
Automatic differentiation

COMS 4771 Fall 2025

Primary “technical work” in implementing gradient descent method:
Derive formula and write code for gradient computation ∇J

▶ Like doing long division by hand (i.e., without electronic calculators)

▶ Fairly straightforward, but can be tedious and easy to make mistakes

Automatic differentiation (autodiff):

▶ Method for automatically computing derivatives of functions specified by
straight-line programs

▶ Originally developed by Seppo Linnainmaa in his 1970 MSc thesis

▶ Gradient of a function can be computed this way in the roughly same amount
of time it takes to compute the function itself (!)

1 / 11

Example: J(w) = xTw

▶ For each j = 1, . . . , d, compute

∂J

∂wj

(w) =

▶ Time to compute function and gradient:

2 / 11

Example: J(w) = g(f(w)) where f(w) = xTw and g(t) = logistic(t)

▶ For each j = 1, . . . , d, compute

∂J

∂wj

(w) =

▶ Time to compute function:

▶ Time to compute gradient: näıvely O(d2), but easy to get O(d)

3 / 11

Example: tower of exponentials J(w) = exp(exp(exp(· · · exp(xw) · · ·))
(for scalar x and w)

We only want single number (∂J
∂w

), but function is more complicated

∂

∂w
{ee

ee
ee
exw

} = ee
ee
ee
exw

ee
ee
ee

xw

ee
ee
exw

ee
ee

xw

ee
exw

ee
xw

exwx

▶ Time to compute tower of exponentials of height h:

▶ Time to compute derivative:

4 / 11

Example: J(w) = xw sin(w) + (xw sin(w))2

(for scalar x and w)

8 6 4 2 0 2 4
w

0

20

40

60

80

J(w
)

x = 1.000
x = 1.025
x = 1.050
x = 1.075
x = 1.100

5 / 11

Write J as a straight-line program: each line declares a new variable as a function
of inputs (e.g., w), constants (e.g., x), or previously defined variables

J(w) = xw sin(w) + (xw sin(w))2

v1 := prod(x,w)

v2 := sin(w)

v3 := prod(v1, v2)

v4 := square(v3)

v5 := sum(v3, v4)

x v1 v3 v4 v5

v2w

Computation graph G = (V,E)

6 / 11

All functions used in straight-line program must come with subroutines for
computing “local” partial derivative

Example:

v3 := prod(v1, v2)

∂v3
∂v1

=
∂ prod(v1, v2)

∂v1
= v2

∂v3
∂v2

=
∂ prod(v1, v2)

∂v2
= v1

7 / 11

Stage 1: Forward pass

▶ Compute value of each node given inputs in a forward pass through the G
(starting from inputs x and w)

▶ Save values at all intermediate nodes

Stage 2: Backward pass

▶ Compute partial derivative ∂v5
∂u

of output (v5) with respect to each node
variable u, evaluated at current node values

▶ Do this in reverse topological order; save intermediate results!

Chain rule:
∂v5
∂u

=
∑

(u,v)∈E

∂v5
∂v

· ∂v
∂u

8 / 11

▶ Time to compute function and partial derivatives: O(|V |+ |E|)
▶ Modern numerical software facilitates construction of the straight-line program

v
5

(
1
)

A
d
d
B
a
c
k
w
a
r
d
0

M
u
l
B
a
c
k
w
a
r
d
0

P
o
w
B
a
c
k
w
a
r
d
0

M
u
l
B
a
c
k
w
a
r
d
0

A
c
c
u
m
u
l
a
t
e
G
r
a
d

x

(
1
)

A
c
c
u
m
u
l
a
t
e
G
r
a
d

S
i
n
B
a
c
k
w
a
r
d
0

w

(
1
)

9 / 11

Setup

import torch

x = torch.Tensor([1])

w = torch.Tensor([-4.9])

w.requires_grad = True

def J(w):

v1 = x * w

v2 = torch.sin(w)

v3 = v1 * v2

v4 = torch.pow(v3, 2)

v5 = v3 + v4

return v5

Gradient descent code

for t in range(50):

objective_value = J(w)

objective_value.backward()

with torch.no_grad():

w -= 0.01 * w.grad

w.grad.zero_()

10 / 11

Gradient descent on J(w), starting from w(0) = −4.9, using ηt = 0.01

0 5 10 15
iteration t

0

2

4

6

8

10

12

14

J(w
(t)

)

14.95

5.94

0.79
0.08 0.22 0.24 0.25

Converges to w ≈ −3.294, J(w) = −2.5, ∂J
∂w

(w) ≈ 0

11 / 11

