})$$

Typically how different are they?

Conservative answer: if \hat{f} is chosen from ${\mathcal F}$, then

$$\Pr(|\widehat{\mathrm{err}}[\widehat{f}] - \mathrm{err}[\widehat{f}]| > \epsilon) \leq \Pr(\mathsf{there\ exists}\ f \in \mathcal{F}\ \mathsf{s.t.}\ |\widehat{\mathrm{err}}[f] - \mathrm{err}[f]| > \epsilon)$$

Union bound: For any events A and B,

$$\Pr(A \text{ or } B) = \Pr(A \cup B) \le \Pr(A) + \Pr(B)$$

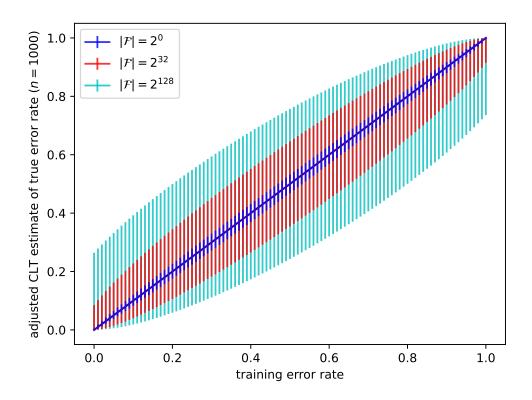
Chernoff bound: for any fixed $f: \mathcal{X} \to \mathcal{Y}$,

$$\Pr(|\widehat{\text{err}}[f] - \text{err}[f]| > \epsilon) \le 2\exp(-2n\epsilon^2)$$

7 / 13

Comparison to bound for a single f based on CLT:

- ▶ Doesn't have factor of $\sqrt{\operatorname{err}[f](1-\operatorname{err}[f])}$ from single f CLT bound
 - ► Can get this using advanced version of "Chernoff bound"
- Scary/weird constants
 - ▶ But inside the logarithm (and maybe can be improved)
- lacktriangle Bound grows with $\sqrt{\ln |\mathcal{F}|}$
 - ▶ Roughly like reducing n by a factor of # bits needed to represent a classifier $f \in \mathcal{F}$



Counting number of behaviors

The cardinality of ${\mathcal F}$ is a crude measure of its "complexity"

ightharpoonup Example: ${\mathcal F}$ is all "threshold functions on ${\mathbb R}$ "

$$f_t(x) = \mathbb{1}\{x > t\}$$

- ▶ There are uncountably-many such classifiers, one per $t \in \mathbb{R}$
- lacktriangle But can only label a dataset of size n in n+1 different ways

10 / 13

Better measure: number of behaviors on the unlabeled data $x^{(1)}, \ldots, x^{(n)}$

$$S(\mathcal{F}; (x^{(i)})_{i=1}^n) = |\{(f(x^{(1)}), \dots, f(x^{(n)})) : f \in \mathcal{F}\}|$$

Examples:

▶ If $\mathcal{F} = \text{all threshold functions on } \mathbb{R}$,

$$S(\mathcal{F}; (x^{(i)})_{i=1}^n) \le n+1$$

▶ If $\mathcal{F} = \mathsf{all}$ linear classifiers in \mathbb{R}^d ,

$$S(\mathcal{F}; (x^{(i)})_{i=1}^n) \le O(n^d)$$

Number of behaviors of large margin linear classifiers:

- ▶ Consider unlabeled data $x^{(1)}, \dots, x^{(n)} \in \mathbb{R}^d$ satisfying $||x^{(i)}|| \leq 1$
- Let $\mathcal{F}=$ homogeneous linear classifiers with margin $\gamma>0$ on these n data points (i.e., distance from $x^{(i)}$ to decision boundary is $\geq\gamma$)
- ▶ What is the number of behaviors of \mathcal{F} on $(x^{(i)})_{i=1}^n$?