COMS 4771 Fall 2025 Language models

Language models

- (Large) Language Model: probabilistic model for discrete sequences
- Originally studied by Shannon (1948) in his theory of communication

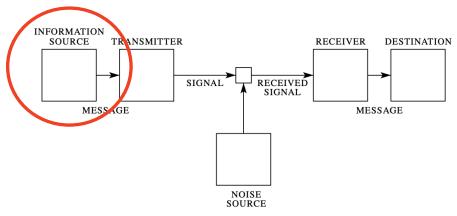


Fig. 1—Schematic diagram of a general communication system.

Probability of a sequence of tokens

- $X_{1:T} := (X_1, ..., X_T)$: T random "tokens" with joint distribution P
 - Tokens could represent letters, words, "sub-words", etc.
 - Each X_t takes value in "alphabet" (a.k.a. "vocabulary") Σ
- Next token conditional distribution:

$$P(X_T = x_T | X_{1:T-1} = x_{1:T-1}) = \frac{P(X_{1:T} = x_{1:T})}{P(X_{1:T-1} = x_{1:T-1})}$$

5

Application #1: Next-token prediction

Suppose you know joint distribution of $X_{1:T}$

- Q: What token is most likely to follow $x_{1:T-1} \in \Sigma^{T-1}$?
- A: Maximizer of next token (conditional) probability $\operatorname*{argmax}_{x \in \Sigma} P(X_T = x | X_{1:T-1} = x_{1:T-1})$
- (Just like in multi-class prediction, with $|\Sigma|$ classes)

Application #2: Sequence generation

Sample random sequence according to joint distribution of $X_{1:T}$:

- First, draw $x_1 \sim P(X_1)$ [marginal distribution of X_1]
- Then, draw $x_2 \sim P(X_2 | X_1 = x_1)$ [conditional distribution of X_2 given $X_1 = x_1$]
- Then, draw $x_3 \sim P(X_3|X_{1:2} = x_{1:2})$ [...]
- Then, draw $x_4 \sim P(X_4|X_{1:3} = x_{1:3})$ [...]
- Etc.

.

Difficulties with language models

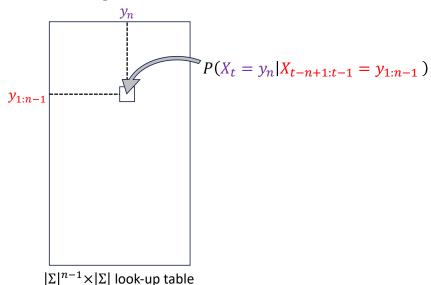
- $|\Sigma|^T$ many sequences of length T
- ullet For large T, cannot write down all of their probabilities
- Need a more succinct parameterization

Shannon's n-gram models (n=2, n=3)

- Bigram model: distributions P satisfying, for all t > 1, $P(X_t = x_t | X_{1:t-1} = x_{1:t-1}) = P(X_t = x_t | X_{t-1} = x_{t-1})$
- Parameters of bigram distribution (look-up tables):
 - $A_{x,y} := P(X_t = y | X_{t-1} = x)$ for each $x, y \in \Sigma$
 - $\pi_x := P(X_1 = x)$ for each $x \in \Sigma$
- Trigram model: distributions P satisfying, for all t > 2, $P(X_t = x_t | X_{1:t-1} = x_{1:t-1}) = P(X_t = x_t | X_{t-2:t-1} = x_{t-2:t-1})$
- Parameters of trigram distribution (look-up tables):
 - $A_{x,y,z} := P(X_t = z | X_{t-2} = x, X_{t-1} = y)$ for each $x, y, z \in \Sigma$
 - $\pi_{x,y} := P(X_1 = x, X_2 = y)$ for each $x, y \in \Sigma$

Look-up tables

• Look-up table parameter A for n-gram model



Sequence generation with bigram model

Sample random sequence with bigram model for $X_{1:T}$:

- First, draw $x_1 \sim P(X_1)$
- Then, draw $x_2 \sim P(X_2 | X_1 = x_1)$
- Then, draw $x_3 \sim P(X_3 | X_2 = x_2)$
- Then, draw $x_4 \sim P(X_4 | X_3 = x_3)$
- Etc.

