Multi-class linear prediction

COMS 4771 Fall 2025

Multi-class prediction

Multi-class prediction usually means classification problems with || > 3
(...but technically also includes || = 2)

» Assume we use zero-one loss, so corresponding risk is error rate

» Best prediction of Y given X =z is

f*(x) = argmax Pr(Y =k | X = x)
key

1/9

V=2 Y>3
nearest neighbors v v
decision trees v v
generative models v v
logistic regression v 7
Perceptron v ?

Linear classifiers are inherently binary output functions;
need some work to extend to || > 3

2/9

Multi-class logistic regression

Generalize logistic regression model to K classes, [K] = {1,2,..., K}

exp(zTw®)
D e (K] exp(zTw(®)

Pr(Y =k | X =2x) =

» K weight vectors w™", ... w®) € R? are parameters of the model
wh = (wik), . ,wflk))

Total of K'd parameters

In this model with parameters w), ... w), classifier with smallest error rate is

f*(x) =argmaxPr(Y =k | X = z) = argmax z"w®

ke[K] ke[K]

3/9

Maximum likelihood estimation: given training data 8 from R? x [K],
log-likelihood of w®, ... w) s

(y)
(1) (K) exp(z'w'”)
In L(w'",. Z In 5 expTw®)
(SL‘,y ES CE[K]
= Z —In Z exp(z’ w'
(m,y)GS cc K]

» Negative log-likelihood turns out to be a convex objective function

Synthetic example: “linearly separable” dataset

10
X
8 1 X
X
0 X
o X
4 - X
X
2 X
X

0

4/9

5/9

Synthetic example: “linearly separable” dataset

0.7 -

0.6 1

training error rate
©c o o o o
= N w £~ ul

o
o

0 250 500 750 1000 1250 1500
number of iterations

6/9

Can also interpret negative log-likelihood as sum of log losses, like in binary case,
for prediction function
pw () = softmax(Wx)

where softmax: RE — R® (soft(arg)max function) is defined by

exp(ug)
e (k) €XP(Ue)

softmax(u), =

» W € RE*X4 is matrix of parameters, one row per class

» Negative log-likelihood is

JW)y= > —In(pw(x),)

(z,y)€S

7/9

Setup Gradient descent code

import torch for t in range(num_iter):

J = loss(f(x), y)

W = torch.zeros(d, K) J.backward()
W.requires_grad_(True) with torch.no_grad():
W -= eta * W.grad
def f(x): W.grad.zero_()
return torch.softmax(x.matmul (W),
— dim=1)

loss = torch.nn.NLLLoss(reduction="'sum')

8/9
Example: iris dataset
» Multi-class logistic regression (n = 0.01, T = 2'7 iterations)
» Test error rate: 3.33%

petal length

x setosa (1)

2 % o versicolor (2)
X q 9..q
Xx§§§§§§xx§§ X o virginica (3)
4.5 5.0 5.5 6.0 6.5 7.0 7.5

sepal length

9/9

