Perceptron and Online Perceptron

Daniel Hsu (COMS 4771)

Margins

Let S be a collection of labeled examples from $\mathbb{R}^d \times \{-1, +1\}$. We say S is *linearly separable* if there exists $w \in \mathbb{R}^d$ such that

$$\min_{(x, y) \in S} y(w, x) > 0,$$

and we call w a *linear separator* for S.

The *minimum margin* of a linear separator w for S is the minimum distance from x to the hyperplane orthogonal to w, among all $(x, y) \in S$. Note that this notion of margin is invariant to positive scaling of w. If we rescale w so that

$$\min_{(x, y) \in S} y(w, x) = 1,$$

then this minimum distance is $1/\|w\|_2$. Therefore, the linear separator with the largest minimum margin is described by the following mathematical optimization problem:

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|_2^2$$

s.t. $y(w, x) \geq 1, (x, y) \in S.$

Perceptron algorithm

The Perceptron algorithm is given as follows. The input to the algorithm is a collection S of labeled examples from $\mathbb{R}^d \times \{-1, +1\}$.

- Begin with $\hat{w}_1 := 0 \in \mathbb{R}^d$.
- For $t = 1, 2, \ldots$:
 - If there is a labeled example in S (call it (x_t, y_t)) such that $y_t \langle \hat{w}_t, x_t \rangle \leq 0$, then set $\hat{w}_{t+1} := \hat{w}_t + y_t x_t$.
 - Else, return \hat{w}_t.

Theorem. Let S be a collection of labeled examples from $\mathbb{R}^d \times \{-1, +1\}$. Suppose there exists a vector $w_* \in \mathbb{R}^d$ such that

$$\min_{(x, y) \in S} y(w_*, x) \geq 1.$$

Then Perceptron on input S halts after at most $\|w_*\|_2^2 L^2$ loop iterations, where $L := \max_{(x, y) \in S} \|x\|_2$.

Proof. Suppose Perceptron does not exit the loop in the t-th iteration. Then there is a labeled example $(x_t, y_t) \in S$ such that

$$y_t \langle w_*, x_t \rangle \geq 1,$$

$$y_t \langle \hat{w}_t, x_t \rangle \leq 0.$$

We bound $\langle w_*, \hat{w}_{t+1} \rangle$ from above and below to deduce a bound on the number of loop iterations. First, we bound $\langle w_*, \hat{w}_t \rangle$ from below:

$$\langle w_*, \hat{w}_{t+1} \rangle = \langle w_*, \hat{w}_t \rangle + y_t \langle w_*, x_t \rangle \geq \langle w_*, \hat{w}_t \rangle + 1.$$

1
Since \(\hat{w}_1 = 0 \), we have
\[
\langle w_*, \hat{w}_1 \rangle \geq t.
\]

We now bound \(\langle w_*, \hat{w}_{t+1} \rangle \) from above. By Cauchy-Schwarz,
\[
\langle w_*, \hat{w}_{t+1} \rangle \leq \|w_*\|_2 \|\hat{w}_{t+1}\|_2.
\]

Also,
\[
\|\hat{w}_{t+1}\|_2^2 = \|\hat{w}_t\|_2^2 + 2y_t \langle \hat{w}_t, x_t \rangle + y_t^2 \|x_t\|_2^2 \leq \|\hat{w}_t\|_2^2 + L^2.
\]

Since \(\|\hat{w}_1\|_2 = 0 \), we have
\[
\|\hat{w}_{t+1}\|_2 \leq L^2t,
\]
so
\[
\langle w_*, \hat{w}_{t+1} \rangle \leq \|w_*\|_2 L\sqrt{t}.
\]

Combining the upper and lower bounds on \(\langle w_*, \hat{w}_{t+1} \rangle \) shows that
\[
t \leq \langle w_*, \hat{w}_{t+1} \rangle \leq \|w_*\|_2 L\sqrt{t},
\]
which in turn implies the inequality \(t \leq \|w_*\|_2^2 L^2 \).

Online Perceptron algorithm

The Online Perceptron algorithm is given as follows. The input to the algorithm is a sequence \((x_1, y_1), (x_2, y_2), \ldots\) of labeled examples from \(\mathbb{R}^d \times \{-1, +1\} \).

- Begin with \(\hat{w}_1 := 0 \in \mathbb{R}^d \).
- For \(t = 1, 2, \ldots \):
 - If \(y_t \langle \hat{w}_t, x_t \rangle \leq 0 \), then set \(\hat{w}_{t+1} := \hat{w}_t + y_t x_t \).
 - Else, \(\hat{w}_{t+1} := \hat{w}_t \).

We say that Online Perceptron makes a mistake in round \(t \) if \(y_t \langle \hat{w}_t, x_t \rangle \leq 0 \).

Theorem. Let \((x_1, y_1), (x_2, y_2), \ldots\) be a sequence of labeled examples from \(\mathbb{R}^d \times \{-1, +1\} \) such that there exists a vector \(w_* \in \mathbb{R}^d \) satisfying
\[
\min_{t=1, 2, \ldots} y_t \langle w_*, x_t \rangle \geq 1.
\]

Then Online Perceptron on input \((x_1, y_1), (x_2, y_2), \ldots\) makes at most \(\|w_*\|_2^2 L^2 \) mistakes, where \(L := \max_{t=1, 2, \ldots} \|x_t\|_2 \).

