Automatic differentiation

COMS 4771 Fall 2025

Primary “technical work” in implementing gradient descent method:
Derive formula and write code for gradient computation V.J

» Like doing long division by hand (i.e., without electronic calculators)

» Fairly straightforward, but can be tedious and easy to make mistakes

Automatic differentiation (autodiff):

» Method for automatically computing derivatives of functions specified by
straight-line programs

» Originally developed by Seppo Linnainmaa in his 1970 MSc thesis

» Gradient of a function can be computed this way in the roughly same amount
of time it takes to compute the function itself (!)

1/11

Example: J(w) = 2w

» Foreach j=1,...,d, compute

2 () =

ow, S

» Time to compute function and gradient:

2/11

Example: J(w) = g(f(w)) where f(w) = z™w and ¢(t) = logistic(t)
» Foreach j=1,...,d, compute

o1

811)]'

(w) =

» Time to compute function:

» Time to compute gradient: naively O(d?), but easy to get O(d)

3/11

Example: tower of exponentials J(w) = exp(exp(exp(: - - exp(zw) ---))
(for scalar z and w)

We only want single number (g—i), but function is more complicated

Tw TWw
eee eee eew e
e e e e e rw

0 e
_{ee } — o° o€ o€ e e o€ Ty
ow

» Time to compute tower of exponentials of height h:

» Time to compute derivative:

4/11

Example: J(w) = zwsin(w) + (zw sin(w))

(for scalar z and w)

80 1

60 -

J(w)
N
o

20 1

—— x=1.000

—— x=1.025

—— x=1.050

—— x=1.075

— x=1.100

-8 -6 -4 -2
w

5/11

Write J as a straight-line program: each line declares a new variable as a function
of inputs (e.g., w), constants (e.g.,), or previously defined variables

2

J(w) = zwsin(w) + (zwsin(w))

v1 := prod(z, w)
v = sin(w)
v3 1= prod(vy, vs)

vy = square(vs)

vy = sum(vs, vy) Computation graph G = (V, E)

6/11

All functions used in straight-line program must come with subroutines for
computing “local” partial derivative

Example:

vg = prod(vy, vg)
dvs dprod(vy,va)
6)_Ul B ovy
dvs dprod(vy,vy)
8_112 B O0vy

:’Ul

7/11

Stage 1: Forward pass

» Compute value of each node given inputs in a forward pass through the G
(starting from inputs x and w)

» Save values at all intermediate nodes

Stage 2: Backward pass

» Compute partial derivative % of output (vs) with respect to each node
variable wu, evaluated at current node values

» Do this in reverse topological order; save intermediate results!
) ov Ovs Ov
Chain rule: 5 >

ou v du

(u,v)EE

8/11

» Time to compute function and partial derivatives: O(|V| + |E|)
» Modern numerical software facilitates construction of the straight-line program

W
(1)
\ 4

4
| SinBackward@

PowBackward@

MulBackwardo
v5
(1)

AddBackwardo

X
(1)
\4

| MulBackward@

| AccumulateGrad | | AccumulateGrad

9/11

Setup

import torch

x = torch.Tensor([1])
w = torch.Tensor([-4.9])
w.requires_grad = True

def J(w):
vl = x *w

v2 = torch.sin(w)

v3 = vl *x v2

v4 = torch.pow(v3, 2)
vb = v3 + v4

return vb

Gradient descent code

for t in range(50):
objective_value = J(w)
objective_value.backward()
with torch.no_grad():
w —= 0.01 * w.grad
w.grad.zero_()

10/11

Gradient descent on .J(w), starting from w(® = —4.9, using 1, = 0.01

14.95

iteration t

Converges to w ~ —3.294, J(w) = —2.5, 8L (w) ~ 0

11/11

