Overview

- Structure and power of neural networks
- Backpropagation
- Practical issues
- Convolutions

Parametric featurizations I

- So far: features \((x \text{ or } \phi(x))\) are fixed during training
 - Consider a (small) collection of feature transformations \(\phi\)
 - Select \(\phi\) via cross-validation – outside of normal training

- “Deep learning” approach:
 - Use \(\phi\) with many tunable parameters
 - Optimize parameters of \(\phi\) during normal training process

Parametric featurizations II

- Neural network: parameterization for function \(f: \mathbb{R}^d \rightarrow \mathbb{R}\)
 - \(f(x) = \phi(x)^Tw\)
 - Parameters include both \(w\) and parameters of \(\phi\)
 - Varying parameters of \(\phi\) allows \(f\) to be essentially any function!
 - Major challenge: optimization (a lot of tricks to make it work)

Figure 1: Neural network
Feedforward neural network

- **Architecture** of a feedforward neural network
 - Directed acyclic graph $G = (V, E)$
 - One *source* node (vertex) per input, one *sink* node per output
 - Other nodes are *hidden units*
 - Each edge $(u, v) \in E$ has a *weight parameter* $w_{u,v} \in \mathbb{R}$
 - *Value* h_v of node v given values of parents is
 \[
 h_v := \sigma_v(z_v) = \sigma_v(\sum_{u \in V: (u,v) \in E} w_{u,v} \cdot h_u).
 \]
 - $\sigma_v : \mathbb{R} \to \mathbb{R}$ is the *activation function* (e.g., sigmoid)

- **Figure 2: Feedforward neural network architecture**

Standard layered architectures

- Standard architecture arranges nodes into sequence of L *layers*
 - Edges only go from one layer to the next
 - Can write function using matrices of weight parameters
 \[
 f(x) = \sigma_L(W_L \sigma_{L-1}(\cdots \sigma_1(W_1 x) \cdots))
 \]
 - d_ℓ nodes in layer ℓ; $W_\ell \in \mathbb{R}^{d_\ell \times d_{\ell-1}}$ are weight parameters
 - Activation function $\sigma_\ell : \mathbb{R} \to \mathbb{R}$ is applied coordinate-wise to input
 - Often also include "bias" parameters $b_\ell \in \mathbb{R}^{d_\ell}$
 \[
 f(x) = \sigma_L(b_L + W_L \sigma_{L-1}(\cdots \sigma_1(b_1 + W_1 x) \cdots))
 \]
 - Tunable parameters: $\theta = (W_1, b_1, \ldots, W_L, b_L)$

- **Figure 3: Standard feedforward architecture**

Well-known activation functions

- **Heaviside**: $\sigma(z) = 1_{\{z \geq 0\}}$
 - Popular in the 1940s; also called *step function*
- **Sigmoid** (from logistic regression): $\sigma(z) = 1/(1 + e^{-z})$
 - Popular since 1970s
- **Hyperbolic tangent**: $\sigma(z) = \tanh(z)$
 - Similar to sigmoid, but range is $(-1, 1)$ rather than $(0, 1)$
- **Rectified Linear Unit (ReLU)**: $\sigma(z) = \max\{0, z\}$
 - Popular since 2012
- **Identity**: $\sigma(z) = z$
 - Popular with luddites
- **Softmax**: $\sigma(v)_i = \exp(v_i)/\sum_j \exp(v_j)$
 - Special vector-valued activation function
 - Popular for final layer in multi-class classification

- **Power of non-linear activations**
 - What happens if every activation function is linear/affine?
Necessity of multiple layers

- Suppose only have input and output layers, so function f is
 \[f(x) = \sigma(b + w^T x) \]
 where $b \in \mathbb{R}$ and $w \in \mathbb{R}^d$ (so $w^T \in \mathbb{R}^{1 \times d}$)
 - If σ is monotone (e.g., Heaviside, sigmoid, hyperbolic tangent, ReLU, identity), then f has same limitations as a linear/affine classifier

Figure 4: XOR problem

Neural network approximation theorems

- **Theorem** (Cybenko, 1989; Hornik, Stinchcombe, & White, 1989): Let σ_1 be any continuous non-linear activation function from above. For any continuous function $f: \mathbb{R}^d \to \mathbb{R}$ and any $\varepsilon > 0$, there is a two-layer neural network (with parameters $\theta = (W_1, b_1, w_2)$) s.t.
 \[\max_{x \in [0,1]^d} |f(x) - w_2^T \sigma_1(b_1 + W_1 x)| < \varepsilon. \]

