# Some uses of the binomial distribution 

Daniel Hsu

October 7, 2023

## 1 Test error rate

Suppose $P$ is the probability distribution over $\mathcal{X} \times \mathcal{Y}$ of interest. The error rate of a classifier $f: \mathcal{X} \times \mathcal{Y}$ is defined by

$$
\operatorname{err}[f]=\operatorname{Pr}(f(X) \neq Y)
$$

where $(X, Y) \sim P$.
Suppose you have a classifier $f: \mathcal{X} \rightarrow \mathcal{Y}$ and test data

$$
\left(\tilde{X}^{(1)}, \tilde{Y}^{(1)}\right), \ldots,\left(\tilde{X}^{(m)}, \tilde{Y}^{(m)}\right) \sim_{\text {i.i.d. }} P
$$

and you would like to estimate the error rate of $f$. Let $S$ denote the number of test examples on which $f$ makes a prediction error, i.e.,

$$
S=\sum_{i=1}^{m} \mathbb{1}\left\{f\left(\tilde{X}^{(i)}\right) \neq \tilde{Y}^{(i)}\right\}
$$

Then the test error rate of $f$, which we'll denote by $\widetilde{\operatorname{err}}[f]$, is equal to

$$
\widetilde{\operatorname{err}}[f]=\frac{S}{m} .
$$

The distribution of $S$ is $\operatorname{Binomial}(m, \theta)$, where $\theta=\operatorname{err}[f]$. Therefore

$$
\mathbb{E}(S)=m \theta, \quad \operatorname{var}(S)=m \theta(1-\theta)
$$

and
$\mathbb{E}(\widetilde{\operatorname{err}}[f])=\theta=\operatorname{err}[f], \quad \operatorname{stddev}(\widetilde{\operatorname{err}}[f])=\sqrt{\frac{\theta(1-\theta)}{m}}=\sqrt{\frac{\operatorname{err}[f](1-\operatorname{err}[f])}{m}}$.

As $m \rightarrow \infty$, the central limit theorem implies that the binomial distribution converges to a normal distribution in a certain sense. In particular:

$$
\sqrt{m} \cdot \frac{\widetilde{\operatorname{err}}[f]-\operatorname{err}[f]}{\sqrt{\operatorname{err}[f](1-\operatorname{err}[f])}} \longrightarrow \mathrm{N}(0,1)
$$

Since the normal distribution contains about $95 \%$ of its probability mass within two standard deviations of its mean, we have (for large $m$ ), with probability $\approx 95 \%$,

$$
\begin{aligned}
& \operatorname{err}[f] \leq \widetilde{\operatorname{err}}[f]+2 \sqrt{\frac{\operatorname{err}[f](1-\operatorname{err}[f])}{m}} \\
& \operatorname{err}[f] \geq \widetilde{\operatorname{err}}[f]-2 \sqrt{\frac{\operatorname{err}[f](1-\operatorname{err}[f])}{m}}
\end{aligned}
$$

When these two inequalities hold, we can deduce upper- and lower-bounds on err $[f]$ in terms of $\widetilde{\operatorname{err}}[f]$ and $m$ by solving a quadratic equation. See this GitHub gist for how this can be done.

## 2 Is heads or tails is more likely?

Suppose you have a coin that you suspect is biased, and you would like to determine whether heads or tails is more likely. Letting $\theta$ denote the probability of heads:

- heads is more likely than tails if $\theta>1 / 2$;
- tails is more likely than heads if $\theta<1 / 2$.

If $\theta=1 / 2$, we are fine with picking either heads or tails.
Without knowledge of $\theta$, we attempt to make the determination based on the results of tossing the coin several times. Let $S$ denote the number of tosses that are heads in $n$ independent tosses of the coin. Our guess is

- heads if $S>n / 2$;
- tails if $S \leq n / 2$.

Suppose $\theta>1 / 2$, so heads is more likely than tails. Our guess is incorrect if $S \leq n / 2$. What is the probability of this event? In particular, how does it depend on the number of tosses?

For simplicity let us assume that $n$ is even. We know that $S \sim \operatorname{Binomial}(n, \theta)$, so using the probability mass function for $S$, we have

$$
\begin{aligned}
\operatorname{Pr}(S \leq n / 2) & =\sum_{k=0}^{n / 2}\binom{n}{k} \theta^{k}(1-\theta)^{n-k} \\
& =\sum_{k=0}^{n / 2}\binom{n}{k} 2^{-n}\left(\frac{\theta}{1 / 2}\right)^{k}\left(\frac{1-\theta}{1 / 2}\right)^{n}\left(\frac{1 / 2}{1-\theta}\right)^{k} \\
& \leq \sum_{k=0}^{n / 2}\binom{n}{k} 2^{-n}\left(\frac{\theta}{1 / 2}\right)^{n / 2}\left(\frac{1-\theta}{1 / 2}\right)^{n}\left(\frac{1 / 2}{1-\theta}\right)^{n / 2} \\
& =(4 \theta(1-\theta))^{n / 2} \sum_{k=0}^{n / 2}\binom{n}{k} 2^{-n} \\
& \leq(4 \theta(1-\theta))^{n / 2} \sum_{k=0}^{n}\binom{n}{k} 2^{-n} \\
& =(4 \theta(1-\theta))^{n / 2} .
\end{aligned}
$$

The first inequality above uses the facts that $\theta>1 / 2$, and that each term in the summation has $k \leq n / 2$. The final step uses the binomial theorem. Notice that, for any $\theta \neq 1 / 2$,

$$
4 \theta(1-\theta)<1
$$

Hence

$$
\operatorname{Pr}(S \leq n / 2) \leq(4 \theta(1-\theta))^{n / 2}=\exp (-c n)
$$

for

$$
c=\frac{1}{2} \ln \left(\frac{1}{4 \theta(1-\theta)}\right)>0 .
$$

The probability that our guess is incorrect is exponentially small in the number of tosses $n$.

The case where $\theta<1 / 2$ can be handled in a completely symmetric manner.