Application #2: Sequence generation

Sample random sequence according to joint distribution of $X_{1:T}$:

- First, draw $x_1 \sim P(X_1)$
- [marginal distribution of X_1]
- Then, draw $x_2 \sim P(X_2 | X_1 = x_1)$ [conditional distribution of X_2 given $X_1 = x_1$]
- Then, draw $x_3 \sim P(X_3 | X_{1:2} = x_{1:2})$ [...]
- Then, draw $x_4 \sim P(X_4|X_{1:3} = x_{1:3})$ [...]
- Etc.

Fitting *n*-gram models to data

- Many ways to do this, but simplest is to use empirical frequencies
- MLE for $P(X_t = y_n | X_{t-n+1:t-1} = y_{1:n-1})$:

$$\frac{\#\operatorname{count}(y_{1:n-1}, y_n)}{\#\operatorname{count}(y_{1:n-1})}$$

#count(z) is number of occurrences of string z in training data

• Variants: regularized counts (e.g., Laplace smoothing), ...

10

Sequences generated by an *n*-gram model fit to data

Conditioning on initial tokens (a.k.a. prompt) $X_{1:28}$ = it is a truth universally ac

n=1:[...] mci w aeovmsne drsbwt elo oiwetrcao rne em ok hae lom n=2:[...] o drto t bet it s f aree h at teshas rr l hasis popor n=3:[...] es as pred cirse so tiought let of ant forrieng pled n=4:[...] common of could ell his i foung laster are plage omin n=5:[...] quaintance only can better he obliged it is the first

11

Limitations of *n*-gram model

- Only uses last *n*−1 tokens to predict next token
- Example (n = 5; $\Sigma = \text{English words}$):

as the proctor started the clock the students opened their ____

- P(books | the students opened their) > P(exams | the students opened their)
- But with the entire context, "exams" is more likely

[Example from Chris Manning's CS224n Lecture 5]

Modern methods for fitting *n*-gram models to data

- Approaches based on look-up tables are typically limited to n < 10
- Today:
 - $n = 10^6$ or more
 - Conditional probabilities

$$P(X_t = y_n | X_{t-n+1:t-1} = y_{1:n-1})$$

computed by a neural net rather than using look-up table

• Training: Fit parameters Θ of neural net by (approximately) minimizing

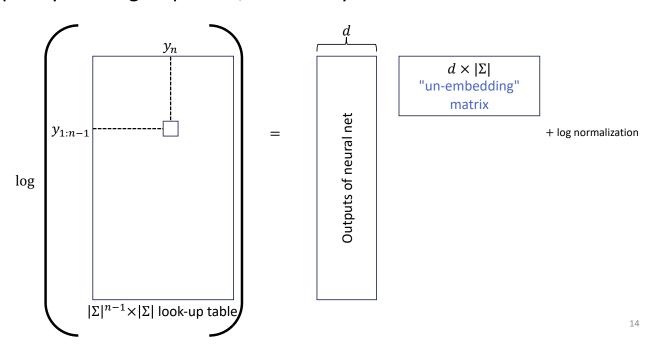
$$\sum_{t=n}^{T} -\log P_{\Theta}(X_t = x_t | X_{t-n+1:t-1} = x_{t-n+1:t-1}) \qquad \text{(Logarithmic loss)}$$

where $x_{1:T}$ is training data (e.g., all together as one long string)

13

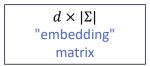
What kind of neural net? [Outputs]

Typically use large alphabet/vocabulary Σ



What kind of neural net? [Inputs]

- Neural nets typically operate on real vectors in \mathbb{R}^d
- Token embedding matrix:



- Map sequence of tokens $x_{1:n-1} \in \Sigma^{n-1}$ to sequence of vectors (looked-up from embedding matrix)
- Embedding + un-embedding matrices related to word embeddings

