
COMS 4771 Machine Learning Fall 2025

Homework 5

Multi-class logistic regression and gradient descent

Multi-class logistic regression is a statistical model for classification data where the number
of classes is possibly more than two. Every distribution in the model is specified by an entire
matrix of parameters

W =

 x x
w(0) · · · w(K−1)y y

 ∈ Rd×K ,

where d is the dimension of the input space and K is the number of classes. The k-th column
of W is a weight vector w(k) ∈ Rd corresponding to class k ∈ {0, . . . , K − 1}. Under the
distribution with parameter matrix W , for any x ∈ Rd, the conditional probability that the
label Y is equal to k given the feature vector X = x is

PrW (Y = k | X = x) =
exp(⟨w(k), x⟩)∑K−1
j=0 exp(⟨w(j), x⟩)

.

(Please check for yourself that this is a valid conditional distribution for Y given X = x.)
Notice that under the distribution with parameter matrix W , the classifier with smallest
error rate is given by

fW (x) = argmax
k∈{0,...,K−1}

PrW (Y = k | X = x) = argmax
k∈{0,...,K−1}

⟨w(k), x⟩. (1)

Here is a common approach to learning a multi-class classifier using this model. Treat a
training dataset (x(1), y(1)), . . . , (x(n), y(n)) from Rd × {0, . . . , K − 1} as an i.i.d. sample from
some distribution in this model, and attempt to estimate the parameter matrix W from the
training data by maximizing the log-likelihood objective:

lnL(W) =
n∑

i=1

ln
(
PrW (Y = y(i) | X = x(i))

)
=

n∑
i=1

ln

(
exp(⟨w(y(i)), x(i)⟩)∑K−1
j=0 exp(⟨w(j), x(i)⟩)

)
.

Maximizing the log-likelihood objective is equivalent to minimizing the negative log-likelihood
objective, which can be attempted using gradient descent.1 With a high-likelihood parameter
matrix W in hand, the multi-class classifier fW as defined in (1) is returned.

Problem 1. Write a Python function logreg_nll_gd that takes as input:

• number of classes K, (constant) step size η > 0, positive integer T ;

1The negative log-likelihood of W can also be interpreted as a sum of log losses on the n training examples
incurred by the function pW defined by pW (x) = (PrW (Y = 1 | X = x), . . . ,PrW (Y = K − 1 | X = x)).

COMS 4771 (Fall 2025) Homework 5 2

• a Numpy array of n feature vectors from Rd; and

• a Numpy array of n labels from {0, . . . , K − 1};

and returns the parameter matrix obtained by running T steps of gradient descent for the
negative log-likelihood function starting from the d×K all-zeros parameter matrix. You
can use the Numpy functions numpy.exp, numpy.log, numpy.sum, numpy.mean, numpy.matmul,
numpy.max, numpy.argmax, numpy.dot, numpy.arange, numpy.zeros, and the Scipy function
scipy.special.softmax. (You do not necessarily need all of these.)

The file hw5p1.pkl contains data from R3 × {0, 1, 2} for a 3-class classification problem.

import pickle

hw5p1 = pickle.load(open('hw5p1.pkl', 'rb'))

Training data (features and labels) are in hw5p1['data'] and hw5p1['labels'], and test
data are in hw5p1['testdata'] and hw5p1['testlabels']. The feature vectors are actually
2-dimensional, but we have appended an “always-1” feature to each feature vector. Here is
a plot of the training data (the shape/color of each point indicates its label):

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

Use logreg_nll_gd to learn a multi-class classifier (of the form in (1)) for this problem.
In practice, you will need to experiment with η and T , but for this assignment, just use
η = 0.001 (for all iterations) and T = 10000, where n is the number of training examples.

(a) Report the training error rate and test error rate of the classifier corresponding to the
final parameter matrix.

(b) Modify logreg_nll_gd so that, at the start of every twentieth iteration of gradient
descent (i.e., at the start of iterations 20, 40, . . . , 10000), it records (i) the negative log-
likelihood of the parameter matrix, and (ii) the training error rate of the corresponding
classifier. Plot each of these quantities (on separate plots) as a function of the number
of steps of gradient descent. Include these two plots with your write-up. What do you
notice about the difference between these plots?

COMS 4771 (Fall 2025) Homework 5 3

Convexity and gradients

Problem 2. Consider the function J : R2 → R given by

J(w) =
1

2
w2

1 + ln(1 + exp(2w1 + w2))− (2w1 + w2) + ln(1 + exp(−2w1 + w2)).

(a) Is the function J a convex function? Please justify your answer.

