Automatic differentiation

COMS 4771 Fall 2025

Primary “technical work” in implementing gradient descent method:
Derive formula and write code for gradient computation V.J

» Like doing long division by hand (i.e., without electronic calculators)

» Fairly straightforward, but can be tedious and easy to make mistakes

Automatic differentiation (autodiff):

» Method for automatically computing derivatives of functions specified by
straight-line programs

» Originally developed by Seppo Linnainmaa in his 1970 MSc thesis

» Gradient of a function can be computed this way in the roughly same amount
of time it takes to compute the function itself (!)

1/11

Example: J(w) = z"w
» Foreach j =1,...,d, compute

O) =

ow; S

» Time to compute function and gradient:

2/11

Example: J(w) = g(f(w)) where f(w) = x"w and g(t) = logistic(t)
» Foreach j =1,...,d, compute

0J

» Time to compute function:

» Time to compute gradient: naively O(d?), but easy to get O(d)

3/11

Example: tower of exponentials J(w) = exp(exp(exp(- - - exp(zw) - -))
(for scalar x and w)

We only want single number (g—i), but function is more complicated
rw Tw
e e® e’ zw
e e® e® e® e’ zw
0 o€ o€ e e o€ e pTW
—{e }=e e e e e e” e
ow

» Time to compute tower of exponentials of height h:

» Time to compute derivative:

Example: J(w) = zwsin(w) + (zw sin(w))?

(for scalar x and w)

804 — x=1.000
x=1.025
—— x=1.050
601 — x=1.075
—— x=1.100
=
= 40
201
O_

4/11

5/11

Write J as a straight-line program: each line declares a new variable as a function
of inputs (e.g., w), constants (e.g., x), or previously defined variables

J(w) = zwsin(w) + (zwsin(w))?

vy 1= prod(z, w)
Vg 1= sin(w)

v3 1= prod(vy, vs)

vy 1= square(vs)

N

v = sum(vs, vy) Computation graph G = (V, E)

6/11

All functions used in straight-line program must come with subroutines for
computing “local” partial derivative

Example:

v3 1= prod(vy, vs)
Ovs dprod(vy,v2)

87)1 81)1 -
Ovs Oprod(vy,va) .
802 - 802 -

7/11

Stage 1: Forward pass

» Compute value of each node given inputs in a forward pass through the G
(starting from inputs z and w)

» Save values at all intermediate nodes

Stage 2: Backward pass

» Compute partial derivative % of output (v5) with respect to each node
variable u, evaluated at current node values
» Do this in reverse topological order; save intermediate results!
: ov Ovs Ov
Chain rule: > = >

ou v Ou

(u,v)ER

8/11

» Time to compute function and partial derivatives: O(|V| + |E])
» Modern numerical software facilitates construction of the straight-line program

w
(1)

A4
AccumulateGrad
Y
SinBackwardo

PowBackwardo

|

AddBackwardo
Y
v5
(1)

MulBackwardo

N\
/’

MulBackwardo

X
(1)
AccumulateGrad

9/11

Setu

P

import torch

X:
W:

torch.Tensor ([1])

torch.Tensor([-4.9])

w.requires_grad = True

def J(w):
vl = x *x w
v2 = torch.sin(w)
v3 = vl *x v2
v4 = torch.pow(v3, 2)
vb = v3 + v4

return vb

Gradient descent code

for t in range(50):
objective_value = J(w)
objective_value.backward()
with torch.no_grad():
w -= 0.01 * w.grad
w.grad.zero_()

Gradient descent on J(w), starting from w®) = —4.9, using n, = 0.01

J(wt)

~ O

14 -

12 1

10 1

14.95

-0.08 022 -024 -0.25
0 10 15
iteration t

Converges to w &~ —3.294, J(w) = —2.5, 42 (w) ~ 0

10/11

11/11

