# COMS 4771 Fall 2025 Boosting

#### Ensemble method

- Ensemble method: method for training several individual predictors so that their combination works together as a good predictor
- Q1: How to combine the individual predictors?
- Q2: How to train the individual predictors?



# How to combine predictors?

- Model averaging: final predictor *F* is average of individual predictors (or majority/plurality vote in the case of classifiers)
- Linear combination: treat predictors as features in linear model ...

•



3

# How to train individual predictors?

- Bagging: bootstrap resampling + model averaging
  - Train individual predictors using bootstrap resampling of training data
  - (In principle, all predictors could be trained in parallel!)

• ...



4

#### Boosting

- Boosting: type of ensemble method in which individual predictors are trained sequentially (i.e., one after another)
  - (Term "boosting" only really makes sense in original theoretical context)
  - Training objectives for predictors will not all be the same!
  - ullet Objective for  $t^{ ext{th}}$  predictor will depend on previous t-1 predictors
- Typically combined in (weighted) majority vote or linear combination



5

# Many different "boosting" methods

- Learn ( $\epsilon, \delta, EX$ )
- Boost-by-Majority
- AdaBoost
- LogitBoost
- MadaBoost
- RankBoost
- MM Boosting
- SmoothBoost
- BrownBoost

- SMartiBoost
- Gradient Boosting
- Stochastic Gradient TreeBoost
- DOOM II
- L2Boost
- Regularized Greedy Forest
- LightGBM
- XGBoost
- ...

# AdaBoost

# AdaBoost ("Adaptive Boosting") [Freund & Schapire, 1997]

- Training data [binary classification]:  $\mathcal{S} \coloneqq ((x^{(i)}, y^{(i)}))_{i=1}^n$  from  $\mathcal{X} \times \{\pm 1\}$
- Initial "example weights":  $D_1(i) = 1/n$  for each  $i \in \{1, ..., n\}$
- For t = 1, ..., T:
  - Run "base learner" on  $D_t$ -weighted training data  $\mathcal S$  to get  $h_t\colon \mathcal X \to \{\pm 1\}$
  - Update example weights:

$$z_t \coloneqq \sum_{i=1}^n D_t(i) \ y^{(i)} h_t(x^{(i)}), \qquad \alpha_t \coloneqq \frac{1}{2} \ln \frac{1+z_t}{1-z_t}$$
$$D_{t+1}(i) \propto D_t(i) \exp\left(-\alpha_t \ y^{(i)} h_t(x^{(i)})\right)$$

• Final classifier:

$$H_{\text{final}}(x) \coloneqq \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \ h_t(x)\right)$$

#### Base learner in AdaBoost

- Base learner: learning algorithm used inside boosting algorithm
  - (Also called "weak learner" in original theoretical context)
- In AdaBoost: in iteration t, base learner is provided training data  $\mathcal S$  along with "example weights"  $D_t$ 
  - Assume base learner accounts for example weights in selecting classifier
  - E.g., choose linear classifier based on weight vector w to (try to) minimize

$$\sum_{i=1}^{n} D_t(i) \operatorname{loss}(w^{\mathsf{T}} x^{(i)}, y^{(i)})$$

ullet E.g., use greedy algorithm to construct decision tree  $h_{\mathcal{T}}$  to (try to) minimize

$$\sum_{i=1}^{n} D_t(i) \mathbb{I}(h_{\mathcal{T}}(x^{(i)}) \neq y^{(i)})$$

9

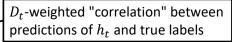
### AdaBoost example weights

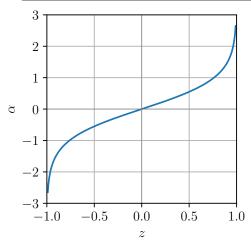
• How example weights are updated after getting  $h_t$  from base learner:

 $\underbrace{z_t \coloneqq \sum_{i=1}^n D_t(i) \ y^{(i)} h_t(x^{(i)})}_{\alpha_t \coloneqq \frac{1}{2} \ln \frac{1+z_t}{1-z_t}}$ 

$$D_{t+1}(i) \propto D_t(i) \exp\left(-\alpha_t y^{(i)} h_t(x^{(i)})\right)$$

ullet Updated weights encourage base learner (in next iteration) to focus on training examples where  $h_t$  makes mistakes