- Many caveats
 - “Width” (number of hidden units) may need to be very large
 - Does not tell us how to find the network
 - Does not justify deeper networks

Fitting neural networks to data

- Training data $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \mathcal{Y}$
- Fix architecture: $G = (V, E)$ and activation functions
- Plug-in principle: find parameters θ of neural network f_θ to minimize empirical risk (possibly with a surrogate loss)

 \[\hat{R}(\theta) = \frac{1}{n} \sum_{i=1}^{n} (f_\theta(x_i) - y_i)^2 \quad \text{regression} \]
 \[\hat{R}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell_{\log}(-y_i f_\theta(x_i)) \quad \text{binary classification} \]
 \[\hat{R}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell_{\text{ce}}(\tilde{y}_i, f_\theta(x_i)) \quad \text{multi-class classification} \]

 (Could use other surrogate loss functions . . .)
 - Typically objective is not convex in parameters θ
 - Nevertheless, local search (e.g., SGD) often works well!

Backpropagation

- **Backpropagation** (backprop): Algorithm for computing partial derivatives wrt weights in a feedforward neural network
 - “Clever organization of partial derivative computations with chain rule
 - Use in combination with gradient descent, SGD, etc.

 - Consider loss on a single example (x, y), written $J := \ell(y, f_\theta(x))$
 - Goal: compute $\frac{\partial J}{\partial w_{u,v}}$ for every edge $(u, v) \in E$

 - Initial step of backprop: **forward propagation**
 - Compute z_v’s and h_v’s for every node $v \in V$
 - Running time: linear in size of network

 - Rest of backprop also just requires time linear in size of network!
Derivative of loss with respect to weights

- Let \(\hat{y}_1, \hat{y}_2, \ldots \) denote the values at the output nodes.
- Then by chain rule,
 \[
 \frac{\partial J}{w_{u,v}} = \sum_i \frac{\partial J}{\partial \hat{y}_i} \cdot \frac{\partial \hat{y}_i}{w_{u,v}}.
 \]

Derivative of output with respect to weights

- Assume for simplicity there is just a single output, \(\hat{y} \).
- Chain rule, again:
 \[
 \frac{\partial \hat{y}}{\partial w_{u,v}} = \frac{\partial \hat{y}}{\partial h_v} \cdot \frac{\partial h_v}{\partial w_{u,v}}.
 \]

First term: trickier; we’ll handle later

Second term:

Example: chain graph I

- Parameters \(\theta = (w_{0,1}, w_{1,2}, \ldots, w_{L-1,L}) \)
- Fix input value \(x \in \mathbb{R} \); what is \(\frac{\partial h_i}{\partial w_{i-1,i}} \) for \(i = 1, \ldots, L \)?
- Forward propagation:
 \[
 h_0 := x \\
 \text{For } i = 1, 2, \ldots, L: \quad z_i := w_{i-1,i}h_{i-1} \\
 h_i := \sigma(z_i)
 \]

Figure 5: Chain graph; assume same activation \(\sigma \) in every layer
Example: chain graph II

\[\begin{array}{c}
0 \xrightarrow{w_{0,1}} 1 \xrightarrow{w_{1,2}} \cdots \xrightarrow{w_{L-1,L}} L
\end{array} \]

Figure 6: Chain graph; assume same activation \(\sigma \) in every layer

- **Backprop:**
 - For \(i = L, L-1, \ldots, 1 \):
 \[
 \frac{\partial h_L}{\partial h_i} := \begin{cases} 1 & \text{if } i = L \\ \frac{\partial h_L}{\partial h_{i+1}} \cdot \sigma'(z_{i+1}) w_{i,i+1} & \text{if } i < L \end{cases}
 \]
 \[
 \frac{\partial h_L}{\partial w_{i-1,i}} := \frac{\partial h_L}{\partial h_i} \cdot \sigma'(z_i) h_{i-1}
 \]

Practical issues I: Initialization

- Ensure inputs are **standardized**: every feature has zero mean and unit variance (wrt training data)
- Initialize weights randomly for gradient descent / SGD

Practical issues II: Architecture choice

- Architecture can be regarded as a “hyperparameter”
- Optimization-inspired architecture choice
 - With wide enough network, can get training error rate zero
 - Use the smallest network that lets you get zero training error rate
 - Then add regularization term to objective (e.g., sum of squares of weights), and optimize the regularized ERM objective
- Entire research communities are trying to figure out good architectures for their problems

