Regularization

COMS 4771 Fall 2025

Minimum norm solutions



Normal equations (A" A)w = A"b can have infinitely-many solutions

o(z) = (17 cos(), sin(x), COS(22.CI?)’ sin(2x) cos(32z) Sin(32:lj))
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Norm of w is a measure of “steepness”

[wp(z) — wip(@)]| < [lull x [lp(@) - p(a)]
TV TV
change in output change in input

(Cauchy-Schwarz inequality)

» Note: Data does not provide a reason to prefer short w over long w

» Preference for short w is example of inductive bias (i.e., a preference for one
solution over another)
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Ridge regression

Ridge regression: “balance” two concerns by minimizing

lAw = BIJ* + Allw]

where A > 0 is hyperparameter

» Concern #1: "data fitting term” ||Aw — b||* (involves training data)
» Concern #2: regularizer A||w||* (doesn't involve training data)

» )\ = 0: objective in OLS, might have multiple minimizers

» )\ — 0T: minimum norm solution
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ii.d.

Example: n = d = 100, (X®,y@)n "< (XY), where X ~ N(0, 1), and
conditional distribution of Y given X =z is N(Z;gl zj,1)
» Normal equations have unique solution, but OLS performs poorly
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Different interpretation of ridge regression objective

lAw = b* + Afjw]]®
= || Aw —b|* + || (VAD)w — 0|

» Second term is MSE on d additional “fake examples”
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“Augmented’ dataset in matrix notation:

e (@) 5 (D
A= (n+1)\T ) b=
— (x T— 0
_<_ (x(n-l-d))T _)_ | 0 |

SO

| Aw = b]]* + Allwl* = || Aw - b]

What are “normal equations” for ridge regression objective (in terms of A, b, A)?
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Other forms of regularization

Regularization using domain-specific data augmentation

Create “fake examples” from existing data by applying transformations that do not
change appropriateness of corresponding label, e.g.,

» Image data: rotations, rescaling
» Audio data: change playback rate

» Text data: replace words with synonyms

8/16



Functional penalties (e.g., norm on w)
» Ridge: (squared) ¢* norm
i

» |asso: /! norm
d

Jwllr = lejl

J=1

» Sparse regularization: ¢ “norm” (not really a norm)

|w||lo = # coefficients in w that are non-zero
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Example: n =d = 100, (X®,y®))n_ " (x Y), where X ~ N(0,1), and
conditional distribution of Y given X =z is N(_;_ 0o 1)
» Minimize ||Aw — b]|* + Aljw]||; (Lasso)
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Weighted (squared) ¢ norm:
d
>
i=1

for some “costs” c¢q,...,cq >0
» Motivation: make it more “costly” (in regularizer) to use certain features

» Where do costs come from?
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Example:
o(x) = (1, cos(x), sin(x), cos(2z), sin(2z), . . ., cos(32z), sin(32z))

with regularizer on w = (Wp, Weos 1 Wsin 1y - - - » Weos 32, Wsin 32)
32
2 Z 9 2 2
Wy + J X (wcos,j + wsin,j)
j=1

(More expensive to use "high frequency” features)
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Regularization elsewhere:
» Limit size/depth of decision tree
» Restrict flexibility of covariance matrices in normal generative model

» Increasing K in K-nearest neighbor (so the predictor averages/votes over more
neighbors)

» Bagging / model averaging
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Question: Can effect of costs be achieved using (original) ridge regularization by
changing ¢?
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