Problem 1. Let A be the 6×6 matrix defined as follows (by a product of three 6×6 matrices):

$$
A := \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0
\end{bmatrix}
$$

(a) Let R be the span of A’s rows. What is the dimension of R?

(b) True or false: \[
\begin{bmatrix}0 \\ 0 \\ 1 \\ 1 \\ \frac{1}{2}\end{bmatrix}
\] an eigenvector of A.

(Oops—the entry in the Google Form for this part is “Problem 2(b)”, even though we really mean “Problem 1(b)”.)

(c) True or false: Every eigenvector of A corresponding to eigenvalue $1/2$ has the form \[
\begin{bmatrix}0 \\ c \\ c \\ 0 \\ 0 \\ 0\end{bmatrix}
\] or \[
\begin{bmatrix}0 \\ c \\ -c \\ 0 \\ 0 \\ 0\end{bmatrix}
\] for some real number c.

(d) Let V be the subspace spanned by eigenvectors of A corresponding to the eigenvalue $1/4$. What is the dimension of V?

(e) What is the largest eigenvalue of A^3?

Problem 2. Let X and Y be independent real-valued random variables defined on the same probability space, each with variance equal to 1. Define a third random variable $Z := (1 + X + Y)/2$. What is the variance of Z?

Problem 3. Suppose a permutation π is picked uniformly at random from the space of all permutations on a set T with cardinality $|T| = 10$. (Think of π as a function that maps T to itself.) Let X be the number of fixed points of π—i.e., the number of $t \in T$ such that $\pi(t) = t$. What is the expected value of X^2?