
1 Setup

1.1 Normal means problem

• Data: b = (b(1), . . . , b(n)) are n real-valued random variables correspond-
ing to n “units” that we are concerned about

• Goal: estimate the unknown means µ = (µ(1), . . . , µ(n)) ∈ Rn, where

µ(i) = E(b(i))

• “Normal means” assumption:

b ∼ N(µ, σ2In)

for some σ2 > 0

– Maximum likelihood estimate of µ is µ̂mle := b

– E∥µ̂mle − µ∥2 = σ2n

(Holds even under “weak” assumption: E(b) = µ and cov(b) = σ2In,
but not necessarily normally distributed)

1.2 Fixed design matrix

• Suppose we have inputs a(i), . . . , a(i) ∈ Rd, which we regard as “fixed”
(i.e., non-random) feature vectors describing the n units

• Suppose we have the following belief about how µ(i)’s relate to a(i)’s:
there is a linear function L : Rd → R such that

µ(i) ≈ L(a(i)), ∀i ∈ {1, . . . , n}

• This is equivalent to belief that µ = (µ1, . . . , µn) is “close to” CS(A),
where A is the n× d matrix with the (a(i))T’s as rows:

A =

←− (a(i))T −→
...

←− (a(n))T −→


• Note: “normal linear regression model” assumes µ ∈ CS(A) (but here,
we are not considering this model)
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1.3 How well can we do with estimates from CS(A)?

• Let Π be n× n orthogonal projection matrix for CS(A)

– This is determined by A alone

• The closest vector in CS(A) to µ (in Euclidean distance) is Πµ

– Can write Πµ = Aw̄ for some w̄ ∈ Rd satisfying AT(µ− Aw̄) = 0

– But this depends on the unknown µ

• Goal: estimate µ by a vector from CS(A), obtained using A and b

• Note: Consider plane containing µ, Πµ, and any other u ∈ CS(A)

– These points form a right triangle

– By Pythagorean theorem:

∥u− µ∥2 = ∥Πµ− µ∥2 + ∥u− Πµ∥2

– Every u ∈ CS(A) has ∥u− µ∥2 ≥ ∥Πµ− µ∥2

2 Ordinary least squares

2.1 Estimator

• OLS estimate of µ is µ̂ := Πb

– Can write µ̂ = Aŵ for some ŵ ∈ Rd satisfying AT(b− Aŵ) = 0

• By Pythagorean theorem:

∥µ̂− µ∥2 = ∥Πµ− µ∥2 + ∥µ̂− Πµ∥2,

• By linearity of expectation and bias-variance decomposition:

E∥µ̂− µ∥2 = ∥Πµ− µ∥2 + E∥µ̂− Πµ∥2

= ∥Πµ− µ∥2 + ∥E(µ̂)− Πµ∥2 + E∥µ̂− E(µ̂)∥2
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• Expected value of µ̂:
E(µ̂) = E(Πb) = Πµ

• “Variance” of µ̂:
E∥µ̂− E(µ̂)∥2 = tr(cov(µ̂))

where covariance matrix of µ̂ is

cov(µ̂) = E(Πb− E(Πb))(Πb− E(Πb))T = Πcov(b)ΠT

2.2 Analysis under normal means assumption

• Under (weak) “normal means” assumption, cov(b) = σ2In

cov(µ̂) = σ2Π

and
tr(cov(µ̂) = σ2 tr(Π) = σ2 rank(A)

• Conclusion:
E∥µ̂− µ∥2 = ∥Πµ− µ∥2 + σ2 rank(A)

– Recall: E∥µ̂mle − µ∥2 = σ2n

– µ̂ is improvement over µ̂mle when rank(A) < n and ∥Πµ − µ∥ is
small enough

3 Ridge regression

3.1 Estimator

• Regularization parameter λ > 0

• Define ŵλ as (unique) solution w to

(ATA+ λId)w = ATb

• Ridge regression estimate of µ is

µ̂λ := Aŵλ = A(ATA+ λId)
−1ATb
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• By Pythagorean theorem:

