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Language models

Language models

• (Large) Language Model: probabilistic model for discrete sequences
• Originally studied by Shannon (1948) in his theory of communication
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Probability of a sequence of tokens

• 𝑋!:# ≔ 𝑋!, … , 𝑋# : 𝑇 random "tokens" with joint distribution 𝑃
• Tokens could represent letters, words, "sub-words", etc.
• Each 𝑋! takes value in "alphabet" (a.k.a. "vocabulary") Σ

• Next token conditional distribution:

𝑃 𝑋# = 𝑥# 𝑋!:#$! = 𝑥!:#$! =
𝑃 𝑋!:# = 𝑥!:#

𝑃 𝑋!:#$! = 𝑥!:#$!
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Application #1: Next-token prediction

Suppose you know joint distribution of 𝑋!:#
• Q: What token is most likely to follow 𝑥!:#$! ∈ Σ#$!?

• A: Maximizer of next token (conditional) probability
argmax
%∈'

𝑃 𝑋# = 𝑥 𝑋!:#$! = 𝑥!:#$!

• (Just like in multi-class prediction, with Σ  classes)
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Application #2: Sequence generation

Sample random sequence according to joint distribution of 𝑋!:#:
• First, draw 𝑥! ∼ 𝑃 𝑋!    [ marginal distribution of 𝑋! ]

• Then, draw 𝑥( ∼ 𝑃 𝑋( 𝑋! = 𝑥!  [ conditional distribution of 𝑋" given 𝑋! = 𝑥!]

• Then, draw 𝑥) ∼ 𝑃 𝑋) 𝑋!:( = 𝑥!:(  [ … ]

• Then, draw 𝑥* ∼ 𝑃 𝑋* 𝑋!:) = 𝑥!:)  [ … ]

• Etc.
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Difficulties with language models

• Σ #  many sequences of length 𝑇
• For large 𝑇, cannot write down all of their probabilities
• Need a more succinct parameterization
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Shannon's n-gram models (n=2, n=3)

• Bigram model: distributions 𝑃 satisfying, for all 𝑡 > 1,
𝑃 𝑋+ = 𝑥+ 𝑋!:+$! = 𝑥!:+$! = 𝑃 𝑋+ = 𝑥+ 𝑋+$! = 𝑥+$!

• Parameters of bigram distribution (look-up tables):
• 𝐴",$ ≔ 𝑃 𝑋! = 𝑦 𝑋!%& = 𝑥  for each 𝑥, 𝑦 ∈ Σ
• 𝜋" ≔ 𝑃(𝑋& = 𝑥) for each 𝑥 ∈ Σ

• Trigram model: distributions 𝑃 satisfying, for all 𝑡 > 2,
𝑃 𝑋+ = 𝑥+ 𝑋!:+$! = 𝑥!:+$! = 𝑃 𝑋+ = 𝑥+ 𝑋+$(:+$! = 𝑥+$(:+$!

• Parameters of trigram distribution (look-up tables):
• 𝐴",$,' ≔ 𝑃 𝑋! = 𝑧 𝑋!%( = 𝑥, 𝑋!%& = 𝑦  for each 𝑥, 𝑦, 𝑧 ∈ Σ
• 𝜋",$ ≔ 𝑃(𝑋& = 𝑥, 𝑋( = 𝑦) for each 𝑥, 𝑦 ∈ Σ
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Look-up tables

• Look-up table parameter 𝐴 for n-gram model
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𝑦!:#$!

𝑦#

Σ #$!× Σ  look-up table

𝑃 𝑋! = 𝑦" 𝑋!#"$%:!#% = 𝑦%:"#%	



Sequence generation with bigram model

Sample random sequence with bigram model for 𝑋!:#:
• First, draw 𝑥! ∼ 𝑃 𝑋!
• Then, draw 𝑥( ∼ 𝑃 𝑋( 𝑋! = 𝑥!
• Then, draw 𝑥) ∼ 𝑃 𝑋) 𝑋( = 𝑥(
• Then, draw 𝑥* ∼ 𝑃 𝑋* 𝑋) = 𝑥)
• Etc.
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Application #2: Sequence generation

Sample random sequence according to joint distribution of !!:#:
• First, draw (! ∼ & !!    [ marginal distribution of !! ]

• Then, draw (( ∼ & !( !! = (!  [ conditional distribution of !" given !! = #!]

• Then, draw () ∼ & !) !!:( = (!:(  [ … ]

• Then, draw (* ∼ & !* !!:) = (!:)  [ … ]

• Etc.

5Fitting n-gram models to data

• Many ways to do this, but simplest is to use empirical frequencies

• MLE for 𝑃 𝑋+ = 𝑦1 𝑋+$12!:+$! = 𝑦!:1$!	 :

#count 𝑦!:1$!, 𝑦1
#count 𝑦!:1$!

