Automatic differentiation

Daniel Hsu

November 13, 2025

1 Straight-line programs and computation graphs

A straight-line program (SLP) computes a function of input variables using a
sequence of lines, where each line sets the value of a new variable as a function
of previously defined variables or input variables; the function must come
from a “standard library”. The final variable is taken to be the value of the
function computed by the SLP. The following is an example of an SLP for a
function of input variables (v_1,vp):

vy = prod(v_1, vp)
v9 1= sin(vp)

v3 1= prod(vy, v)
vy 1= square(vs)
v5 1= sum(vs, vy)

Let V' be the set of all variables in the SLP (including input variables), and
let E be the set of ordered pairs of variables (v;, v;) such that the value of v; is
determined by a standard library function of v; (and possibly other variables).
Then G = (V, E) defines a directed acyclic graph called the computation graph
for the SLP. The order of the lines in the SLP gives a topological ordering

of the vertices (with all input variables at the front of the ordering). The
computation graph for the example SLP above is as follows:

2 Forward pass

Each line (or variable defined in the line) in the SLP corresponds to a function
of the input variables. Upon setting the values of the input variables, the
forward pass computes the “values” of all such function—i.e., the values of
the corresponding variables—by evaluating the lines of the SLP in the given
order. Each line requires:

e looking up the values of a subset of previously-defined variables or input
variables, and then

e applying a standard library function to those values (and storing the
result in a new variable).

3 Backward pass

Let F' denote the function of the input variables computed by the SLP. For
each variable v;, we can view F' as a function of v;, with all other variables
held fixed at their values from the forward pass (which we take to include the
setting of the input variables) The backward pass computes the value of the
partial derivative functions 2 oo I for each variable v;, evaluated at the values of
the variables from the forward pass. In particular, this gives the values of the
partial derivative functions of F' with respect to input variables.

The backward pass is so named because these partial derivatives g—UF are
considered in reverse order: from the end of the SLP to the start of the SLP.
(Here, imagine that the input variables are listed at the start of the SLP.)
The base case a—, where vy is the last variable defined in the SLP, is the
constant 1 functlon

To compute 2 5o I where v; is not the last variable, we view F as a composition
F = fog, where

e fis a function of all variables v; such that (v;,v;) € E, and

e ¢ is a multi-output function of v;, with one output per v; such that
(UZ', Uj) S

Observe that f and F' must be identical when viewed as functions of only
vj, with all other variables held fixed at their values from the forward pass.

Hence, they have the same partial derivative functions gf = 35 with respect
J

2

to each v;. Furthermore, the output of g corresponding to v; is given by the
line in the SLP that defines v;:

Uj ::gj(...,vz-,...)

The standard library provides the function g;, and the standard library is
required to also provide the partial derivative function gfj
The partial derivative of F' with respect to v; (evaluated at x) is obtained

via the chain rule of differentiation for function composition:

OF o(f 1).99 OF dg;
) == X e Gh = X gl g

(viyvj)€E (viyvj)€E

Since (v;,v;) € E, it must be that v; is defined after v; is defined in the SLP.
Because the backward pass considers variables in reverse order, the values of

gf Wlll have already been computed by the time v; is considered. The values

of the are determined by calling the provided standard library functions.
For the example SLP given above, the transcript of the backward pass is
as follows (where v; denotes the value of variable v; from the forward pass):

OF
8@5() =1
or OF O sum(vs,vy) ,
=) Ty,
OF
8v5(vs) - 1
OF _ OF Jsquare(vs) , OF dsum(vs, vy)
Ovs (03 81)4(o) Ovs (0a) + 81)5(%) Ovs (0)
OF OF
81}4(y) - double(v3) + 3_5(U5> 1
oF oOF 0 prod(vy,v2) ,
8_1)2(U) 81)3() . 81}2 (UQ)
OF OF 5y -
81)3 1
oF OF O prod(vy, Ua) ,
8_1)1(U) (97)3() . 81}1 (Ul)
OF OF 5) -0
803 2

or,_ . OF 0 prod(v_1,vp) +8F . Osin(v)

8—@0(1}0) = 8_01(@1) . D0,) 8—1}2(?}2) . a—vo(@O)
oF B oF _
= a—vl(vl) S0+ 8—?)2(1)2) - cos(Tg)
oF ,_ . OF, _ Oprod(v_1,7),_
av_l(v—l) — 8_1)1(Ul) : Jo (V1)
_ (‘9_F() v
B 81}1 v o

4 Complexity of automatic differentiation

Automatic differentiation of a function F' computed by a SLP is the forward
pass followed by the backward pass based on the SLP. The forward pass is
used to determine the values of all of the variables. The values of all variables
defined in the SLP are stored, so the working space needed is O(|V|). If
each value look-up requires a unit of time, and each function application also
requires a unit of time, then the overall time needed in the forward pass is
(V] + | E]).

The backward pass is used to compute the partial derivatives of F' with
respect to all of the variables in the SLP, evaluated at the values from the
forward pass. The values of these partial derivatives are stored, so the working
space needed is O(|V]). If each value look-up requires a unit of time, each
(partial derivative) function application also requires a unit of time, and each
linear combination computation requires time proportional to the number of
terms being combined, then the overall time needed in the backward pass is

O(|V] +[E]).

	Straight-line programs and computation graphs
	Forward pass
	Backward pass
	Complexity of automatic differentiation

