COMS 4771 Fall 2025
Boosting

Ensemble method

* Ensemble method: method for training several individual predictors
so that their combination works together as a good predictor

* Q1: How to combine the individual predictors?

* Q2: How to train the individual predictors?

How to combine predictors?

* Model averaging: final predictor F is average of individual predictors
(or majority/plurality vote in the case of classifiers)

* Linear combination: treat predictors as features in linear model ...

How to train individual predictors?

e Bagging: bootstrap resampling + model averaging
* Train individual predictors using bootstrap resampling of training data
* (In principle, all predictors could be trained in parallel!)

Boosting

* Boosting: type of ensemble method in which individual predictors are
trained sequentially (i.e., one after another)
* (Term "boosting" only really makes sense in original theoretical context)
 Training objectives for predictors will not all be the same!
* Objective for tt predictor will depend on previous t — 1 predictors

* Typically combined in (weighted) majority vote or linear combination

Many different "boosting" methods

e Learn(e, 6, £X) * SMartiBoost

* Boost-by-Majority * Gradient Boosting

* AdaBoost * Stochastic Gradient TreeBoost
* LogitBoost * DOOM Il

* MadaBoost * L2Boost

* RankBoost * Regularized Greedy Forest

* MM Boosting * LightGBM

* SmoothBoost * XGBoost

* BrownBoost

AdaBoost

AdaBoost ("Adaptive Boosting") [Freund & Schapire, 1997]

« Training data [binary classification]: S :== ((x®, y®)N from X x{+1}
* Initial "example weights": D; (i) = 1/nforeachi € {1, ...,n}
*Fort=1,..,T:

* Run "base learner" on D,-weighted training data § to get hy: X — {+1}

* Update example wer;ghts:

. . 1 14z
2=) DD yOh(x®), ap =zl
i=1

Dt+1(i5 & Dt(l) exp (—at y(l)ht(x(l)))

* Final classifier: T
Hfjna) () = sign (Z @ e (x))

t=1

1_Zt

Base learner in AdaBoost

* Base learner: learning algorithm used inside boosting algorithm
* (Also called "weak learner" in original theoretical context)

* In AdaBoost: in iteration t, base learner is provided training data §
along with "example weights" D;
e Assume base learner accounts for example weights in selecting classifier
* E.g., choose linear cIa%sifier based on weight vector w to (try to) minimize

Z D;(i) loss(wTx®, y®)
i=1
* E.g., use greedy aIgorTi:chm to construct decision tree hs to (try to) minimize

> D 1(hr (x®) # y©)
i=1

AdaBoost example weights

* How example weights are updated after getting [eighted "correlation” between
h; from base learner:

predictions of h; and true labels

2_
1_
. 11 1+ 2z .
TN T, N
Dt 41 (1) « D¢ (i) exp (_“t y(i)ht(x(i))) —27
* Updated weights encourage base learner (in -3 - -
—-1.0 -0.5 0.0 0.5 1.0

next iteration) to focus on training examples
where h; makes mistakes

10

Sample run of AdaBoost

* Base learner:

Final classifier from sample run of AdaBoost

minimizes weighted training error rate

+

+

* Final classifier:

sign

predictions and labels

a; +

4

+ aj

+
‘|‘_|_O

&}

(©]

* Weighted majority vote of individual classifiers hq, h,, h3
* Classifier weight a; based on D;-weighted correlation z; between h;'s

* Choose feature j € {1, ...,d} and threshold 8 € R such that "decision stump"
X P sign(xj — 9) or x & sign(—xj — 9)

|

I
+ 4 -

Some surprising behavior of AdaBoost (circa 1997)

* AdaBoost + "C4.5 tree learner" as base learner on "letters" dataset

20 |
15 /\ C4.5 test error
10
AdaBoost test error
5 L
0 | ‘\édaBoost training error

10 100 1000
AdaBoost margins [Schapire, Freund, Bartlett, Lee, 1997]
* Margin of Hg 41 on example (x,y) € X x{x1}:
yz’{:l at ht(x)

T
* AdaBoost tries to increase margin on training examples

€ [—1,1]

* On "letters" dataset:

Training error rate 0.0% 0.0% 0.0%
Test error rate 8.4% 3.3% 3.1%
% margins < 0.5 7.7% 0.0% 0.0%

Minimum margin 0.14 0.52 0.55

14

How is it possible to achieve large minimum margins?

* AdaBoost chooses distributions D; over training examples in each iteration
* Assume base learner always choose h; from (possibly huge) collection H

» Suppose there is positive number y such that, for any distribution D over
training examples, it is always possible to find h € H with

n
Z D) yOhr(x®) =y
i=1
* Then, there must exist a distribution Q over H such that

i) (0)
i D 0RO 2
heH

15

Key idea: AdaBoost efficiently solves a zero-sum game

e Zero-sum game between "min" (AdaBoost) and "max" (base learner)
* First, "min" chooses distribution D over {1, ..., n}
* Then, "max" chooses distribution Q over H

* Payoff (= how much "max" wins = how much "min" loses):
E i n~poolM(i, h)]

where
Always achieved by Q that

puts all weight on single h

M, h) = y®D h(x®D) € {-1,1}

Always achieved by D that
puts all weight on single i

16

Face detection with AdaBoost

17

Face detection

* Problem: given an image, locate all faces in it

* As classification problem:
* Divide image into many "patches" of varying sizes (e.g., 24x24, 48x48)
* Predict whether a given patch x contains a face (binary classification)