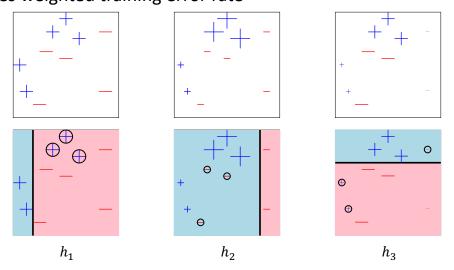




# Sample run of AdaBoost

#### • Base learner:

• Choose feature  $j \in \{1, \dots, d\}$  and threshold  $\theta \in \mathbb{R}$  such that "decision stump"  $x \mapsto \operatorname{sign}(x_j - \theta) \text{ or } x \mapsto \operatorname{sign}(-x_j - \theta)$  minimizes weighted training error rate



# Final classifier from sample run of AdaBoost

#### • Final classifier:

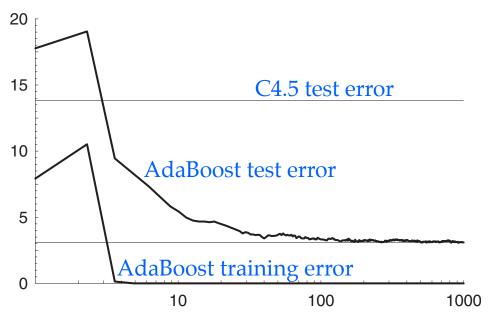
- Weighted majority vote of individual classifiers  $h_{\mathrm{1}},h_{\mathrm{2}},h_{\mathrm{3}}$
- Classifier weight  $\alpha_t$  based on  $D_t$ -weighted correlation  $z_t$  between  $h_t$ 's predictions and labels

sign 
$$\left(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_5$$

11

# Some surprising behavior of AdaBoost (circa 1997)

• AdaBoost + "C4.5 tree learner" as base learner on "letters" dataset



13

#### AdaBoost margins [Schapire, Freund, Bartlett, Lee, 1997]

• Margin of  $H_{\text{final}}$  on example  $(x, y) \in \mathcal{X} \times \{\pm 1\}$ :

$$\frac{y\sum_{t=1}^{T}\alpha_{t}\ h_{t}(x)}{\sum_{t=1}^{T}|\alpha_{t}|} \in [-1,1]$$

- AdaBoost tries to increase margin on training examples
- On "letters" dataset:

|                     | T=5  | T=100 | T=1000 |
|---------------------|------|-------|--------|
| Training error rate | 0.0% | 0.0%  | 0.0%   |
| Test error rate     | 8.4% | 3.3%  | 3.1%   |
| % margins ≤ 0.5     | 7.7% | 0.0%  | 0.0%   |
| Minimum margin      | 0.14 | 0.52  | 0.55   |

14

### How is it possible to achieve large minimum margins?

- AdaBoost chooses distributions  $D_t$  over training examples in each iteration
- Assume base learner always choose  $h_t$  from (possibly huge) collection  ${\mathcal H}$
- Suppose there is positive number  $\gamma$  such that, for any distribution D over training examples, it is always possible to find  $h \in \mathcal{H}$  with

$$\sum_{i=1}^{n} D(i) y^{(i)} h(x^{(i)}) \ge \gamma$$

ullet Then, there must exist a distribution Q over  ${\mathcal H}$  such that

$$\min_{i \in \{1,\dots,n\}} \sum_{h \in \mathcal{H}} Q(h) y^{(i)} h(x^{(i)}) \ge \gamma$$

15

### Key idea: AdaBoost efficiently solves a zero-sum game

- Zero-sum game between "min" (AdaBoost) and "max" (base learner)
  - First, "min" chooses distribution D over  $\{1, ..., n\}$
  - ullet Then, "max" chooses distribution Q over  ${\mathcal H}$
  - Payoff (= how much "max" wins = how much "min" loses):  $\mathbb{E}_{(i,h)\sim D\otimes O}[M(i,h)]$

where

$$M(i,h) \coloneqq y^{(i)} h(x^{(i)}) \in \{-1,1\}$$

Always achieved by Q that puts all weight on single h

Assumption is that

$$\min_{D} \max_{Q} \mathbb{E}_{(i,h)\sim D\otimes Q}[M(i,h)] \geq \gamma$$
 Always achieved by  $D$  that puts all weight on single  $i$ 

Von Neumann min-max theorem says this is equivalent to

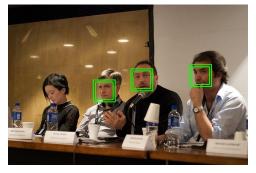
$$\max_{Q} \min_{D} \mathbb{E}_{(i,h) \sim D \otimes Q}[M(i,h)] \geq \gamma$$

