
COMS 4771 Fall 2025
Boosting

Ensemble method

• Ensemble method: method for training several individual predictors
so that their combination works together as a good predictor
• Q1: How to combine the individual predictors?
• Q2: How to train the individual predictors?

2

How to combine predictors?

• Model averaging: final predictor 𝐹 is average of individual predictors
(or majority/plurality vote in the case of classifiers)
• Linear combination: treat predictors as features in linear model …
• …

3

How to train individual predictors?

• Bagging: bootstrap resampling + model averaging
• Train individual predictors using bootstrap resampling of training data
• (In principle, all predictors could be trained in parallel!)

• …

4

Boosting

• Boosting: type of ensemble method in which individual predictors are
trained sequentially (i.e., one after another)
• (Term "boosting" only really makes sense in original theoretical context)
• Training objectives for predictors will not all be the same!
• Objective for 𝑡th predictor will depend on previous 𝑡 − 1 predictors

• Typically combined in (weighted) majority vote or linear combination

5

Many different "boosting" methods

• Learn(𝜖,𝛿,EX)
• Boost-by-Majority
• AdaBoost
• LogitBoost
• MadaBoost
• RankBoost
• MM Boosting
• SmoothBoost
• BrownBoost

• SMartiBoost
• Gradient Boosting
• Stochastic Gradient TreeBoost
• DOOM II
• L2Boost
• Regularized Greedy Forest
• LightGBM
• XGBoost
• …

6

AdaBoost

7

AdaBoost ("Adaptive Boosting") [Freund & Schapire, 1997]

• Training data [binary classification]: 𝒮 ≔ ((𝑥 ! , 𝑦 !))!"#$ from 𝒳× ±1
• Initial "example weights": 𝐷# 𝑖 = 1/𝑛 for each 𝑖 ∈ {1, … , 𝑛}
• For 𝑡 = 1,… , 𝑇:

• Run "base learner" on 𝐷!-weighted training data 𝒮 to get ℎ!: 𝒳 → ±1
• Update example weights:

𝑧! ≔+
"#$

%

𝐷! 𝑖 	𝑦 " ℎ! 𝑥 " , 𝛼! ≔
1
2 ln

1 + 𝑧!
1 − 𝑧!

𝐷!&$ 𝑖 ∝ 𝐷! 𝑖 exp −𝛼!	𝑦 " ℎ! 𝑥 "

• Final classifier:

𝐻9inal 𝑥 ≔ sign @
%"#

&

𝛼%	ℎ% 𝑥

8

Base learner in AdaBoost

• Base learner: learning algorithm used inside boosting algorithm
• (Also called "weak learner" in original theoretical context)

• In AdaBoost: in iteration 𝑡, base learner is provided training data 𝒮
along with "example weights" 𝐷!
• Assume base learner accounts for example weights in selecting classifier
• E.g., choose linear classifier based on weight vector 𝑤 to (try to) minimize

%
!"#

$

𝐷% 𝑖 	loss 𝑤&𝑥 ! , 𝑦(!)

• E.g., use greedy algorithm to construct decision tree ℎ𝒯 to (try to) minimize

%
!"#

$

𝐷% 𝑖 	𝕀 ℎ𝒯 𝑥(!) ≠ 𝑦(!)

9

AdaBoost example weights
• How example weights are updated after getting
ℎ% from base learner:

𝑧% ≔@
!"#

$

𝐷% 𝑖 	𝑦 ! ℎ% 𝑥 !

𝛼% ≔
1
2
ln
1 + 𝑧%
1 − 𝑧%

𝐷%'# 𝑖 ∝ 𝐷% 𝑖 exp −𝛼%	𝑦 ! ℎ% 𝑥 !

