
Calibration and bias

COMS 4771 Fall 2023

Predicting conditional probabilities



Example: Click prediction for online ads

▶ X = features of (user, advertisement) pair

▶ Y = indicator that user will click on ad

▶ Pr(Y = 1 | X = x) is almost always near zero, but useful to know this
probability, e.g., to compare ads, estimate revenue

Example:

▶ If Pr(Y = 1 | X = x) ≈ Pr(Y = 0 | X = x), then perhaps classification
mistake need not be counted
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Estimates Pr(Y = 1 | X = x)
nearest neighbors ?

decision trees ?
generative models ✓
logistic regression ✓

Perceptron no
SVM no
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Caution:

▶ Prediction/estimate of (conditional) probability is still a prediction
▶ Some are accurate, some are inaccurate
▶ Same goes for anything derived from these predictions

▶ At least as hard as learning to classify, and can be arbitrarily harder
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(Please imagine a high-dimensional version of this picture)
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Ultimately, need to validate accuracy of predictions of (conditional) probabilities

▶ Challenge: In many applications, only see one label y per feature vector x
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Calibration

Prediction p̂(x) of Pr(Y = 1 | X = x) is (approximately) calibrated if

Pr(Y = 1 | p̂(X) = p) ≈ p for all p ∈ [0, 1]
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Expected calibration error of p̂ (assuming range(p̂) is finite set P ⊂ [0, 1]):

∑

p∈P
|Pr(Y = 1 ∧ p̂(X) = p)− p× Pr(p̂(X) = p)|

Possible to estimate this from test data if P is not too large
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Synthetic example: X = (X1, X2) ∼ N(0, I), and

Pr(Y = 1 | X = x) = p⋆(x) =

{
0.8 if x1 + x2 > 0

0.2 otherwise

Fit logistic regression model to 1000 training examples using MLE

▶ Error rate is 20.3%, which is nearly optimal

▶ However, expected calibration error of p̂ is 0.13
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Calibrating conditional probability predictions



Suppose you have real-valued “score” function s : Rd → R

Possible score s(x)
k-nearest neighbors

decision trees

generative models est. of Pr(Y = 1 | X = x)
logistic regression est. of Pr(Y = 1 | X = x)

Perceptron
SVM

(many other possibilities)

Goal: obtain approximately calibrated predictor p̂(x) of Pr(Y = 1 | X = x)
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(Histogram) binning:

▶ Sort s(x) from training/validation data into T bins

▶ Determine T − 1 boundary values between the bins

▶ Let p̂(i) be estimate of Pr(Y = 1 | s(x) ∈ bin i)

▶ Then define

p̂(x) =





p̂(1) if s(x) falls in bin 1

p̂(2) if s(x) falls in bin 2
...

p̂(T ) if s(x) falls in bin T
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How can this possibly work?

▶ Key idea: score function turns problem into one with only a single feature

▶ No curse of dimension to worry about
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Synthetic example: X = (X1, X2) ∼ N(0, I), and

Pr(Y = 1 | X = x) = p⋆(x) =

{
0.8 if x1 + x2 > 0

0.2 otherwise

Fit logistic regression model to 1000 training examples using MLE

▶ Apply binning to s(x) = ŵTx (with T = 10 bins)

▶ Expected calibration error: 0.043 (down from 0.13)
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Final predictor p̂(x):

range of s(x) p̂(x)
s(x) < −1.591 0.200

−1.591 ≤ s(x) < −1.024 0.150
−1.024 ≤ s(x) < −0.578 0.210
−0.578 ≤ s(x) < −0.296 0.230
−0.296 ≤ s(x) < 0.055 0.310
0.055 ≤ s(x) < 0.398 0.840
0.398 ≤ s(x) < 0.777 0.780
0.777 ≤ s(x) < 1.194 0.760
1.194 ≤ s(x) < 1.835 0.850

1.835 ≤ s(x) 0.810
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▶ Popular way to improve binning: enforce monotonicity (e.g., if you believe
Pr(Y = 1 | s(x)) is monotone in s(x))

▶ Caution: a p̂ with low expected calibration error does not necessarily give an
accurate predict of Y from X
▶ Only gives an accurate predictor of Y from s(X)
▶ But perhaps s(X) is constant!
▶ In this case, suffices to predict the constant Pr(Y = 1)

15 / 29

Calibration versus equalizing error rates



▶ Increasing use of predictive models in real-world applications (e.g., admissions,
hiring, criminal justice)

