Linear regression

COMS 4771 Fall 2025

Dartmouth student dataset



Dataset of 750 Dartmouth students’ (first-year) college GPA'

college GPA

Mean 2.47
Standard deviation 0.75

1
https://chance.dartmouth.edu/course/Syllabi/Princeton96/ETSValidation.html

Dartmouth dataset also has high school GPA of each student
Question: Is high school GPA predictive of college GPA?
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Possible “global” modeling assumption:

» Increase in high school GPA by A should give an increase in (expected) college
GPA by oc A

» In other words,
E[college GPA | high school GPA]

is function of high school GPA
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Least squares linear regression



f: R — R is linear if it is of the form

f(x) =mz+0b

for some parameters m,b € R
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Problem: given a dataset 8 from R x R, find (parameters of) a linear function
f(x) = max + b of minimal sum of squared errors (SSE)

sse[m, b] = Z (mz +b—y)?

(z,y)€S

Method of solution is called ordinary least squares (OLS)
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Minimizers of SSE must be zeros of the two partial derivative functions:

0

ajjj[m,b]zQ Z (mx+b—y)r =0
(x,y)€S

0

;Ze[m,b]:2 Z (mz+b—y)=0
(z,y)€8

Two linear equations in two unknowns

Together, the equations are called the normal equations

Equivalent form:

avg(z)m + avg(zx)b = avg(xy)
avg(r)m + b = avg(y)

where
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Solution to normal equations:

_ avg(zy) — avg(z) - avg(y)

avg(z?) — avg(r)?

b= avg(y) —m - avg(w)

What if avg(z?) = avg(z)??

For Dartmouth dataset:
m = 0.751, b= 0.067

RMSE:

1
s sse|m, b; 8] = 0.629

(Recall standard deviation of college GPA is 0.75)

(Shouldn’t we be using a test set?)
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Bivariate linear regression



Dartmouth dataset also includes SAT verbal percentiles
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Linear function of two variables z; and xs:

f(x1,x9) = myxy + moxs + b

Problem: given a dataset 8 from R? x R, find (parameters of) a linear function
f(x1,z9) = mixy + maexs + b of minimal sum of squared errors

sse[m, b; 8] = Z (myzy + maty + b —y)°

(371 ;any)ES
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Normal equations: three linear equations in three unknowns (my, ms, b)

avg(z?) avg(rixe) avg(xy)| [ma avg(z1y)
avg(zomy) avg(zd) avg(wa)| |me| = |avg(zay)
avg(ry) avg(rs) 1 b avg(y)

Solve using elimination algorithm

Dartmouth dataset: x; = high school GPA, x5 = SAT verbal percentile
my = 0.611, my =0.024, b= —0.639

RMSE:

1
\/§| sse[my, ma, b; 8] = 0.603

(Recall standard deviation of college GPA is 0.75)
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data
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m, X (high school GPA) + m> X (SAT verbal percentile)
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Linear algebra of ordinary least squares

(Homogeneous) linear function of d variables © = (x1,...,x4) is parameterize by
d-dimensional weight vector w = (wy, ..., wy):

fo(lz) =w"z

To handle inhomogeneous linear functions (i.e., affine functions), append an extra
“always 1" feature: x4, =1
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Problem: given a dataset § from R? x R, find w € R? of minimal sum of squared

errors
sse{w; 8] = Z (w'z — y)?

(z,y)€S

Method of solution: OLS

18/35

Matrix notation: let 8§ = ((z(, y®))™_,, and put

<— (a’;(l))T —> y(l)
A= : , b=
SO
w W wTz® — M)
Aw = ; , Aw—0b= :
w ™ w ™ — ¢
Therefore
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Aw € CS(A) for every w € R?
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How many ways to write b as a linear
combination of the columns of A?
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Normal equations in matrix notation
Key fact: CS(A) and NS(A") are orthogonal complements
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Summary:

» Normal equations: (ATA)w = A

» If rank(A) = d, then solution is unique

» Else, infinitely-many solutions

» Common choice for tie-breaking: minimum norm solution

arg min ||w|| s.t. (ATA)w = ATb

weR4
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def learn(train_x, train_y):
return np.linalg.pinv(train_x) .dot(train_y)

def predict(params, test_x):
return test_x.dot(params)
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Statistical view of ordinary least squares



Normal linear regression model: Conditional distribution of Y given X = x is

N(w'z,o?)

» w and o? are parameters of the model
» In this model, best possible MSE is o2
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MLE in normal linear regression model
» Likelihood of w and o2

» Log-likelihood:
In L(w, 0?) = _ b Z (y —w'z)? — B8l In(2mo?)
’ 202 2

(z,y)€S

» In terms of w, maximizing log-likelihood is same as minimizing SSE!
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Statistical inference (example)
» Suppose you fit linear regression model to data, and find that w # (0,...,0)

How confident are you in this finding?
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Another statistical view of ordinary least squares



Normal equations
ATAw = A"b

can be regarded as “sample” version of population normal equations

E[X X"w = E[XY]

Equivalently:
E[(Y — XTw)X] =0

Suppose | tell you | have predictor f: R? — R such that
ElY — f(X)] =0

Are you impressed?
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Suppose | tell you | have predictor f: R? — R such that
E[Y — f(X) | X]=0

Are you impressed? (Is it believable?)
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Suppose | tell you | have predictor f: R? — R such that
E[(Y — f(X))X] =0

Are you impressed? (ls this interesting?)
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Example: Suppose = = (z1,...,124) € {0,1}%, where

xr1 = 1{student is male}
ro = 1{student is female}

(/L‘3:...

Then
E[Y — f(X))X;] =0

Is the same as
E)Y | X; = 1] = E[f(X) | X; = 1]

as long as Pr(X; =1) > 0
(Much more useful than E[Y] = E[f(X)])
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Generalization



» Suppose S LR (X,Y)

» OLS gives minimizer of empirical risk (for square loss, among linear functions)

—— 1
RlSk[w] = — Z lOSSSq('LUTCE,y)
n

(z,y)€S
But we may actually care about the (true) risk
Risk[w] = E[losssq(w' X, Y)]

» Is empirical risk a good estimate of (true) risk?
» Usually only if |§| is sufficiently large

Extreme example: d =1, |§]| = 2, @{[w] =0
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Example extends to higher dimension d with [8§| =d + 1
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What does a linear regression model (say, fit using OLS) “memorize”?
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