• Updated weights encourage base learner (in
next iteration) to focus on training examples
where ℎ% makes mistakes

10

𝐷!-weighted "correlation" between
predictions of ℎ! and true labels

°1.0 °0.5 0.0 0.5 1.0
z

°3

°2

°1

0

1

2

3

Æ

Sample run of AdaBoost

• Base learner:
• Choose feature 𝑗 ∈ 1,… , 𝑑 	and threshold 𝜃 ∈ ℝ such that "decision stump"

𝑥 ↦ sign 𝑥, − 𝜃 	 or	 𝑥 ↦ sign −𝑥, − 𝜃
minimizes weighted training error rate

11

+

+

–

–

+

+

–

–

+

+

–

–

ℎ" ℎ# ℎ$

Final classifier from sample run of AdaBoost

• Final classifier:
• Weighted majority vote of individual classifiers ℎ#, ℎ-, ℎ.
• Classifier weight 𝛼% based on 𝐷%-weighted correlation 𝑧% between ℎ%'s

predictions and labels

12

=

𝐻1inal

+

+

–

–

ℎ" ℎ# ℎ$

𝛼" +	𝛼# +	𝛼$sign ()

Some surprising behavior of AdaBoost (circa 1997)

• AdaBoost + "C4.5 tree learner" as base learner on "letters" dataset

13

16 1 Introduction and Overview

10 100 1000
0

5

10

15

20

Figure 1.7
The training and test percent error rates obtained using boosting on an OCR dataset with C4.5 as the base learner.
The top and bottom curves are test and training error, respectively. The top horizontal line shows the test error rate
using just C4.5. The bottom line shows the final test error rate of AdaBoost after 1000 rounds. (Reprinted with
permission of the Institute of Mathematical Statistics.)

This pronounced lack of overfitting seems to flatly contradict our earlier intuition that sim-
pler is better. Surely, a combination of five trees is much, much simpler than a combination
of 1000 trees (about 200 times simpler, in terms of raw size), and both perform equally
well on the training set (perfectly, in fact). So how can it be that the far larger and more
complex combined classifier performs so much better on the test set? This would appear to
be a paradox.

One superficially plausible explanation is that the αt ’s are converging rapidly to zero,
so that the number of base classifiers being combined is effectively bounded. However, as
noted above, the ϵt ’s remain around 5–6% in this case, well below 1

2 , which means that the
weights αt on the individual base classifiers are also bounded well above zero, so that the
combined classifier is constantly growing and evolving with each round of boosting.

Such resistance to overfitting is typical of boosting, although, as we have seen in sec-
tion 1.2.3, boosting certainly can overfit. This resistance is one of the properties that make
it such an attractive learning algorithm. But how can we understand this behavior?

In chapter 5, we present a theoretical explanation of how, why, and whenAdaBoost works
and, in particular, of why it often does not overfit. Briefly, the main idea is the following.
The description above of AdaBoost’s performance on the training set took into account
only the training error, which is already zero after just five rounds. However, training error
tells only part of the story, in that it reports just the number of examples that are correctly
or incorrectly classified. Instead, to understand AdaBoost, we also need to consider how
confident the predictions being made by the algorithm are. We will see that such confidence
can be measured by a quantity called the margin. According to this explanation, although
the training error—that is, whether or not the predictions are correct—is not changing

AdaBoost training error

AdaBoost test error

C4.5 test error

AdaBoost margins [Schapire, Freund, Bartlett, Lee, 1997]

• Margin of 𝐻(inal on example 𝑥, 𝑦 ∈ 𝒳× ±1 :

𝑦∑!"#$ 𝛼! 	ℎ!(𝑥)
∑!"#$ 𝛼!

∈ −1,1

• AdaBoost tries to increase margin on training examples
• On "letters" dataset:

14

T=5 T=100 T=1000

Training error rate 0.0% 0.0% 0.0%

Test error rate 8.4% 3.3% 3.1%

% margins ≤ 0.5 7.7% 0.0% 0.0%

Minimum margin 0.14 0.52 0.55

How is it possible to achieve large minimum margins?

