1 Setup

1.1 Normal means problem

e Data: b= (b(1>, e b(”)) are n real-valued random variables correspond-
ing to n “units” that we are concerned about
e Goal: estimate the unknown means p = (uV, ..., u™) € R”, where
p = E ()

e “Normal means” assumption:
b~ N(u,o?l,)

for some o2 > 0

— Maximum likelihood estimate of u is jiye ;= b

= Ellfuate — plI* = o*n

(Holds even under “weak” assumption: E(b) = p and cov(b) = 021,
but not necessarily normally distributed)

1.2 Fixed design matrix

e Suppose we have inputs a, ..., a? € R? which we regard as “fixed”
(i.e., non-random) feature vectors describing the n units

e Suppose we have the following belief about how ©()’s relate to a(’s:
there is a linear function L: R? — R such that

Y~ L), Vie{1,...,n}
e This is equivalent to belief that pu = (u1,..., 1) is “close to” CS(A),
where A is the n x d matrix with the (a())"’s as rows:

— ()T —
A= :
— (a(”>)T —

e Note: “normal linear regression model” assumes p € CS(A) (but here,
we are not considering this model)
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1.3 How well can we do with estimates from CS(A)?

e Let I be n x n orthogonal projection matrix for CS(A)
— This is determined by A alone

e The closest vector in CS(A) to u (in Euclidean distance) is Iy

— Can write Iy = Aw for some w € RY satisfying A™(u — Aw) = 0
— But this depends on the unknown p

e Goal: estimate p by a vector from CS(A), obtained using A and b

e Note: Consider plane containing p, I[Ig, and any other u € CS(A)

— These points form a right triangle

— By Pythagorean theorem:
lu = pl|* = 1T = pal|® + [Juw — T

~ Every u € CS(A) has [lu — o2 > [Tl — p?

2 Ordinary least squares

2.1 Estimator
e OLS estimate of u is i :=11Ib
— Can write i = Aw for some w € R? satisfying AT(b — Aw) =0
e By Pythagorean theorem:
i = pll® = 10— pol® + 1o — T,
e By linearity of expectation and bias-variance decomposition:

Ellg— pll* = |Hp — pl|* + El|p — Tl
= |0 — pl® + |E(a) — ul* + Ellg —E(2))?
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e Expected value of ji:
E(ji) = E(IIb) = Ty

e “Variance” of [
El| — E(@)|* = tr(cov(i))
where covariance matrix of i is

cov(fi) = E(ITb — E(I16))(I1b — E(I16))" = I cov(b)IT"

2.2 Analysis under normal means assumption

e Under (weak) “normal means” assumption, cov(b) = oI,
cov(ft) = o?Il

and
tr(cov(fi) = o? tr(II) = o rank(A)

e Conclusion:
Ellfi— pl* = [Tp — pl|* + o rank(A)
— Recall: E||fimle — p|* = o?n

— [1 is improvement over fiye when rank(A) < n and [|[Tly — pl| is
small enough

3 Ridge regression

3.1 Estimator

e Regularization parameter A > 0
e Define w) as (unique) solution w to
(ATA+ Mjw = A"b
e Ridge regression estimate of p is
fiy i= Ay = A(ATA+ \I;) ' ATh
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By Pythagorean theorem:
i — pll® = [T = pal|* + [l — Tplf?
e By bias-variance decomposition:

Ellfin — Hpl* = [[E(fn) — Dul* + [l — E(n) ||

Expected value of [iy:

E(fn) = A(A"A+ Mg) ' A

Covariance of jiy:

cov(fiy) = A(ATA+ M) AT cov(b) A(ATA + A1) AT

3.2 Analysis under normal means assumption

e Under (weak) “normal means” assumption, cov(b) = 021,,; in this case,

cov(jin) = 2A(ATA+N) LATA(ATAHNL) AT = 02(A(ATA+N,) LATY?

e Need eigendecomposition of

A(ATA+ ) AT

e Write singular value decomposition of A as

d

A= Z S uv; = Z Si UV,
i=1 i=1
(If r := rank(A) < d, then s,41 = --- = 54 = 0, and we extend right
singular vectors (v;)7_; to obtain a complete orthonormal basis (v;)Z,

for RY)



e Then:

d -1a
T - T 1 T
(ATA+ Ay) 1(5 (522+/\)vivi> = E ) Uit
i=1 =1

r 2
A(ATA + N AT = Y,
( + M) Z_;s?Jr/\uuZ

2 " 32 2
o ) 5 () v
i=1 \7t

e Part of expected squared distance E||iy — [Tu||* due to “bias”:

T 9 2
S 3] - S 75) )

43

e Part of expected squared distance E||fiy — Iu||? due to “variance”:

) A A r S? 2
Bl ~ BIP = xteov(in) = * 3 (75
=1 t

I —E(an)|I* =

e So overall expected squared distance is:

) T 822 2 r S? 2
Bl =1l = Y (1- 5 ) @+ 3 (575
2 =1 2

1=1

One term goes up with A and the other goes down with A
— Recall: for OLS estimate i,
|l — Tlu||? = o rank(A)

— Ridge regression has potential to improve over ji even when
rank(A) = n, but OLS cannot



4 Ridge regression with orthogonal design

e Suppose A = I,,, so r = rank(A) = n and
1

fir = 1+—/\b
and ) ) ) )
Bl = (1= 1) +o*n(155)
e Choosing \ = ﬁ gives
o’n
Bl ul = (1= ) o

in which case fi) strictly improves over jime

— The catch: choice of A depends on ||z|? (and o?)
(Not really a big deal; choose A by cross-validation anyway)

— Amazing: there is a choice of A = (b, 0?) that strictly improves over
fimle (James-Stein estimator; requires normal means assumption)

x Key: it is “easier” to estimate ||u]|? than it is to estimate p
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