COMS 4771 Fall 2025
Language models

Language models

* (Large) Language Model: probabilistic model for discrete sequences
* Originally studied by Shannon (1948) in his theory of communication

INFORMATION
SOURCE TRANSMITTER RECEIVER DESTINATION

. SIGNAL RECEIVED g
SIGNAL

MESSAGE MESSAGE

NOISE
SOURCE

Fig. 1 —Schematic diagram of a general communication system.

Probability of a sequence of tokens

* Xi.7 = (X4, ..., X7): T random "tokens" with joint distribution P
* Tokens could represent letters, words, "sub-words", etc.
* Each X; takes value in "alphabet" (a.k.a. "vocabulary") X

* Next token conditional distribution:
P(X11 = x1.7)
P(Xip-1 = X1.7-1)

P(Xy = xp|Xy.7—1 = X1.7-1) =

Application #1: Next-token prediction

Suppose you know joint distribution of X;.1
* Q: What token is most likely to follow x;.7_, € ZT71?

* A: Maximizer of next token (conditional) probability

argmax P(Xr = x|Xy.7_1 = x1.7-1)
XEX

* (Just like in multi-class prediction, with |Z]| classes)

Application #2: Sequence generation

Sample random sequence according to joint distribution of X;.7:

* First, draw x; ~ P(X;) [marginal distribution of X,]

* Then, draw x, ~ P(X,|X; = x{) [conditional distribution of X, given X; = x,]
* Then, draw x5 ~ P(X3]|X1., = X1.5) [.-]

* Then, draw x, ~ P(X4|X1.3 = x1.3) [..]

* Etc.

Difficulties with language models

* |2|T many sequences of length T
* For large T, cannot write down all of their probabilities
* Need a more succinct parameterization

Shannon's n-gram models (n=2, n=3)

* Bigram model: distributions P satisfying, forall t > 1,
P(Xy = x¢| X100 = x0.021) = P(Xe = x| X g = x421)
» Parameters of bigram distribution (look-up tables):
* Ay, =PX;=y|X;—y =x)foreachx,y €X
e, = P(X{ =x)foreachx € X

* Trigram model: distributions P satisfying, forall t > 2,
P(Xe = x| X000 = x0.021) = Py = x| Xm0 = Xe0621)

* Parameters of trigram distribution (look-up tables):
* Ay, =PX;=2z|X;— 5 =x,X,_1 =y)foreachx,y,z € X
* Myy = P(X; =x,X; =y)foreachx,y € X

Look-up tables

* Look-up table parameter A for n-gram model
Yn

L,
f P(X: = ynlXt—ns1:t-1 = Y1m—1)
Vin—1[~"""7

|Z|*1x|Z| look-up table

Sequence generation with bigram model

Sample random sequence with bigram model for X;.r:
* First, draw x; ~ P(X;)

* Then, draw x, ~ P(X,|X; = x,)

* Then, draw x5 ~ P(X5|X, = x,)

* Then, draw x, ~ P(X,|X5 = x3)

* Etc.

Application #2: Sequence generation

Sample random sequence according to joint distribution of X;.7:

* First, draw x; ~ P(X;) [marginal distribution of X,]

* Then, draw x, ~ P(X,|X; = x;) [conditional distribution of X, given X; = x;]
* Then, draw x3 ~ P(X5|X1.0 = X1.2) 1.1

* Then, draw x, ~ P(X4|X1.3 = X1.3) []

* Etc.

Fitting n-gram models to data

* Many ways to do this, but simplest is to use empirical frequencies
* MLE for P(X; = yul|Xi—ns1:6-1 = YVim—-1):

#eount(yy., 1, Vn)
#eount(y;.,-1)
#count(z) is number of occurrences of string z in training data

* Variants: regularized counts (e.g., Laplace smoothing), ...

10

Sequences generated by an n-gram model fit to data
Conditioning on initial tokens (a.k.a. prompt) X;.,5 =

1t 1s a truth universally ac

n=1:[..]mcl w aeovmsne drsbwt elo oiwetrcao rne em ok hae lom
n=2:[..]o drto t bet it s f aree h at teshas rr 1 hasis popor
n=3:[..] es as pred cirse so tiought let of ant forrieng pled

n=4:[..] common of could ell his 1 foung laster are plage omin
n=5:[..] quaintance only can better he obliged it is the first

11

Limitations of n-gram model

* Only uses last n-1 tokens to predict next token
* Example (n = 5; X = English words):

as the proctor started the clock the students opened their

» P(books | the students opened their) > P(exams | the students opened their)
* But with the entire context, "exams" is more likely

[Example from Chris Manning's CS224n Lecture 5]

12

Modern methods for fitting n-gram models to data

* Approaches based on look-up tables are typically limited to n < 10
* Today:

