Calibration and bias

COMS 4771 Fall 2023

Predicting conditional probabilities

Example: Click prediction for online ads

- ▶ X = features of (user, advertisement) pair
- Y = indicator that user will click on ad
- ▶ Pr(Y = 1 | X = x) is almost always near zero, but useful to know this probability, e.g., to compare ads, estimate revenue

Example:

▶ If $Pr(Y = 1 | X = x) \approx Pr(Y = 0 | X = x)$, then perhaps classification mistake need not be counted

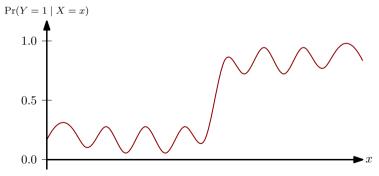
	Estimates $\Pr(Y = 1 \mid X = x)$
nearest neighbors	?
decision trees	?
generative models	\checkmark
logistic regression	\checkmark
Perceptron	no
SVM	no

Caution:

Prediction/estimate of (conditional) probability is still a prediction

- Some are accurate, some are inaccurate
- Same goes for anything derived from these predictions

> At least as hard as learning to classify, and can be arbitrarily harder



(Please imagine a high-dimensional version of this picture)

Ultimately, need to validate accuracy of predictions of (conditional) probabilities

Challenge: In many applications, only see one label y per feature vector x

Calibration

Prediction $\hat{p}(x)$ of $\Pr(Y = 1 \mid X = x)$ is (approximately) calibrated if $\Pr(Y = 1 \mid \hat{p}(X) = p) \approx p$ for all $p \in [0, 1]$ Expected calibration error of \hat{p} (assuming range(\hat{p}) is finite set $\mathcal{P} \subset [0, 1]$):

$$\sum_{p \in \mathcal{P}} |\Pr(Y = 1 \land \hat{p}(X) = p) - p \times \Pr(\hat{p}(X) = p)|$$

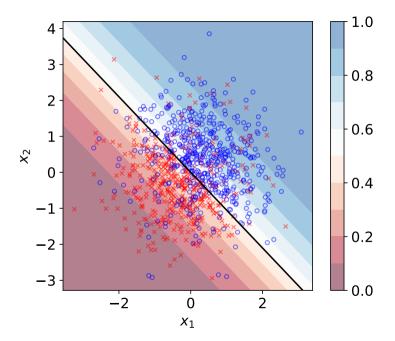
Possible to estimate this from test data if \mathcal{P} is not too large

Synthetic example: $X = (X_1, X_2) \sim N(0, I)$, and

$$\Pr(Y = 1 \mid X = x) = p^{\star}(x) = \begin{cases} 0.8 & \text{if } x_1 + x_2 > 0\\ 0.2 & \text{otherwise} \end{cases}$$

Fit logistic regression model to $1000 \ {\rm training} \ {\rm examples} \ {\rm using} \ {\rm MLE}$

- Error rate is 20.3%, which is nearly optimal
- However, expected calibration error of \hat{p} is 0.13



Calibrating conditional probability predictions

Suppose you have real-valued "score" function $s \colon \mathbb{R}^d \to \mathbb{R}$

	Possible score $s(x)$	
k-nearest neighbors		
decision trees		
generative models	est. of $\Pr(Y = 1 \mid X = x)$	
logistic regression	est. of $\Pr(Y = 1 \mid X = x)$	
Perceptron		
SVM		
(many other possibilities)		

Goal: obtain approximately calibrated predictor $\hat{p}(x)$ of Pr(Y = 1 | X = x)

(Histogram) binning:

- Sort s(x) from training/validation data into T bins
- Determine T-1 boundary values between the bins
- ▶ Let $\hat{p}^{(i)}$ be estimate of $\Pr(Y = 1 \mid s(x) \in \text{bin } i)$
- Then define

$$\hat{p}(x) = \begin{cases} \hat{p}^{(1)} & \text{if } s(x) \text{ falls in bin } 1 \\ \hat{p}^{(2)} & \text{if } s(x) \text{ falls in bin } 2 \\ \vdots \\ \hat{p}^{(T)} & \text{if } s(x) \text{ falls in bin } T \end{cases}$$

How can this possibly work?