Proof. The proof of this theorem is essentially the same as the proof of the iteration bound for Perceptron.

Online Perceptron may be applied to a collection of labeled examples \(S \) by considering the labeled examples in \(S \) in any (e.g., random) order. If \(S \) is linearly separable, then the number of mistakes made by Online Perceptron can be bounded using the theorem.

However, Online Perceptron is also useful when \(S \) is not linearly separable. This is especially notable in comparison to Perceptron, which never terminates if \(S \) is not linearly separable.

Theorem. Let \((x_1, y_1), (x_2, y_2), \ldots\) be a sequence of labeled examples from \(\mathbb{R}^d \times \{-1, +1\} \). Online Perceptron on input \((x_1, y_1), (x_2, y_2), \ldots\) makes at most
\[
\min_{w_* \in \mathbb{R}^d} \left[\|w_*\|_2^2 L^2 + \|w_*\|_2 L \left(\sum_{t \in M} \ell(\langle w_*, x_t \rangle, y_t) + \sum_{t \in M} \ell(\langle w_*, x_t \rangle, y_t) \right) \right]
\]

mistakes, where \(L := \max_{t=1, 2, \ldots} \|x_t\|_2 \), \(M \) is the set of rounds on which Online Perceptron makes a mistake, and \(\ell(\hat{y}, y) := [1 - \hat{y}y]_+ = \max\{0, 1 - \hat{y}y\} \) is the hinge loss of \(\hat{y} \) when \(y \) is the correct label.
Proof. Fix any \(w_* \in \mathbb{R}^d \). Consider any round \(t \) in which Online Perceptron makes a mistake. Let \(\mathcal{M}_t := \{1, \ldots, t\} \cap \mathcal{M} \) and \(M_t := |\mathcal{M}_t| \). We will bound \(\langle w_*, \hat{w}_{t+1} \rangle \) from above and below to deduce a bound on \(M_t \), the number of mistakes made by Online Perceptron through the first \(t \) rounds. First we bound \(\langle w_*, \hat{w}_{t+1} \rangle \) from above. By Cauchy-Schwarz,

\[
\langle w_*, \hat{w}_{t+1} \rangle \leq \|w_*\|_2 \|\hat{w}_{t+1}\|_2.
\]

Moreover,

\[
\|\hat{w}_{t+1}\|_2^2 = \|\hat{w}_t\|_2^2 + 2y_t\langle \hat{w}_t, x_t \rangle + y_t^2\|x_t\|_2^2 \leq \|\hat{w}_t\|_2^2 + L^2.
\]

Since \(\hat{w}_1 = 0 \), we have

\[
\|\hat{w}_{t+1}\|_2^2 \leq L^2 M_t,
\]

and thus

\[
\langle w_*, \hat{w}_{t+1} \rangle \leq \|w_*\|_2 L \sqrt{M_t}.
\]

We now bound \(\langle w_*, w_{t+1} \rangle \) from below:

\[
\langle w_*, \hat{w}_{t+1} \rangle = \langle w_*, \hat{w}_t \rangle + 1 - [1 - y_t \langle w_*, x_t \rangle] \\
\geq \langle w_*, \hat{w}_t \rangle + 1 - [1 - y_t \langle w_*, x_t \rangle] + \\
= \langle w_*, \hat{w}_t \rangle + 1 - \ell(\langle w_*, x_t \rangle, y_t),
\]

Since \(\hat{w}_1 = 0 \),

\[
\langle w_*, \hat{w}_{t+1} \rangle \geq M_t - H_t,
\]

where

\[
H_t := \sum_{i \in \mathcal{M}_t} \ell(\langle w_*, x_i \rangle, y_t).
\]

Combining the upper and lower bounds on \(\langle w_*, \hat{w}_{t+1} \rangle \) shows that

\[
M_t - H_t \leq \langle w_*, \hat{w}_{t+1} \rangle \leq \|w_*\|_2 L \sqrt{M_t},
\]

i.e.,

\[
M_t - \|w_*\|_2 L \sqrt{M_t} - H_t \leq 0.
\]

This inequality is quadratic in \(\sqrt{M_t} \). By solving it\(^1\), we deduce the bound

\[
M_t \leq \frac{1}{2} \|w_*\|_2^2 L^2 + \frac{1}{2} \|w_*\|_2 L \sqrt{\|w_*\|_2^2 L^2 + 4H_t} + H_t,
\]

which can be further loosened to the following (slightly more interpretable) bound:

\[
M_t \leq \|w_*\|_2^2 L^2 + \|w_*\|_2 L \sqrt{H_t} + H_t.
\]

The claim follows.

\(^1\)The inequality is of the form \(x^2 - bx - c \leq 0 \) for some non-negative \(b \) and \(c \). This implies that \(x \leq (b + \sqrt{b^2 + 4c})/2 \), and hence \(x^2 \leq (b^2 + 2b\sqrt{b^2 + 4c} + b^2 + 4c)/4 \). We can then use the fact that \(\sqrt{A + B} \leq \sqrt{A} + \sqrt{B} \) for any non-negative \(A \) and \(B \) to deduce \(x^2 \leq b^2 + b\sqrt{c} + c \).