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Minimum norm solutions



Normal equations (ATA)w = ATb can have infinitely-many solutions

φ(x) =

(
1, cos(x), sin(x),

cos(2x)

2
,
sin(2x)

2
, . . . ,

cos(32x)

32
,
sin(32x)

32

)
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Norm of w is a measure of “steepness”

|wTφ(x)− wTφ(x′)|︸ ︷︷ ︸
change in output

≤ ∥w∥ × ∥φ(x)− φ(x′)∥︸ ︷︷ ︸
change in input

(Cauchy-Schwarz inequality)

▶ Note: Data does not provide a reason to prefer short w over long w

▶ Preference for short w is example of inductive bias (i.e., a preference for one
solution over another)
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Ridge regression

Ridge regression: “balance” two concerns by minimizing

∥Aw − b∥2 + λ∥w∥2

where λ ≥ 0 is hyperparameter

▶ Concern #1: “data fitting term” ∥Aw − b∥2 (involves training data)

▶ Concern #2: regularizer λ∥w∥2 (doesn’t involve training data)

▶ λ = 0: objective in OLS, might have multiple minimizers

▶ λ→ 0+: minimum norm solution
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Example: n = d = 100, ((X(i), Y (i)))ni=1
i.i.d.∼ (X,Y ), where X ∼ N(0, I), and

conditional distribution of Y given X = x is N(
∑10

j=1 xj, 1)
▶ Normal equations have unique solution, but OLS performs poorly
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Different interpretation of ridge regression objective

∥Aw − b∥2 + λ∥w∥2

= ∥Aw − b∥2 + ∥(
√
λI)w − 0∥2

▶ Second term is MSE on d additional “fake examples”

(x(n+1), y(n+1)) =

(x(n+2), y(n+2)) =

...

(x(n+d), y(n+d)) =

6 / 16

“Augmented” dataset in matrix notation:

Ã =




←− (x(1))T −→
...

←− (x(n))T −→
←− (x(n+1))T −→

...
←− (x(n+d))T −→



, b̃ =




y(1)

...
y(n)

0
...
0




so
∥Aw − b∥2 + λ∥w∥2 = ∥Ãw − b̃∥2

What are “normal equations” for ridge regression objective (in terms of A, b, λ)?
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Other forms of regularization

Regularization using domain-specific data augmentation

Create “fake examples” from existing data by applying transformations that do not
change appropriateness of corresponding label, e.g.,

▶ Image data: rotations, rescaling

▶ Audio data: change playback rate

▶ Text data: replace words with synonyms
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Functional penalties (e.g., norm on w)

▶ Ridge: (squared) ℓ2 norm
∥w∥2

▶ Lasso: ℓ1 norm

∥w∥1 =
d∑

j=1

|wj|

▶ Sparse regularization: ℓ0 “norm” (not really a norm)

∥w∥0 = # coefficients in w that are non-zero
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Example: n = d = 100, ((X(i), Y (i)))ni=1
i.i.d.∼ (X,Y ), where X ∼ N(0, I), and

conditional distribution of Y given X = x is N(
∑10

j=1 xj, 1)

▶ Minimize ∥Aw − b∥2 + λ∥w∥1 (Lasso)
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Weighted (squared) ℓ2 norm:
d∑

i=1

ci w
2
i

for some “costs” c1, . . . , cd ≥ 0

▶ Motivation: make it more “costly” (in regularizer) to use certain features

▶ Where do costs come from?
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Example:

φ(x) = (1, cos(x), sin(x), cos(2x), sin(2x), . . . , cos(32x), sin(32x))

with regularizer on w = (w0, wcos,1, wsin,1, . . . , wcos,32, wsin,32)

w2
0 +

32∑

j=1

j2 ×
(
w2

cos,j + w2
sin,j

)

(More expensive to use “high frequency” features)
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Regularization elsewhere:

▶ Limit size/depth of decision tree

▶ Restrict flexibility of covariance matrices in normal generative model

▶ Increasing K in K-nearest neighbor (so the predictor averages/votes over more
neighbors)

▶ Bagging / model averaging

▶ . . .
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Question: Can effect of costs be achieved using (original) ridge regularization by
changing φ?
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