# Face detection with AdaBoost

17

#### Face detection

• Problem: given an image, locate all faces in it



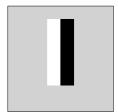
- As classification problem:
  - Divide image into many "patches" of varying sizes (e.g., 24x24, 48x48)
  - ullet Predict whether a given patch x contains a face (binary classification)
- Main challenge: make this fast

# Face detection using AdaBoost

- Major achievement by Viola & Jones (2001): Real-time face detector
- Regard image patch ( $d \times d$  grayscale image) as vector in  $[0,1]^{d^2}$
- Use AdaBoost with base learner that returns linear classifiers

$$h(\vec{x}) = \text{sign}(\langle \vec{w}, \vec{x} \rangle + b)$$

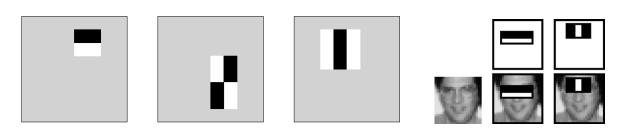
where  $\vec{w}$  is specified by a simple pattern such that:



 $\langle \vec{w}, \vec{x} \rangle$  = sum of pixel values in black box — sum of pixel values in white box

19

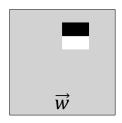
# Other examples of Viola & Jones base learner classifiers

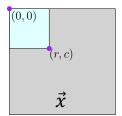


 $\langle \vec{w}, \vec{x} \rangle = \text{sum of pixel values in black box}$ - sum of pixel values in white box

# Viola & Jones integral image trick

- Fast computation of  $\langle \vec{w}, \vec{x} \rangle$ :
  - For every image, compute  $d \times d$  matrix s, where s(r,c) = sum of pixel values from (0,0) to (r,c)





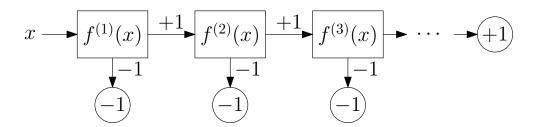
 $\langle \vec{w}, \vec{x} \rangle = \text{sum of pixel values in black box}$ - sum of pixel values in white box

This only requires looking at a few entries of s

21

#### Viola & Jones cascade architecture

- Most patches do not contain a face
- Cascade classifier (a.k.a. decision list):
  - Each  $f^{(\ell)}$  is based on classifier  $F^{(\ell)}$  trained AdaBoost, but adjust "threshold" (inside  $\mathrm{sign}(\cdot)$ ) to minimize False Negative Rate (where +1 = "face")
  - Can afford to have  $f^{(\ell)}$  at later stages be more "complex" because most patches don't make it to the later parts of the cascade



# Example results from Viola & Jones face detector













23

# Gradient boosting

#### Gradient descent for functions?

- Training data:  $((x_i, y_i))_{i=1}^n$  from  $\mathcal{X} \times \mathcal{Y}$
- Loss function: loss(s, y), assumed differentiable w.r.t.  $s \in \mathbb{R}$
- Training objective: find  $F: \mathcal{X} \to \mathbb{R}$  to minimize

$$J(F) \coloneqq \sum_{i=1}^{n} \operatorname{loss}(F(x_i), y_i)$$

How about we just worry about predictions on training examples?

$$\vec{s} = (s_1, \dots, s_n) \in \mathbb{R}^n$$

$$\tilde{J}(\vec{s}) \coloneqq \sum_{i=1}^{n} \operatorname{loss}(s_i, y_i)$$

25

# Gradient descent for training data predictions?

• Gradient of  $\tilde{I}$ :

$$\nabla \tilde{J}(\vec{s}) := \left(\frac{\partial \text{loss}(s, y_1)}{\partial s}(s_1), \dots, \frac{\partial \text{loss}(s, y_n)}{\partial s}(s_n)\right)$$

- Can update  $\vec{s} \in \mathbb{R}^n$  by subtracting small multiple of  $\nabla \tilde{J}(\vec{s})$
- But this only gives predictions on training data! 😥

# Functional gradient descent

- Work with functions defined on whole space  $\mathcal{X}$ , not just training data
- Find function  $h: \mathcal{X} \to \mathbb{R}$  such that

$$h(x_i) \approx -\frac{\partial loss(s, y_i)}{\partial s} (F(x_i))$$

for all  $i \in \{1, ..., n\}$  (perhaps just on average)