▶ Do they offer “fair treatment” to individuals/groups?
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Well-known example: “Gender shades” study (Buolamwini and Gebru, 2018)

▶ Task: predict gender from image of face

▶ Major finding: some commercial facial analysis software were less accurate
for images of darker-skinned female individuals than for images of
lighter-skinned male individuals
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ProPublica “Machine Bias” study (Angwin et al, 2016)

▶ Judge needs to decide whether or not an arrested defendant should be
released while awaiting trial

▶ Predictive model (“COMPAS”) predicts whether or not defendant will commit
(violent) crime if released

▶ Study based data from Broward County, Florida argued that COMPAS treated
black defendants unfairly in a certain sense
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Setup for ProPublica study (highly simplified)

▶ X: feature vector specific to arrested defendant

▶ A: group membership attribute (e.g., race, sex, age; could be part of X)

▶ Y : outcome to predict (e.g., “will re-offend if released”)

▶ Ŷ = fCOMPAS(X): prediction of Y based on X

▶ For simplicity, assume A, Y, Ŷ are all {0, 1}-valued
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Types of errors:

▶ False positive rate: FPR = Pr(Ŷ = 1 | Y = 0)

▶ False negative rate: FNR = Pr(Ŷ = 0 | Y = 1)

▶ Per-group FPR and FNR: for each a ∈ {0, 1},

FPRa = Pr(Ŷ = 1 | Y = 0, A = a)

FNRa = Pr(Ŷ = 0 | Y = 1, A = a)

Equalized odds: require that FPR0 ≈ FPR1 and FNR0 ≈ FNR1

▶ No group incurs errors (either type) at a higher rate than the other
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ProPublica found: COMPAS software is very far from offering “equalized
odds”

▶ FPR0 = 45%, FPR1 = 23%

▶ FNR0 = 27%, FNR1 = 48%
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Response from Northpointe (creator of COMPAS)

▶ fCOMPAS(x) = 1{p̂(x) > t} where p̂(x) is prediction of Pr(Y = 1 | X = x),
and t is some suitable threshold parameter

▶ p̂ approximately-calibrated, and also approximately-calibrated for each group

Pr(Y = 1 | p̂(X) = p,A = 0) ≈ Pr(Y = 1 | p̂(X) = p,A = 1) ≈ p

▶ So p̂ has same probabilistic semantics for each group
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Theorem (Chouldechova; Kleinberg-Mullainathan-Raghavan): Unless

Pr(Y = 1 | A = 0) = Pr(Y = 1 | A = 1) or FPR = FNR = 0,

it is impossible to simultaneously satisfy all of the following:

1. FPR0 = FPR1

2. FNR0 = FNR1

3. p̂ is calibrated for group A = 0

4. p̂ is calibrated for group A = 1
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Distribution shift

Distribution shift (a.k.a. train/test mismatch, sample selection bias):

▶ Training data is sample from source distribution

▶ Care about (average) performance on data from target distribution

▶ Distribution shift: source ̸= target
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Example: care about applying facial analysis software to images from general
US population, but only train on images of light-skinned males

▶ Hardly any reason to expect things to work well . . .

▶ . . . unless you are “testing” only on images of light-skinned males
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In many applications, training data is “dataset of convenience”

▶ Use whatever data you can get

All methods for addressing distribution shift require

▶ Either a lot of domain knowledge,

▶ Or additional data from target distribution

▶ (Often need both)
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Example: re-weighting data

▶ Suppose you notice that, in training data,

Pr(A = 0) ≪ Pr(A = 1)

But you know that in target distribution, A = 0 and A = 1 equally often

▶ Use an importance weight of

1

2Pr(A = a)

for every example with A = a in (empirical) expectation computations

▶ Critical assumption: conditional distribution of (X, Y ) given A is the same
in source and target; only marginal distribution of A differs
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Importance-weighted test error rate

▶ Test data (X̃(1), Ỹ (1), Ã(1)), . . . , (X̃(m), Ỹ (m), Ã(m))
i.i.d.∼ (X, Y,A), from

source distribution

▶ Define pa = Pr(A = a) for each a ∈ {0, 1}
▶ Weighted test error rate:

1

m

m∑

i=1

1{f(X̃(i)) ̸= Ỹ (i)} × 1

2pÃ(i)
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Expected value of importance-weighted test error rate:

E
[
1{f(X) ̸= Y } × 1

2pA

]
=
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