∥µ̂λ − µ∥2 = ∥Πµ− µ∥2 + ∥µ̂λ − Πµ∥2

• By bias-variance decomposition:

E∥µ̂λ − Πµ∥2 = ∥E(µ̂λ)− Πµ∥2 + ∥µ̂λ − E(µ̂λ)∥2

• Expected value of µ̂λ:

E(µ̂λ) = A(ATA+ λId)
−1ATµ

• Covariance of µ̂λ:

cov(µ̂λ) = A(ATA+ λId)
−1AT cov(b)A(ATA+ λId)

−1AT

3.2 Analysis under normal means assumption

• Under (weak) “normal means” assumption, cov(b) = σ2In; in this case,

cov(µ̂λ) = σ2A(ATA+λId)
−1ATA(ATA+λId)

−1AT = σ2(A(ATA+λId)
−1AT)2

• Need eigendecomposition of

A(ATA+ λId)
−1AT

• Write singular value decomposition of A as

A =
r∑

i=1

si uiv
T

i =
d∑

i=1

si uiv
T

i

(If r := rank(A) < d, then sr+1 = · · · = sd = 0, and we extend right
singular vectors (vi)

r
i=1 to obtain a complete orthonormal basis (vi)

d
i=1

for Rd)
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• Then:

(ATA+ λId)
−1 =

(
d∑

i=1

(s2i + λ) viv
T

i

)−1
=

d∑
i=1

1

s2i + λ
viv

T

i

A(ATA+ λId)
−1AT =

r∑
i=1

s2i
s2i + λ

uiu
T

i(
A(ATA+ λId)

−1AT

)2
=

r∑
i=1

(
s2i

s2i + λ

)2

uiu
T

i

• Part of expected squared distance E∥µ̂λ − Πµ∥2 due to “bias”:

∥Πµ−E(µ̂λ)∥2 =

∥∥∥∥∥
r∑

i=1

uiu
T

iµ−
r∑

i=1

s2i
s2i + λ

uiu
T

iµ

∥∥∥∥∥
2

=
r∑

i=1

((
1− s2i

s2i + λ

)
uT

iµ

)2

• Part of expected squared distance E∥µ̂λ − Πµ∥2 due to “variance”:

E∥µ̂λ − E(µ̂λ)∥2 = tr(cov(µ̂λ)) = σ2
r∑

i=1

(
s2i

s2i + λ

)2

• So overall expected squared distance is:

E∥µ̂λ − Πµ∥2 =
r∑

i=1

(
1− s2i

s2i + λ

)2

(uT

iµ)
2 + σ2

r∑
i=1

(
s2i

s2i + λ

)2

One term goes up with λ and the other goes down with λ

– Recall: for OLS estimate µ̂,

E∥µ̂− Πµ∥2 = σ2 rank(A)

– Ridge regression has potential to improve over µ̂mle even when
rank(A) = n, but OLS cannot
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4 Ridge regression with orthogonal design

• Suppose A = In, so r = rank(A) = n and

µ̂λ =
1

1 + λ
b

and

E∥µ̂λ − µ∥2 = ∥µ∥2
(
1− 1

1 + λ

)2

+ σ2n

(
1

1 + λ

)2

• Choosing λ = σ2n
∥µ∥2 gives

E∥µ̂λ − µ∥2 =
(
1− σ2n

∥µ∥2 + σ2n

)
σ2n

in which case µ̂λ strictly improves over µ̂mle

– The catch: choice of λ depends on ∥µ∥2 (and σ2)

(Not really a big deal; choose λ by cross-validation anyway)

– Amazing: there is a choice of λ = λ(b, σ2) that strictly improves over
µ̂mle (James-Stein estimator; requires normal means assumption)

∗ Key: it is “easier” to estimate ∥µ∥2 than it is to estimate µ
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