• Common approach: train regression tree  $h_{\mathcal{T}}$  to (try to) minimize

$$\sum_{i=1}^{n} \left( h_{\mathcal{T}}(x_i) - \left( -\frac{\partial loss(s, y_i)}{\partial s} (F(x_i)) \right) \right)^2$$

• Then update F to  $F+\eta h$  for some step size  $\eta>0$ 

27

# Gradient boosting [Friedman, 1999; Mason, Baxter, Bartlett, Frean, 1999]

- Training data:  $((x_i, y_n))_{i=1}^n$  from  $X \times Y$
- Initial predictor:  $F_0 := (constant zero function)$
- For t = 1, ..., T:
  - Run "base learner" to get function  $h_t : \mathcal{X} \to \mathbb{R}$  to try to minimize

$$\sum_{i=1}^{n} \left( h_t(x_i) - \left( -\frac{\partial loss(s, y_i)}{\partial s} \left( F_{t-1}(x_i) \right) \right) \right)^2$$

• Update function (with step size  $\eta_t > 0$ ):

$$F_t \coloneqq F_{t-1} + \eta_t h_t$$

• Final predictor:

$$F_T = \eta_1 \; h_1 + \dots + \eta_T \; h_T$$

# Example instantiation with squared loss function

• (Half) squared error:

$$loss(s,y) = \frac{1}{2}(s-y)^{2}$$
$$-\frac{\partial loss(s,y)}{\partial s}(s') = y - s'$$

• "Base learner" goal is to find function  $h_t\colon \mathcal{X} o \mathbb{R}$  to (try to) minimize

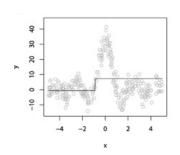
$$\sum_{i=1}^{n} (h_t(x_i) - (y_i - F_{t-1}(x_i)))^2$$

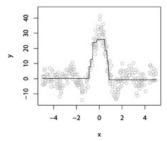
• So want  $h_t$  to predict residuals  $y_i - F_{t-1}(x_i)$ 

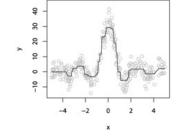
29

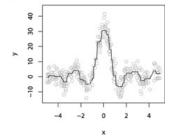
#### Synthetic example [Natekin & Knoll, 2013, tutorial on gradient boosting]

- Base learner: returns decision stumps  $h_t$
- Fit to "sinc" data after  $t \in \{1, 10, 50, 100\}$  iterations









# Hopes and fears with gradient boosting

ullet Ideal case: "base learner" finds  $h_t$  such that

$$h_t(x) = -\frac{\partial loss(s, y)}{\partial s} (F_{t-1}(x))$$

for all  $x \in \mathcal{X}$ , where y is correct label of x

- Note: we don't have label y for x that's not in training data
- We hope that because  $h_t$  fits well on training data, it also fits well elsewhere!
- Bad case: "base learner" finds  $h_t$  such that for all  $i \in \{1, ..., n\}$

$$h_t(x_i) = -\frac{\partial \mathrm{loss}(s,y_i)}{\partial s} \Big(F_{t-1}(x_i)\Big)$$
 and for all  $x \notin \{x_1,\dots,x_n\}$ ,

$$h_t(x) = (arbitrary random number)$$

31

### Comparison to neural networks

• Two-layer neural network: for  $\vec{x} \in \mathbb{R}^d$ 

$$F(\vec{x}) = \sum_{i=1}^{p} \alpha_i \, \sigma(\langle \vec{w}_i, \vec{x} \rangle)$$

• Ensemble predictor from boosting: for  $x \in \mathcal{X}$ 

$$F(x) = \sum_{t=1}^{T} \eta_t \ h_t(x)$$

#### Other issues and variants

- Step size: common to set  $\eta_t$  as small number, though use of smaller  $\eta_t$  usually requires more iterations (and hence larger ensemble)
- <u>AdaBoost</u>: special case with  $loss(s, y) = e^{-ys}$  for  $y \in \{-1,1\}$ ,  $h_t: \mathcal{X} \to \{-1,1\}$ , and adaptively chosen  $\eta_t$
- <u>Stochastic Gradient Boosting</u>: use random sample of training data in each iteration (akin to minibatch SGD)
- XGBoost: functional version of Newton's method with regression tree learner as base learner (+ many tricks for base learner)

• ...