 (à la Latent Semantic Analysis)
 - These will also be "trained" alongside neural network parameters

15

What kind of neural net? [Internal computation]

N input vectors

from \mathbb{R}^d

- Function computed by neural net
 - Input: sequence of vectors N vectors from \mathbb{R}^d (for some $N \leq n-1$)

output

- ullet Output: vector from \mathbb{R}^d
- Many options:
 - Averaging
 - Convolutional net
 - · Recurrent neural net
 - Long Short-Term Memory
 - Transformer
 - ...
- Challenge: effective + efficient processing of long sequences

Example: averaging

- Input: $\vec{x}_1, ..., \vec{x}_N \in \mathbb{R}^d$
- Output: uniform average

$$\frac{1}{N} \sum_{i=1}^{N} \vec{x}_i$$

- Linear transformation of a "Bag-of-Words" representation
 - Very efficient to compute; effective for some simple problems
 - But ineffective for other problems because critical information is lost

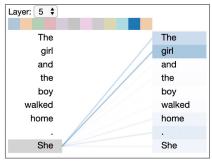
17

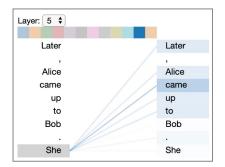
Example: attention (basic building block in transformers)

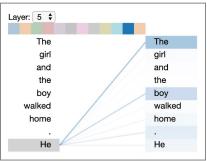
• Parameters: $W_Q, W_K, W_V \in \mathbb{R}^{d \times d}$ "value" vectors (linear transforms of $\vec{x}_1, ..., \vec{x}_N$)
• Input: $\vec{x}_1, ..., \vec{x}_N \in \mathbb{R}^d$ • Output: weighted average $\sum_{i=1}^N \alpha_i(W_V^\top \vec{x}_i) \qquad \text{"query" vector (linear transform of } \vec{x}_N)$ where $(\alpha_1, ..., \alpha_N) = \operatorname{softmax}(\langle W_Q^\top \vec{x}_N, W_K^\top \vec{x}_1 \rangle, ..., \langle W_Q^\top \vec{x}_N, W_K^\top \vec{x}_N \rangle)$

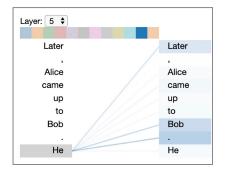
 Averaging weights determined by (softmax of) inner products between query vector and key vectors

Examples of attention patterns in GPT-2 [Vig, 2019]





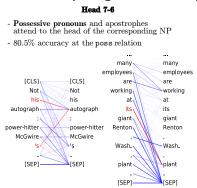


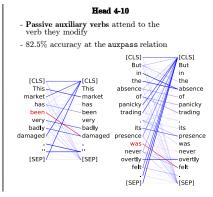


19

Use of language models beyond next-token prediction

- Ability to compute accurate next-token predictions seems to involve interesting forms of "reasoning" (= algorithmic process)
- How do we know this? Neuroscience for LLMs [e.g., Clark et al, 2019]
 - Discovered some basic "algorithms" implemented by the LLMs (e.g., for rudimentary linguistic analysis and statistical inference)





Summary

- Modern language models: *n*-gram models with succinct neural network parameterizations
- Larger $n \rightarrow$ more "context" available to predict next-token
- Training: minimize sum of logarithmic losses on training data
- Why are large language models so powerful?
 - Accurate next-token predictions → "reasoning"-like computations

Course summary Statistical framework for ML Risk / loss **IID** assumption Role of test data Model selection / cross validation Calibration Reweighting training data **Equalizing error rates** Algorithmic paradigms Nearest neighbor Maximum likelihood estimation **Greedy algorithms** Model averaging / bagging Gradient descent Autodiff Boosting Some modeling techniques Normal linear regression model Logistic regression Normal generative model Distance functions Linear models Feature maps Kernels Neural nets Regularization Best fitting subspace

24