• AdaBoost chooses distributions 𝐷% over training examples in each iteration

• Assume base learner always choose ℎ% from (possibly huge) collection ℋ

• Suppose there is positive number 𝛾 such that, for any distribution 𝐷 over
training examples, it is always possible to find ℎ ∈ ℋ with

@
!"#

$

𝐷 𝑖 	𝑦(!)ℎ 𝑥(!) ≥ 𝛾

• Then, there must exist a distribution 𝑄 over ℋ such that

min
!∈ #,…,$

@
-∈ℋ

𝑄 ℎ 	𝑦(!)ℎ 𝑥(!) ≥ 𝛾

15

Key idea: AdaBoost efficiently solves a zero-sum game

• Zero-sum game between "min" (AdaBoost) and "max" (base learner)
• First, "min" chooses distribution 𝐷 over {1, … , 𝑛}
• Then, "max" chooses distribution 𝑄 over ℋ
• Payoff (= how much "max" wins = how much "min" loses):

𝔼 !,< ∼>⊗@ 𝑀(𝑖, ℎ)
where

𝑀 𝑖, ℎ ≔ 𝑦 ! 	ℎ 𝑥 ! ∈ −1,1

• Assumption is that
min
%
max
&

𝔼 ',) ∼%⊗& 𝑀(𝑖, ℎ) ≥ 𝛾

• Von Neumann min-max theorem says this is equivalent to
max
&

min
%
𝔼 ',) ∼%⊗& 𝑀(𝑖, ℎ) ≥ 𝛾

16

Always achieved by 𝑄 that
puts all weight on single ℎ

Always achieved by 𝐷 that
puts all weight on single 𝑖

Face detection with AdaBoost

17

Face detection

• Problem: given an image, locate all faces in it

• As classification problem:
• Divide image into many "patches" of varying sizes (e.g., 24x24, 48x48)
• Predict whether a given patch 𝑥 contains a face (binary classification)

• Main challenge: make this fast

18

Face detection using AdaBoost

• Major achievement by Viola & Jones (2001): Real-time face detector
• Regard image patch (𝑑	×	𝑑 grayscale image) as vector in 0,1 ,!

• Use AdaBoost with base learner that returns linear classifiers

ℎ 𝑥⃗ = sign 𝑤, 𝑥⃗ + 𝑏

where 𝑤 is specified by a simple pattern such that:

19

𝑤, 𝑥⃗ = sum of pixel values in black box
− sum of pixel values in white box

Other examples of Viola & Jones base learner classifiers

20

𝑤, 𝑥⃗ = sum of pixel values in black box
− sum of pixel values in white box

144 Viola and Jones

Figure 5. The first and second features selected by AdaBoost. The
two features are shown in the top row and then overlayed on a typ-
ical training face in the bottom row. The first feature measures the
difference in intensity between the region of the eyes and a region
across the upper cheeks. The feature capitalizes on the observation
that the eye region is often darker than the cheeks. The second feature
compares the intensities in the eye regions to the intensity across the
bridge of the nose.

features to the classifier, directly increases computation
time.

4. The Attentional Cascade

This section describes an algorithm for constructing a
cascade of classifiers which achieves increased detec-
tion performance while radically reducing computation
time. The key insight is that smaller, and therefore more
efficient, boosted classifiers can be constructed which
reject many of the negative sub-windows while detect-
ing almost all positive instances. Simpler classifiers are
used to reject the majority of sub-windows before more
complex classifiers are called upon to achieve low false
positive rates.

Stages in the cascade are constructed by training
classifiers using AdaBoost. Starting with a two-feature
strong classifier, an effective face filter can be obtained
by adjusting the strong classifier threshold to mini-
mize false negatives. The initial AdaBoost threshold,
1
2

∑T
t=1 αt , is designed to yield a low error rate on the

training data. A lower threshold yields higher detec-
tion rates and higher false positive rates. Based on per-
formance measured using a validation training set, the
two-feature classifier can be adjusted to detect 100% of
the faces with a false positive rate of 50%. See Fig. 5 for
a description of the two features used in this classifier.

The detection performance of the two-feature clas-
sifier is far from acceptable as a face detection system.
Nevertheless the classifier can significantly reduce the

number of sub-windows that need further processing
with very few operations:

1. Evaluate the rectangle features (requires between 6
and 9 array references per feature).

2. Compute the weak classifier for each feature (re-
quires one threshold operation per feature).

3. Combine the weak classifiers (requires one multiply
per feature, an addition, and finally a threshold).

A two feature classifier amounts to about 60 mi-
croprocessor instructions. It seems hard to imagine
that any simpler filter could achieve higher rejection
rates. By comparison, scanning a simple image tem-
plate would require at least 20 times as many operations
per sub-window.