(b) The function J is differentiable. Write a formula for the gradient of J .

Problem 3. Consider the function J : R2 → R given by

J(w) = (logistic(2w1 + w2)− 1)2 + (logistic(−2w1 + w2)− 0)2.

(Recall: logistic(t) = 1/(1 + exp(−t)).)

(a) Is the function J a convex function? Please justify your answer.

(b) The function J is differentiable. Write a formula for the gradient of J .

Problem 4. Consider the function J : R2 → R given by

J(w) = max{0, 1− (2w1 + w2)}.

(a) Is the function J a convex function? Please justify your answer.

It turns out J is not differentiable, which means there are some u ∈ R2 at which J(w) is
not well-approximated by any affine function A(w) for w close to u. Nevertheless, J does
have a good affine minorant at every u ∈ R2. By this, we mean that for every u ∈ R2, there
exists an affine function A : R2 → R such that

J(u) = A(u) and J(w) ≥ A(w) for all w ∈ R2. (2)

(b) Write an affine function A : R2 → R that satisfies (2) at u = (0, 1/2).

(c) Write an affine function A : R2 → R that satisfies (2) at u = (1/4, 1/2).

Postscript : The slope vector of an affine minorant of J at a point u (satisfying (2)) is called
a subgradient of J at u. There is a variant of gradient descent for non-differentiable objective
functions (called subgradient descent) that only requires a subroutine that computes a
subgradient of the objective at any given point. The Online Perceptron algorithm can be
viewed as variant of subgradient descent (analogous to the way SGD is a variant of gradient
descent) for the objective function

JPerceptron(w) =
n∑

i=1

max{0,−y(i)⟨w, x(i)⟩},

where (x(1), y(1)), . . . , (x(n), y(n)) are the training examples from Rd × {−1, 1}.

COMS 4771 (Fall 2025) Homework 5 4

Automatic differentiation

Please read the PyTorch “Learn the basics” tutorial, specifically the part on “Tensors” (i.e.,
multi-dimensional arrays) and the part on “Autograd”. (The other parts are not essential for
this assignment, but recommended anyway!)

Problem 5. Use the automatic differentiation facilities in PyTorch (called “autograd”) to
re-implement logreg_nll_gd from Problem 1. You can use the following template, which
gives most of the code that is not specific to the objective function:

import torch

def logreg_nll_gd_ad(K, eta, T, X, y):

X = torch.tensor(X, dtype=torch.double)

y = torch.tensor(y, dtype=torch.int)

W = torch.zeros(X.shape[1], K, dtype=torch.double)

W.requires_grad = True

for _ in range(T):

J = # FILL IN

J.backward() # this computes all partial derivatives of variables involved

(with "requires_grad = True") in computation of J, and stores the

results in an appropriate place (see below)

↪→

↪→

with torch.no_grad():

W -= eta * W.grad # W.grad is where the invokation of J.backward() has

put the gradient with respect to W↪→

W.grad.zero_() # this zeros out the space used for storing the

gradient with respect to W↪→

return W.detach()

You just need to fill-in the part that computes the objective value of the current W. You can
use the PyTorch functions torch.exp, torch.log, torch.sum, torch.mean, torch.matmul,
torch.max, torch.argmax, torch.dot, torch.arange, torch.zeros, and torch.softmax.
(You do not necessarily need all of these.)a Use logreg_nll_gd_ad with the training
data from hw5p1.pkl (again with η = 0.001 and T = 10000), and compare the parameter
matrix W you obtain using logreg_nll_gd_ad to what you obtain using logreg_nll_gd

from Problem 1 by computing their Frobenius norm difference:

∥A−B∥F =

√√√√ d∑
i=1

K∑
j=1

(Aij −Bij)
2.

Report this Frobenius norm difference in your write-up; it should be quite small. (You
should also check that you obtain the same training/test error rates as you got for Problem 1,
but you don’t need to report this in your write-up.)

aThere are some other PyTorch functions that could make this problem even easier, but you should solve
this problem without them.

https://pytorch.org/tutorials/beginner/basics/intro.html
https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html
https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html
https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html

COMS 4771 (Fall 2025) Homework 5 5

Class imbalance

The file hw5click.pkl contains data for a binary classification problem related internet
advertising.

import pickle

click = pickle.load(open('hw5click.pkl', 'rb'))

Training data (features and labels) are in click['data'] and click['labels'], and test data
are in click['testdata'] and click['testlabels']. Each example (x, y) corresponds to
a visit of a particular user to an internet website on which a particular advertisement is
displayed. The label y ∈ {0, 1} indicates if the user clicked on the advertisement. The feature
vector x = (x1, . . . , x54) ∈ R54 gives information about the user and the advertisement.