* n =10° or more

* Conditional probabilities

P(X: = YnlXt—n+1:0-1 = Y1:n-1)
computed by a neural net rather than using look-up table

* Training: Fit parameters O of neural net by (approximately) minimizing
T

Z - log P@ (Xt - Xt|Xt_n+1:t_1 - xt_n+1:t_1) (Logarithmic loss)
t=n

where x,.r is training data (e.g., all together as one long string)

13

What kind of neural net? [Outputs]

* Typically use large alphabet/vocabulary X

4 Y W o

d X |Z]
"un-embedding"
matrix

Vin-1 + log normalization

log

Outputs of neural net

\ |Z|*~1x|Z| look-up tay
14

What kind of neural net? [Inputs]

* Neural nets typically operate on real vectors in R4
* Token embedding matrix:

d X |Z]
"embedding"
matrix

 Map sequence of tokens x;.,_1; € Z™! to sequence of vectors
(looked-up from embedding matrix)

* Embedding + un-embedding matrices related to word embeddings
(a la Latent Semantic Analysis)
* These will also be "trained" alongside neural network parameters

15

What kind of neural net? [Internal computation]

* Function computed by neural net
* Input: sequence of vectors N vectors from R< (for some N < n — 1)
* Output: vector from R%

* Many options:

* Averaging N input
. vectors - _noutut
* Convolutional net from RY

Recurrent neural net
Long Short-Term Memory
* Transformer

* Challenge: effective + efficient processing of long sequences

16

Example: averaging

® Input: .7_C)1, ...,.7_C)N € Rd

* Output: uniform average

N
1.
X
i=1
* Linear transformation of a "Bag-of-Words" representation

* Very efficient to compute; effective for some simple problems

* But ineffective for other problems because critical information is lost

17

Example: attention (basic building block in transformers)

. dxd
* Parameters: WQI WK! WV €R "value" vectors (linear transforms of X4, ..., Xy)

* Input: X, ..., Xy € R

/ "key" vectors (linear transforms of X, ..., Xy)

* OQutput: weighted average)
¥

W) "query" vector (linear transform of %)
ay(Wy Xi)/ =
//L” \\ \\\

i=1 T
where R N

X A
(ay, ..., ay) = softmax({W, Xy, Wi %1), .., (W %y, W{ X))

* Averaging weights determined by (softmax of) inner products
between query vector and key vectors

18

Examples of attention patterns in GPT-2 (vig, 2019]

Layer: (5 v . Layer:| 5 ¥
The The Later Later
girl girl
and and Alice Alice
the the came came
boy boy up up
walked walked to to
home home Bob Bob
She - She She - She
Layer:| 5 % Layer: 5 %
The The Later Later
girl girl " s
and and Alice Alice
the the came came
boy boy up up
walked walked to to
home home Bob Bob
He - He He - He

Use of language models beyond next-token prediction

* Ability to compute accurate next-token predictions seems to involve
interesting forms of "reasoning" (= algorithmic process)

* How do we know this? Neuroscience for LLMSs [e.g., Clark et al, 2019]

* Discovered some basic "algorithms" implemented by the LLMs
(e.g., for rudimentary linguistic analysis and statistical inference)

Head 7-6 Head 4-10
- Possessive pronouns and apostrophes - Passive auxiliary verbs attend to the
attend to the head of the corresponding NP verb they modify
- 80.5% accuracy at the poss relation - 82.5% accuracy at the auxpass relation
tcLsi s
many- many But- / But
employees employees in in
[cLs], [CLs) are are [CLS] the (] ~the
Not, Not working working This absence [~ absence
his his at at market of of
) . has panicky panicky
autcgraph>vautograph its its been trading trading
; /i giant giant very 4 ,
power-hitter power-hitter ~ Renton Renton badly its its
McGwire - McGwire .) damaged presence presence
‘s 's Wash. Wash. . was was
" never never
T\ : ' \[SEP] overtl overtl
[SEP] —=\[SEP] plant plant fe,); felt Y
[SEP] [SEP] [SEP] \[SEP]

Summary

* Modern language models: n-gram models with succinct neural

network parameterizations

* Larger n = more "context" available to predict next-token

* Training: minimize sum of logarithmic losses on training data

* Why are large language models so powerful?
» Accurate next-token predictions = "reasoning"-like computations

Course summary

e Statistical framework for ML

* Algorithmic paradigms

* Some modeling techniques

23

Risk /loss 1ID assumption Role of test data
Model selection / cross validation Calibration

Reweighting training data Equalizing error rates

Nearest neighbor Maximum likelihood estimation
Greedy algorithms Model averaging / bagging

Gradient descent Autodiff Boosting

Normal linear regression model Logistic regression
Normal generative model Distance functions Trees
Linear models Feature maps Kernels Neural nets

Regularization Best fitting subspace PCA

24