- ▶ Key idea: score function turns problem into one with only a single feature
- ► No curse of dimension to worry about

Synthetic example: $X = (X_1, X_2) \sim N(0, I)$, and

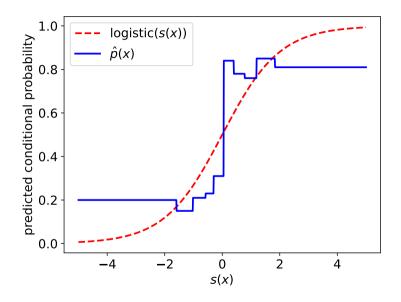
$$\Pr(Y = 1 \mid X = x) = p^{\star}(x) = \begin{cases} 0.8 & \text{if } x_1 + x_2 > 0\\ 0.2 & \text{otherwise} \end{cases}$$

Fit logistic regression model to $1000 \ {\rm training} \ {\rm examples} \ {\rm using} \ {\rm MLE}$

- Apply binning to $s(x) = \hat{w}^{\mathsf{T}}x$ (with T = 10 bins)
- Expected calibration error: 0.043 (down from 0.13)

Final predictor $\hat{p}(x)$:

range of $s(x)$	$\hat{p}(x)$
s(x) < -1.591	0.200
$-1.591 \le s(x) < -1.024$	0.150
$-1.024 \le s(x) < -0.578$	0.210
$-0.578 \le s(x) < -0.296$	0.230
$-0.296 \le s(x) < 0.055$	0.310
$0.055 \le s(x) < 0.398$	0.840
$0.398 \le s(x) < 0.777$	0.780
$0.777 \le s(x) < 1.194$	0.760
$1.194 \le s(x) < 1.835$	0.850
$1.835 \le s(x)$	0.810



▶ Popular way to improve binning: enforce monotonicity (e.g., if you believe Pr(Y = 1 | s(x)) is monotone in s(x))

- Caution: a \hat{p} with low expected calibration error does not necessarily give an accurate predict of Y from X
 - Only gives an accurate predictor of Y from s(X)
 - But perhaps s(X) is constant!
 - In this case, suffices to predict the constant Pr(Y = 1)

Calibration versus equalizing error rates

- Increasing use of predictive models in real-world applications (e.g., admissions, hiring, criminal justice)
- Do they offer "fair treatment" to individuals/groups?

Well-known example: "Gender shades" study (Buolamwini and Gebru, 2018)

- Task: predict gender from image of face
- Major finding: some commercial facial analysis software were less accurate for images of darker-skinned female individuals than for images of lighter-skinned male individuals

Color Matters in Computer Vision

Facial recognition algorithms made by Microsoft, IBM and Face++ were more likely to misidentify the gender of black women than white men.

Gender was misidentified in up to 1 percent of lighter-skinned males in a set of 385 photos.

Gender was misidentified in up to 12 percent of darker-skinned males in a set of 318 photos.

Gender was misidentified in up to 7 percent of lighter-skinned females in a set of 296 photos.

Gender was misidentified in 35 percent of darker-skinned females in a set of 27

ProPublica "Machine Bias" study (Angwin et al, 2016)

- Judge needs to decide whether or not an arrested defendant should be released while awaiting trial
- Predictive model ("COMPAS") predicts whether or not defendant will commit (violent) crime if released
- Study based data from Broward County, Florida argued that COMPAS treated black defendants unfairly in a certain sense

Setup for ProPublica study (highly simplified)

- \blacktriangleright X: feature vector specific to arrested defendant
- A: group membership attribute (e.g., race, sex, age; could be part of X)
- Y: outcome to predict (e.g., "will re-offend if released")
- $\hat{Y} = f_{\text{COMPAS}}(X)$: prediction of Y based on X
- ▶ For simplicity, assume A, Y, \hat{Y} are all $\{0, 1\}$ -valued

Types of errors:

- False positive rate: $FPR = Pr(\hat{Y} = 1 | Y = 0)$
- False negative rate: FNR = $Pr(\hat{Y} = 0 | Y = 1)$