#count(𝑧) is number of occurrences of string 𝑧 in training data

• Variants: regularized counts (e.g., Laplace smoothing), …
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Sequences generated by an n-gram model fit to data
Conditioning on initial tokens (a.k.a. prompt) 𝑋$:&' =

it is a truth universally ac

n=1: […] mci w aeovmsne drsbwt elo oiwetrcao rne em ok hae lom
n=2: […] o drto t bet it s f aree h at teshas rr l hasis popor
n=3: […] es as pred cirse so tiought let of ant forrieng pled 
n=4: […] common of could ell his i foung laster are plage omin
n=5: […] quaintance only can better he obliged it is the first
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Limitations of n-gram model

• Only uses last n−1 tokens to predict next token
• Example (n = 5; Σ = English words):

as the proctor started the clock the students opened their ______

• 𝑃 books	 the	students	opened	their > 𝑃 exams	 the	students	opened	their
• But with the entire context, "exams" is more likely
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[Example from Chris Manning's CS224n Lecture 5]



Modern methods for fitting n-gram models to data

• Approaches based on look-up tables are typically limited to n < 10

• Today:
• n = 106 or more
• Conditional probabilities

𝑃 𝑋( = 𝑦) 𝑋(*)+$:(*$ = 𝑦$:)*$
computed by a neural net rather than using look-up table
• Training: Fit parameters Θ of neural net by (approximately) minimizing

&
(,)

-

− log𝑃. 𝑋( = 𝑥( 𝑋(*)+$:(*$ = 𝑥(*)+$:(*$

where 𝑥$:- is training data (e.g., all together as one long string)
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(Logarithmic loss)

What kind of neural net? [Outputs]

• Typically use large alphabet/vocabulary Σ
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𝑦!:#$!

𝑦#

Σ #$!× Σ  look-up table

log

O
ut

pu
ts

 o
f n

eu
ra

l n
et

𝑑	×	|Σ|
"un-embedding"

matrix

= + log normalization

𝑑



What kind of neural net? [Inputs]

• Neural nets typically operate on real vectors in ℝ3

• Token embedding matrix:

• Map sequence of tokens 𝑥&:4%& ∈ Σ4%& to sequence of vectors
(looked-up from embedding matrix)

• Embedding + un-embedding matrices related to word embeddings
(à la Latent Semantic Analysis)
• These will also be "trained" alongside neural network parameters
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𝑑	×	|Σ|
"embedding"

matrix

What kind of neural net? [Internal computation]

• Function computed by neural net
• Input: sequence of vectors 𝑁 vectors from ℝ5 (for some 𝑁 ≤ 𝑛 − 1)
• Output: vector from ℝ5

• Many options:
• Averaging
• Convolutional net
• Recurrent neural net
• Long Short-Term Memory
• Transformer
• …

• Challenge: effective + efficient processing of long sequences
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𝑁 input 
vectors 

from ℝ!
output↦



Example: averaging

• Input: 𝑥⃗!, … , 𝑥⃗4 ∈ ℝ3

• Output: uniform average

1
𝑁
D
56!

4

𝑥⃗5

• Linear transformation of a "Bag-of-Words" representation
• Very efficient to compute; effective for some simple problems
• But ineffective for other problems because critical information is lost
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Example: attention (basic building block in transformers)

• Parameters: 𝑊7 ,𝑊8 ,𝑊9 ∈ ℝ3×3

• Input: 𝑥⃗!, … , 𝑥⃗4 ∈ ℝ3

• Output: weighted average

D
56!
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𝛼5 𝑊9
;𝑥⃗5

where
𝛼!, … , 𝛼4 = softmax 𝑊7

;𝑥⃗4 ,𝑊8
;𝑥⃗! , … , 𝑊7

;𝑥⃗4 ,𝑊8
;𝑥⃗4

• Averaging weights determined by (softmax of) inner products 
between query vector and key vectors
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"value" vectors (linear transforms of 𝑥⃗!, … , 𝑥⃗%)

"key" vectors (linear transforms of 𝑥⃗!, … , 𝑥⃗%)

"query" vector (linear transform of 𝑥⃗%)



Examples of attention patterns in GPT-2 [Vig, 2019]
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Use of language models beyond next-token prediction

• Ability to compute accurate next-token predictions seems to involve 
interesting forms of "reasoning" (= algorithmic process)
• How do we know this? Neuroscience for LLMs [e.g., Clark et al, 2019]

• Discovered some basic "algorithms" implemented by the LLMs
(e.g., for rudimentary linguistic analysis and statistical inference)
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Head 9-6 
 

- Prepositions attend to their objects 
 

- 76.3% accuracy at the pobj relation 

Head 8-11 
 

- Noun modifiers (e.g., determiners) attend 
  to their noun 
 

- 94.3% accuracy at the det relation 

Head 8-10 
 

- Direct objects attend to their verbs 
 

- 86.8% accuracy at the dobj relation 

Head 7-6 
 

- Possessive pronouns and apostrophes 
  attend to the head of the corresponding NP 
 

- 80.5% accuracy at the poss relation 

Head 4-10 
 

- Passive auxiliary verbs attend to the 
  verb they modify 
 

- 82.5% accuracy at the auxpass relation 

Head 5-4 
 

- Coreferent mentions attend to their antecedents 
 

- 65.1% accuracy at linking the head of a  
  coreferent mention to the head of an antecedent 



Summary

• Modern language models: n-gram models with succinct neural 
network parameterizations
• Larger n à more "context" available to predict next-token
• Training: minimize sum of logarithmic losses on training data
• Why are large language models so powerful?

• Accurate next-token predictions à "reasoning"-like computations
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Course summary

• Statistical framework for ML

• Algorithmic paradigms

• Some modeling techniques
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BoostingAutodiffGradient descent

Maximum likelihood estimationNearest neighbor

Greedy algorithms Model averaging / bagging

Model selection / cross validation Calibration

Equalizing error ratesReweighting training data

IID assumption Role of test dataRisk / loss

Logistic regressionNormal linear regression model

Neural netsFeature maps KernelsLinear models

Regularization PCABest fitting subspace

Normal generative model Distance functions Trees


