Automatic differentiation

COMS 4771 Fall 2025

Primary “technical work” in implementing gradient descent method:
Derive formula and write code for gradient computation V.J

» Like doing long division by hand (i.e., without electronic calculators)

» Fairly straightforward, but can be tedious and easy to make mistakes

Automatic differentiation (autodiff):

» Method for automatically computing derivatives of functions specified by
straight-line programs

» Originally developed by Seppo Linnainmaa in his 1970 MSc thesis

» Gradient of a function can be computed this way in the roughly same amount
of time it takes to compute the function itself (!)
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Example: J(w) = z"w
» Foreach j =1,...,d, compute
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» Time to compute function and gradient:
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Example: J(w) = g(f(w)) where f(w) = x"w and g(t) = logistic(t)
» Foreach j =1,...,d, compute
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» Time to compute function:

» Time to compute gradient: naively O(d?), but easy to get O(d)
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Example: tower of exponentials J(w) = exp(exp(exp(- - - exp(zw) - -))
(for scalar x and w)

We only want single number (g—i), but function is more complicated
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» Time to compute tower of exponentials of height h:

» Time to compute derivative:

Example: J(w) = zwsin(w) + (zw sin(w))?

(for scalar x and w)
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Write J as a straight-line program: each line declares a new variable as a function
of inputs (e.g., w), constants (e.g., x), or previously defined variables

J(w) = zwsin(w) + (zwsin(w))?

vy 1= prod(z, w)
Vg 1= sin(w)

v3 1= prod(vy, vs)

vy 1= square(vs)

N

v = sum(vs, vy) Computation graph G = (V, E)
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All functions used in straight-line program must come with subroutines for
computing “local” partial derivative

Example:

v3 1= prod(vy, vs)
Ovs  dprod(vy,v2)

87)1 81)1 -
Ovs  Oprod(vy,va) .
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Stage 1: Forward pass

» Compute value of each node given inputs in a forward pass through the G
(starting from inputs z and w)

» Save values at all intermediate nodes

Stage 2: Backward pass

» Compute partial derivative % of output (v5) with respect to each node
variable u, evaluated at current node values
» Do this in reverse topological order; save intermediate results!
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» Time to compute function and partial derivatives: O(|V| + |E])
» Modern numerical software facilitates construction of the straight-line program
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Setu

P

import torch

X:
W:

torch.Tensor ([1])

torch.Tensor([-4.9])

w.requires_grad = True

def J(w):
vl = x *x w
v2 = torch.sin(w)
v3 = vl *x v2
v4 = torch.pow(v3, 2)
vb = v3 + v4

return vb

Gradient descent code

for t in range(50):
objective_value = J(w)
objective_value.backward()
with torch.no_grad():
w -= 0.01 * w.grad
w.grad.zero_()

Gradient descent on J(w), starting from w®) = —4.9, using n, = 0.01

J(wt)
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Converges to w &~ —3.294, J(w) = —2.5, 42 (w) ~ 0
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