The overall form of the detection process is that of
a degenerate decision tree, what we call a “cascade”
(Quinlan, 1986) (see Fig. 6). A positive result from
the first classifier triggers the evaluation of a second
classifier which has also been adjusted to achieve very
high detection rates. A positive result from the second
classifier triggers a third classifier, and so on. A negative
outcome at any point leads to the immediate rejection
of the sub-window.

The structure of the cascade reflects the fact that
within any single image an overwhelming majority of
sub-windows are negative. As such, the cascade at-
tempts to reject as many negatives as possible at the
earliest stage possible. While a positive instance will

Figure 6. Schematic depiction of a the detection cascade. A series
of classifiers are applied to every sub-window. The initial classifier
eliminates a large number of negative examples with very little pro-
cessing. Subsequent layers eliminate additional negatives but require
additional computation. After several stages of processing the num-
ber of sub-windows have been reduced radically. Further processing
can take any form such as additional stages of the cascade (as in our
detection system) or an alternative detection system.

Viola & Jones integral image trick

• Fast computation of ⟨𝑤, 𝑥⃗⟩:
• For every image, compute 𝑑	×	𝑑 matrix 𝑠, where
𝑠 𝑟, 𝑐 = sum of pixel values from (0,0) to (𝑟, 𝑐)

21

(r, c)

(0, 0)

𝑥⃗

This only requires looking at a few entries of 𝑠

𝑤

𝑤, 𝑥⃗ = sum of pixel values in black box
− sum of pixel values in white box

Viola & Jones cascade architecture

• Most patches do not contain a face

• Cascade classifier (a.k.a. decision list):
• Each 𝑓(ℓ) is based on classifier 𝐹(ℓ) trained AdaBoost, but adjust "threshold"

(inside sign(⋅)) to minimize False Negative Rate (where +1 = "face")
• Can afford to have 𝑓(ℓ) at later stages be more "complex" because most

patches don't make it to the later parts of the cascade

22

f (1)(x) f (2)(x) f (3)(x)x +1 +1

�1 �1 �1

+1

�1 �1 �1

· · ·

Example results from Viola & Jones face detector

152 Viola and Jones

Figure 10. Output of our face detector on a number of test images from the MIT + CMU test set.

6. Conclusions

We have presented an approach for face detection
which minimizes computation time while achieving
high detection accuracy. The approach was used to con-
struct a face detection system which is approximately
15 times faster than any previous approach. Preliminary
experiments, which will be described elsewhere, show
that highly efficient detectors for other objects, such as
pedestrians or automobiles, can also be constructed in
this way.

This paper brings together new algorithms, represen-
tations, and insights which are quite generic and may
well have broader application in computer vision and
image processing.

The first contribution is a new a technique for com-
puting a rich set of image features using the integral
image. In order to achieve true scale invariance, almost
all face detection systems must operate on multiple
image scales. The integral image, by eliminating the
need to compute a multi-scale image pyramid, reduces
the initial image processing required for face detection

23

Gradient boosting

24

Gradient descent for functions?
• Training data: ((𝑥! , 𝑦!))!"#$ from 𝒳×𝒴
• Loss function: loss(𝑠, 𝑦), assumed differentiable w.r.t. 𝑠 ∈ ℝ
• Training objective: find 𝐹:𝒳 → ℝ to minimize

𝐽 𝐹 ≔@
!"#

$

loss 𝐹 𝑥! , 𝑦!

• How about we just worry about predictions on training examples?

𝑠 = 𝑠#, … , 𝑠$ ∈ ℝ$

Y𝐽 𝑠 ≔@
!"#

$

loss 𝑠! , 𝑦!

25

Gradient descent for training data predictions?