▶ Per-group FPR and FNR: for each $a \in \{0, 1\}$,

$$FPR_a = Pr(\hat{Y} = 1 \mid Y = 0, A = a)$$

$$FNR_a = Pr(\hat{Y} = 0 \mid Y = 1, A = a)$$

Equalized odds: require that $FPR_0 \approx FPR_1$ and $FNR_0 \approx FNR_1$

▶ No group incurs errors (either type) at a higher rate than the other

ProPublica found: COMPAS software is very far from offering "equalized odds"

▶
$$FPR_0 = 45\%$$
, $FPR_1 = 23\%$

▶ $FNR_0 = 27\%$, $FNR_1 = 48\%$

Response from Northpointe (creator of COMPAS)

- $f_{\text{COMPAS}}(x) = \mathbb{1}\{\hat{p}(x) > t\}$ where $\hat{p}(x)$ is prediction of $\Pr(Y = 1 \mid X = x)$, and t is some suitable threshold parameter
- $\blacktriangleright~\hat{p}$ approximately-calibrated, and also approximately-calibrated for each group

$$\Pr(Y = 1 \mid \hat{p}(X) = p, A = 0) \approx \Pr(Y = 1 \mid \hat{p}(X) = p, A = 1) \approx p$$

 $\blacktriangleright\,$ So \hat{p} has same probabilistic semantics for each group

Theorem (Chouldechova; Kleinberg-Mullainathan-Raghavan): Unless

$$\Pr(Y = 1 \mid A = 0) = \Pr(Y = 1 \mid A = 1) \text{ or } \operatorname{FPR} = \operatorname{FNR} = 0,$$

it is impossible to simultaneously satisfy all of the following:

- 1. $FPR_0 = FPR_1$
- $2. \ \mathrm{FNR}_0 = \mathrm{FNR}_1$
- 3. \hat{p} is calibrated for group A = 0
- 4. \hat{p} is calibrated for group A = 1

Distribution shift

Distribution shift (a.k.a. train/test mismatch, sample selection bias):

- Training data is sample from source distribution
- Care about (average) performance on data from target distribution
- ▶ Distribution shift: source \neq target

Example: care about applying facial analysis software to images from general US population, but only train on images of light-skinned males

- Hardly any reason to expect things to work well
- ... unless you are "testing" only on images of light-skinned males

Color Matters in Computer Vision

Facial recognition algorithms made by Microsoft, IBM and Face++ were more likely to misidentify the gender of black women than white men.

Gender was misidentified in up to 1 percent of lighter-skinned males in a set of 385 photos.

Gender was misidentified in up to 12 percent of darker-skinned males in a set of 318 photos.

Gender was misidentified in up to 7 percent of lighter-skinned females in a set of 296 photos.

Gender was misidentified in 35 percent of darker-skinned females in a set of 271 photoe

In many applications, training data is "dataset of convenience"

Use whatever data you can get

All methods for addressing distribution shift require

- Either a lot of domain knowledge,
- Or additional data from target distribution
- (Often need both)

Example: re-weighting data

Suppose you notice that, in training data,

$$\Pr(A=0) \ll \Pr(A=1)$$

But you know that in target distribution, A = 0 and A = 1 equally often • Use an importance weight of

$$\frac{1}{2\Pr(A=a)}$$

for every example with A = a in (empirical) expectation computations

► Critical assumption: conditional distribution of (X, Y) given A is the same in source and target; only marginal distribution of A differs

Importance-weighted test error rate

▶ Test data $(\tilde{X}^{(1)}, \tilde{Y}^{(1)}, \tilde{A}^{(1)}), \ldots, (\tilde{X}^{(m)}, \tilde{Y}^{(m)}, \tilde{A}^{(m)}) \stackrel{\text{i.i.d.}}{\sim} (X, Y, A)$, from source distribution

• Define
$$p_a = \Pr(A = a)$$
 for each $a \in \{0, 1\}$

Weighted test error rate:

$$\frac{1}{m} \sum_{i=1}^m \mathbbm{1}\{f(\tilde{X}^{(i)}) \neq \tilde{Y}^{(i)}\} \times \frac{1}{2p_{\tilde{A}^{(i)}}}$$

Expected value of importance-weighted test error rate:

$$\mathbb{E}\bigg[\mathbbm{1}\{f(X)\neq Y\}\times \frac{1}{2p_A}\bigg]=$$