Equalized conditional error rates vs marginal calibration

Daniel Hsu

November 12, 2025

Consider jointly-distributed $\{0,1\}$ -valued random variables (A,Y,\hat{Y}) . Here, \hat{Y} is regarded as a prediction of Y. For each $a \in \{0,1\}$, define

• false positive rate for group a:

$$FPR_a := Pr(\hat{Y} = 1 \mid Y = 0, A = a);$$

• false negative rate for group a:

$$FNR_a := Pr(\hat{Y} = 0 | Y = 1, A = a);$$

• base positive rate for group a:

$$BPR_a := Pr(Y = 1 \mid A = a);$$

and we say \hat{Y} is marginally calibrated for group a if

$$\Pr(\hat{Y} = 1 \mid A = a) = BPR_a.$$

Theorem 1 (Chouldechova; Kleinberg-Mullainathan-Raghavan). Unless

$$BPR_0 = BPR_1$$
 or $FPR_0 = FPR_1 = FNR_0 = FNR_1 = 0$,

it is impossible for all of the following to simultaneously hold:

- 1. $FPR_0 = FPR_1$;
- 2. $FNR_0 = FNR_1$;
- 3. \hat{Y} is marginally calibrated for group a, for each $a \in \{0, 1\}$.

Proof. Assume that $FPR_0 = FPR_1$, $FNR_0 = FNR_1$, and that \hat{Y} is marginally calibrated for each group $a \in \{0, 1\}$. We need to show that either the groups have the same base positive rates, or the false positive rates and false negative rates for each group are zero.

For each $a \in \{0,1\}$, the following chain of equalities are implied by the assumptions:

$$\begin{split} \operatorname{BPR}_a &= \Pr(\hat{Y} = 1 \mid A = a) \quad (\operatorname{since} \, \hat{Y} \text{ is marginally calibrated for group } a) \\ &= \Pr(\hat{Y} = 1 \mid Y = 0, A = a) \cdot \Pr(Y = 0 \mid A = a) \\ &\quad + \Pr(\hat{Y} = 1 \mid Y = 1, A = a) \cdot \Pr(Y = 1 \mid A = a) \\ &= \operatorname{FPR}_a \cdot (1 - \operatorname{BPR}_a) + (1 - \operatorname{FNR}_a) \cdot \operatorname{BPR}_a \\ &= \operatorname{FPR} \cdot (1 - \operatorname{BPR}_a) + (1 - \operatorname{FNR}) \cdot \operatorname{BPR}_a \quad (\operatorname{since} \, \operatorname{FPR}_0 = \operatorname{FPR}_1 \, \operatorname{and} \, \operatorname{FNR}_0 = \operatorname{FNR}_1), \end{split}$$

where FPR denotes the common value of FPR₀ and FPR₁, and FNR denotes the common value of FNR₀ and FNR₁. Simplifying the result above, we obtain the following system of equations:

$$FPR \cdot (1 - BPR_0) = FNR \cdot BPR_0$$

 $FPR \cdot (1 - BPR_1) = FNR \cdot BPR_1$.

Together, these equations imply

$$(FPR + FNR) \cdot (BPR_0 - BPR_1) = 0.$$

This means that either $BPR_0 = BPR_1$ or FPR + FNR = 0.

$$\begin{aligned} \Pr(\hat{Y} = 1 \mid Y = 0) &= \operatorname{FPR}_0 \cdot \Pr(A = 0 \mid Y = 0) + \operatorname{FPR}_1 \cdot \Pr(A = 1 \mid Y = 0) \\ &= \operatorname{FPR} \cdot \Pr(A = 0 \mid Y = 0) + \operatorname{FPR} \cdot \Pr(A = 1 \mid Y = 0) \\ &= \operatorname{FPR}, \end{aligned}$$

and similarly, $Pr(\hat{Y} = 0 \mid Y = 1) = FNR$. That is, FPR and FNR are, respectively, the false positive rate and false negative rate for the overall population.

¹Note that because $FPR_0 = FPR_1 = FPR$ and $FNR_0 = FNR_1 = FNR$, we have