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Primary “technical work” in implementing gradient descent method:
Derive formula and write code for gradient computation ∇J

▶ Like doing long division by hand (i.e., without electronic calculators)

▶ Fairly straightforward, but can be tedious and easy to make mistakes

Automatic differentiation (autodiff):

▶ Method for automatically computing derivatives of functions specified by
straight-line programs

▶ Originally developed by Seppo Linnainmaa in his 1970 MSc thesis

▶ Gradient of a function can be computed this way in the roughly same amount
of time it takes to compute the function itself (!)
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Example: J(w) = xTw

▶ For each j = 1, . . . , d, compute

∂J

∂wj

(w) =

▶ Time to compute function and gradient:
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Example: J(w) = g(f(w)) where f(w) = xTw and g(t) = logistic(t)

▶ For each j = 1, . . . , d, compute

∂J

∂wj

(w) =

▶ Time to compute function:

▶ Time to compute gradient: näıvely O(d2), but easy to get O(d)
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Example: tower of exponentials J(w) = exp(exp(exp(· · · exp(xw) · · · ))
(for scalar x and w)

We only want single number ( ∂J
∂w

), but function is more complicated
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▶ Time to compute tower of exponentials of height h:

▶ Time to compute derivative:
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Example: J(w) = xw sin(w) + (xw sin(w))2

(for scalar x and w)
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Write J as a straight-line program: each line declares a new variable as a function
of inputs (e.g., w), constants (e.g., x), or previously defined variables

J(w) = xw sin(w) + (xw sin(w))2

v1 := prod(x,w)

v2 := sin(w)

v3 := prod(v1, v2)

v4 := square(v3)

v5 := sum(v3, v4)

x v1 v3 v4 v5

v2w

Computation graph G = (V,E)
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All functions used in straight-line program must come with subroutines for
computing “local” partial derivative

Example:

v3 := prod(v1, v2)

∂v3
∂v1

=
∂ prod(v1, v2)

∂v1
= v2

∂v3
∂v2

=
∂ prod(v1, v2)

∂v2
= v1

7 / 11



Stage 1: Forward pass

▶ Compute value of each node given inputs in a forward pass through the G
(starting from inputs x and w)

▶ Save values at all intermediate nodes

Stage 2: Backward pass

▶ Compute partial derivative ∂v5
∂u

of output (v5) with respect to each node
variable u, evaluated at current node values

▶ Do this in reverse topological order; save intermediate results!

Chain rule:
∂v5
∂u

=
∑

(u,v)∈E

∂v5
∂v

· ∂v
∂u
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▶ Time to compute function and partial derivatives: O(|V |+ |E|)
▶ Modern numerical software facilitates construction of the straight-line program
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Setup

import torch

x = torch.Tensor([1])

w = torch.Tensor([-4.9])

w.requires_grad = True

def J(w):

v1 = x * w

v2 = torch.sin(w)

v3 = v1 * v2

v4 = torch.pow(v3, 2)

v5 = v3 + v4

return v5

Gradient descent code

for t in range(50):

objective_value = J(w)

objective_value.backward()

with torch.no_grad():

w -= 0.01 * w.grad

w.grad.zero_()
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Gradient descent on J(w), starting from w(0) = −4.9, using ηt = 0.01
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Converges to w ≈ −3.294, J(w) = −2.5, ∂J
∂w

(w) ≈ 0
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