Also provided are estimates of the weight vector w ∈ R54 and intercept b ∈ R parameters
from a logistic regression model for this data, where under the distribution with parameters
(w, b), the conditional probability that the label Y is equal to 1 given the feature vector
X = x is

Prw,b(Y = 1 | X = x) = logistic(⟨w, x⟩+ b).

These parameter estimates, wmle and bmle, are given in click['w_mle'] and click['b_mle'],
respectively.

Let J(w, b) be the negative log-likelihood of (w, b) ∈ Rd × R based on the training data,
and let fw,b : Rd → {0, 1} be the linear classifier defined by

fw,b(x) = argmax
y∈{0,1}

Prw,b(Y = y | X = x) = 1{xTw + b > 0}.

Problem 6.

(a) Compute the gradient of J evaluated at (wmle, bmle), and report its Euclidean norm
∥∇J(wmle, bmle)∥. It should be quite close to zero. Since J is a convex function, the
parameters (wmle, bmle) nearly maximize the log-likelihood.

(b) What are the training and test error rates of fwmle,bmle
?

You should find that the training error rate is the same as the fraction of training
examples with a label of 1, and you should make an analogous finding regarding the
test error rate. Indeed, fwmle,bmle

predicts 0 on all training and test examples.

The severe class imbalance in this problem is due to the fact that the vast majority of
visits to the website do not result in the user clicking on the advertisement.

In many applications, the error rate Pr(f(X) ̸= Y) of a binary classifier f : Rd → {0, 1}
may not be the desired performance metric, but rather one may prefer a metric that balances
the two possible classes. The balanced error rate of a binary classifier f is

1

2
Pr(f(X) = 1 | Y = 0) +

1

2
Pr(f(X) = 0 | Y = 1).

We analogously define the balanced training error rate and balanced test error rate as above
simply by letting the distribution of (X, Y) be uniform over the training dataset and test
dataset, respectively.

COMS 4771 (Fall 2025) Homework 5 6

Problem 7. What are the balanced training and test error rates of the classifier fwmle,bmle
?

(This problem doesn’t really require any code . . .)

Suppose we have a classifier learning procedure that was designed with (unbalanced) error
rate in mind as the primary objective, but now we want a procedure that is adapted for
balanced error rate. A natural approach is to “re-balance” the training data—effectively,
replicate the examples from the under-represented class until the two classes are equally
represented in the training data—and then apply the original classifier learning procedure. If
the learning procedure is based on minimizing an objective function that involves a sum of
losses over training examples, then the re-balancing can be achieved by changing the sum to
an appropriately weighted sum.

Consider the following objective function Jbal : Rd × R → R based on the training data:

Jbal(w, b) =
λ

2

(
∥w − wmle∥2 + (b− bmle)

2
)

− 1

2n0

∑
(x,y)∈S0

ln Prw,b(Y = 0 | X = x)− 1

2n1

∑
(x,y)∈S1

ln Prw,b(Y = 1 | X = x).

Here,

• S0 is the subset of training examples with label 0, and n0 = |S0|;

• S1 is the subset of training examples with label 1, and n1 = |S1|;

• and λ ≥ 0 is a hyperparameter.

We can interpret this objective as a trade-off between the following concerns:

• we want parameters (w, b) that are not too far from (wmle, bmle);

• and at the same time, we also want parameters (w, b) with small average logarithmic
loss on the re-balanced training data.

(Here, we regard the logarithmic loss as a surrogate for the zero-one loss.)

Problem 8. Implement gradient descent for minimizing Jbal, and apply it to obtain
new parameter estimates (wbal, bbal). You should initialize gradient descent with (w, b) =
(wmle, bmle), and use (constant) step size η = 0.001, number of iterations T = 50000, and
λ = 0.01. What are the balanced training and test error rates of the classifier fwbal,bbal?

Solutions

https://drive.google.com/file/d/1oSOXOhIvVLulZwQPa96I8rUldKxZKtHU/view?usp=sharing

https://drive.google.com/file/d/1HBc79LsJWBqE3l2JLnZu94B45XF121hk/view?usp=

sharing

https://drive.google.com/file/d/1oSOXOhIvVLulZwQPa96I8rUldKxZKtHU/view?usp=sharing
https://drive.google.com/file/d/1HBc79LsJWBqE3l2JLnZu94B45XF121hk/view?usp=sharing
https://drive.google.com/file/d/1HBc79LsJWBqE3l2JLnZu94B45XF121hk/view?usp=sharing