Convolutional nets

- Neural networks with **convolutional layers**
 - Useful when inputs have locality structure
 - Sequential structure (e.g., speech waveform)
 - 2D grid structure (e.g., image)
 - ...
- Weight matrix \(W_\ell \) is highly-structured
 - Determined by a small **filter**
 - Time to compute \(W_\ell h_{\ell-1} \) is typically \(\ll d_\ell \times d_{\ell-1} \) (e.g., closer to \(\max\{d_\ell, d_{\ell-1}\} \))
Convolutions I

- Convolution of two continuous functions: \(h := f \ast g \)
 \[
 h(x) = \int_{-\infty}^{+\infty} f(y)g(x-y) \, dy
 \]
- If \(f(x) = 0 \) for \(x \notin [-w, +w] \), then
 \[
 h(x) = \int_{-w}^{+w} f(y)g(x-y) \, dy
 \]
- Replaces \(g(x) \) with weighted combination of \(g \) at nearby points
- For functions on discrete domain, replace integral with sum
 \[
 h(i) = \sum_{j=-\infty}^{\infty} f(j)g(i-j)
 \]

Convolutions II

- E.g., suppose only \(f(0), f(1), f(2) \) are non-zero, and \(g \) is zero-padded (in this case, \(g(i) = 0 \) for \(i < 1 \) or \(i > 5 \)). Then:
 \[
 \begin{bmatrix}
 h(1) \\
 h(2) \\
 h(3) \\
 h(4) \\
 h(5) \\
 h(6) \\
 h(7)
 \end{bmatrix}
 =
 \begin{bmatrix}
 f(0) & 0 & 0 & 0 & 0 \\
 f(1) & f(0) & 0 & 0 & 0 \\
 f(2) & f(1) & f(0) & 0 & 0 \\
 0 & f(2) & f(1) & f(0) & 0 \\
 0 & 0 & f(2) & f(1) & f(0) \\
 0 & 0 & 0 & f(2) & f(1) \\
 0 & 0 & 0 & 0 & f(2)
 \end{bmatrix}
 \begin{bmatrix}
 g(1) \\
 g(2) \\
 g(3) \\
 g(4) \\
 g(5)
 \end{bmatrix}
 \]

2D convolutions I

- Similar for 2D inputs (e.g., images), except now sum over two indices
 - \(g \) is the input image
 - \(f \) is the filter
 - Lots of variations (e.g., padding, strides, multiple “channels”)

2D convolutions II

- Similar for 2D inputs (e.g., images), except now sum over two indices
 - \(g \) is the input image
 - \(f \) is the filter
 - Lots of variations (e.g., padding, strides, multiple “channels”)

![Figure 7: Convolutional layer](image)

![Figure 8: 2D convolution, with padding, no stride](image)

![Figure 9: 2D convolution, with padding, no stride](image)
2D convolutions III

- Similar for 2D inputs (e.g., images), except now sum over two indices
 - \(g \) is the input image
 - \(f \) is the filter
 - Lots of variations (e.g., padding, strides, multiple “channels”)

> Figure 10: 2D convolution, with padding, no stride

2D convolutions IV

- Similar for 2D inputs (e.g., images), except now sum over two indices
 - \(g \) is the input image
 - \(f \) is the filter
 - Lots of variations (e.g., padding, strides, multiple “channels”)

> Figure 11: 2D convolution, with padding, no stride

24 / 26

Postscript: Tangent model

- Let \(f_\theta : \mathbb{R}^d \rightarrow \mathbb{R} \) be a neural network function with parameters \(\theta \in \mathbb{R}^p \) (\(p \) is total number of parameters)
- Fix \(x \), and consider first-order approximation of \(f_\theta(x) \) around \(\theta = \theta^{(0)} \):

\[
 f_\theta(x) \approx f_{\theta^{(0)}}(x) + \nabla f_{\theta^{(0)}}(x)^T (\theta - \theta^{(0)})
\]

Here, \(\nabla \) is gradient wrt parameters \(\theta \), not wrt input \(x \)
- Consider feature transformation \(\varphi(x) := \nabla f_{\theta^{(0)}}(x) \), determined entirely by initial parameters \(\theta^{(0)} \)
- If the first-order approximation is accurate (i.e., we never consider \(\theta \) too far from \(\theta^{(0)} \)), then back to a linear model (over \(p \) features \(\varphi(x) \in \mathbb{R}^p \))
 - Called the tangent model
- Upshot: To really exploit power of “deep learning”, we must be changing parameters a lot during training!

25 / 26

26 / 26