* Main challenge: make this fast

18

Face detection using AdaBoost

* Major achievement by Viola & Jones (2001): Real-time face detector
* Regard image patch (d X d grayscale image) as vector in [O,l]d2
* Use AdaBoost with base learner that returns linear classifiers

h(x) = sign({w, x) + b)

where w is specified by a simple pattern such that:

(w, X) = sum of pixel values in black box
I — sum of pixel values in white box

19

Other examples of Viola & Jones base learner classifiers

(W, X) = sum of pixel values in black box
— sum of pixel values in white box

20

Viola & Jones integral image trick

* Fast computation of (w, x):

* For every image, compute d X d matrix s, where
s(r,c) = sum of pixel values from (0,0) to (7, c¢)

!

(0,0)

r,c)

X

(w, X) = sum of pixel values in black box
— sum of pixel values in white box

This only requires looking at a few entries of s

Viola & Jones cascade architecture

* Most patches do not contain a face

 Cascade classifier (a.k.a. decision list):

* Each f(’?) is based on classifier F®) trained AdaBoost, but adjust "threshold"
(inside sign(-)) to minimize False Negative Rate (where +1 = "face")

21

* Can afford to have f({)) at later stages be more "complex" because most

patches don't make it to the later parts of the cascade

+1

5

f

+1

T —» f(l)(x) —
1

<

@)(z) >
—1

f

»»@

) (a)
—1

5

22

Example results from Viola & Jones face detector

Gradient boosting

23

24

Gradient descent for functions?

* Training data: ((x;, y;))i=; from XXY
* Loss function: loss(s,y), assumed differentiable w.r.t. s € R
* Training objective: find F: X’ = R to minimize

n
J(F) = z loss(F(x;), y;)
* How about we just worry about predictions on training examples?

§ = (Sll . STL) e R"

n
= z loss(s;, yi)
i=1

Gradient descent for training data predictions?
* Gradient of J:
VI (§) =

dloss(s, yl)() dloss(s, yn)()
s S1)) ey Js Sn

« Can update § € R™ by subtracting small multiple of VJ(5)
* But this only gives predictions on training data! &

Functional gradient descent

* Work with functions defined on whole space X, not just training data

* Find function h: X’ —» R such that

B ~ — aloss(s y;) (x l))

foralli € {1, ...,n} (perhaps just on average)

e Common approach: train regression tree hs to (try to) rzninimize
n

0l
z h:r(xi)—<— OSS(S i) ((z)))

i=1

e Then update F to F + n h for some step sizen > 0

Gradient boosting [Friedman, 1999; Mason, Baxter, Bartlett, Frean, 1999]

* Training data: ((x;, V,)iz from X' XY
* Initial predictor: F;, := (constant zero function)

Fort=1,..,T:
* Run "base learner" to get function h;: X’ = R to try to mzinimize

- al l
> (Mxl-) - (—L(”(e J)))

i=1
» Update function (with step size n; > 0):
Fo:=Fe1+nhy
* Final predictor:
Fr=nyhy+-+n7hy

Example instantiation with squared loss function

* (Half) squared error:

1 2
loss(s,y) = > (s—v)

aloss(s,y)(= ,
s s)y=y-—s

* "Base learner" goal is to find function h;: X’ = R to (try to) minimize

N (G = O = Feos)’
i=1

* So want h; to predict residuals y; — F,_;(x;)

29

Synthetic example [Natekin & Knoll, 2013, tutorial on gradient boosting]

* Base learner: returns decision stumps h;
* Fit to "sinc" data after t € {1, 10,50, 100} iterations

40
40

00 10 20 30
{
{
.
y
0 0 10 20 30
{L;
y
10 0 10 20 30 40
é;\
?___’4—_’—
'
y
10 0 10 20 30 40

1=y j HL‘,-/"
B
T T T T T
-4 -2 0 2 4
X

30

Hopes and fears with gradient boosting

* Ideal case: "base learner" finds h; such that

8|
he(x) = — OSS(S y)(F_1(x))

for all x € X, where y is correct label of x
* Note: we don't have label y for x that's not in training data
* We hope that because h; fits well on training data, it also fits well elsewhere!

* Bad case: "base learner" finds h; such that forall i € {1, ..., n}

ol l
he(x) = — OSS(” (Feer ()

and forall x & {xq, ..., x,,},

h:(x) = (arbitrary random number)

31

Comparison to neural networks

« Two-layer neural network: for ¥ € R%
4

F() =) a;o(#, %)
i=1
* Ensemble predictor from boosting: forx € X

FGO =) ne he(x)
t=1

32

Other issues and variants

* Step size: common to set 1; as small number, though use of smaller
1n; usually requires more iterations (and hence larger ensemble)

» AdaBoost: special case with loss(s,y) = e ™S fory € {—1,1},
hs: X — {—1,1}, and adaptively chosen 7;

* Stochastic Gradient Boosting: use random sample of training data in
each iteration (akin to minibatch SGD)

* XGBoost: functional version of Newton's method with regression tree
learner as base learner (+ many tricks for base learner)