• Gradient of N𝐽:

∇N𝐽 𝑠 ≔
𝜕loss(𝑠, 𝑦#)

𝜕𝑠
𝑠# , … ,

𝜕loss(𝑠, 𝑦-)
𝜕𝑠

𝑠-

• Can update 𝑠 ∈ ℝ- by subtracting small multiple of ∇N𝐽(𝑠)
• But this only gives predictions on training data! 😥

26

Functional gradient descent

• Work with functions defined on whole space 𝒳, not just training data
• Find function ℎ:𝒳 → ℝ such that

ℎ 𝑥' ≈ −
𝜕loss 𝑠, 𝑦'

𝜕𝑠
𝐹 𝑥'

for all 𝑖 ∈ 1, … , 𝑛 (perhaps just on average)
• Common approach: train regression tree ℎ𝒯 to (try to) minimize

[
'"#

-

ℎ𝒯 𝑥' − −
𝜕loss 𝑠, 𝑦'

𝜕𝑠
𝐹 𝑥'

/

• Then update 𝐹 to 𝐹 + 𝜂	ℎ for some step size 𝜂 > 0

27

Gradient boosting [Friedman, 1999; Mason, Baxter, Bartlett, Frean, 1999]

• Training data: ((𝑥' , 𝑦-))'"#- from 𝒳×𝒴
• Initial predictor: 𝐹0 ≔ (constant	zero	function)
• For 𝑡 = 1,… , 𝑇:

• Run "base learner" to get function ℎ%: 𝒳 → ℝ to try to minimize

%
!"#

$

ℎ% 𝑥! − −
𝜕loss 𝑠, 𝑦!

𝜕𝑠
𝐹%D# 𝑥!

-

• Update function (with step size 𝜂% > 0):
𝐹% ≔ 𝐹%D# + 𝜂%	ℎ%

• Final predictor:
𝐹$ = 𝜂#	ℎ# +⋯+ 𝜂$ 	ℎ$

28

Example instantiation with squared loss function

• (Half) squared error:

loss 𝑠, 𝑦 =
1
2
𝑠 − 𝑦 /

−
𝜕loss 𝑠, 𝑦

𝜕𝑠
𝑠1 = 𝑦 − 𝑠′

• "Base learner" goal is to find function ℎ!: 𝒳 → ℝ to (try to) minimize

[
'"#

-

ℎ! 𝑥' − 𝑦' − 𝐹!2#(𝑥')
/

• So want ℎ! to predict residuals 𝑦' − 𝐹!2# 𝑥'
29

Synthetic example [Natekin & Knoll, 2013, tutorial on gradient boosting]

• Base learner: returns decision stumps ℎ!
• Fit to "sinc" data after 𝑡 ∈ {1, 10, 50, 100} iterations

30

Hopes and fears with gradient boosting
• Ideal case: "base learner" finds ℎ% such that

ℎ% 𝑥 = −
𝜕loss 𝑠, 𝑦

𝜕𝑠 𝐹%/# 𝑥

for all 𝑥 ∈ 𝒳, where 𝑦 is correct label of 𝑥
• Note: we don't have label 𝑦 for 𝑥 that's not in training data
• We hope that because ℎ! fits well on training data, it also fits well elsewhere!

• Bad case: "base learner" finds ℎ% such that for all 𝑖 ∈ {1, … , 𝑛}

ℎ% 𝑥! = −
𝜕loss 𝑠, 𝑦!

𝜕𝑠 𝐹%/# 𝑥!
and for all 𝑥 ∉ 𝑥#, … , 𝑥$,

ℎ% 𝑥 = (arbitrary	random	number)

31

Comparison to neural networks

• Two-layer neural network: for 𝑥⃗ ∈ ℝ,

𝐹 𝑥⃗ =[
'"#

3

𝛼' 	𝜎 ⟨𝑤' , 𝑥⃗⟩

• Ensemble predictor from boosting: for 𝑥 ∈ 𝒳

𝐹 𝑥 =[
!"#

$

𝜂! 	ℎ!(𝑥)

32

Other issues and variants

• Step size: common to set 𝜂! as small number, though use of smaller
𝜂! usually requires more iterations (and hence larger ensemble)
• AdaBoost: special case with loss 𝑠, 𝑦 = 𝑒245 for 𝑦 ∈ −1,1 ,
ℎ!: 𝒳 → −1,1 , and adaptively chosen 𝜂!
• Stochastic Gradient Boosting: use random sample of training data in

each iteration (akin to minibatch SGD)
• XGBoost: functional version of Newton's method with regression tree

learner as base learner (+ many tricks for base learner)
• …

33

