
COMS 4771 Machine Learning Fall 2025

Homework 4

Kernels and kernel ridge regression

Problem 1. Suppose each of k : Rd × Rd → R and k̃ : Rd × Rd → R is a positive definite
kernel function. For each of the following functions, determine whether it must also be a
positive definite kernel function or not. (Answer with “POSITIVE DEFINITE” or “NOT
NECESSARILY POSITIVE DEFINITE”.) Give a brief justification of your answer.

(a) ka : Rd × Rd → R defined by ka(x, z) = k(x, z) + 2.

(b) kb : Rd × Rd → R defined by kb(x, z) = 2 k(x, z).

(c) kc : Rd × Rd → R defined by kc(x, z) = k(x, z) + k̃(x, z).

(d) kd : Rd × Rd → R defined by kd(x, z) = k(x, z)− k̃(x, z).

(e) (Optional.) ke : Rd × Rd → R defined by ke(x, z) = k(x, z) · k̃(x, z).
Hint : look up and use Hadamard product and Schur product theorem.

Problem 2. Explain why the following identity holds for any n×p matrix A and any λ > 0:

(ATA+ λI)−1AT = AT(AAT + λI)−1.

Let (x(1), y(1)), . . . , (x(n), y(n)) be training data from Rd × R for a regression problem.
Kernel ridge regression returns a solution to the following system of linear equations in
α ∈ Rn:

(K + λI)α = b,

where

K =

k(x
(1), x(1)) · · · k(x(1), x(n))
...

. . .
...

k(x(n), x(1)) · · · k(x(n), x(n))


is the n × n kernel matrix corresponding to the training data and the kernel function
k: Rd × Rd → R, b = (y(1), . . . , y(n)) ∈ Rn is the vector of training labels, and λ ∈ R is the
regularization hyperparameter. The predictor f : Rd → R associated with α = (α1, . . . , αn) ∈
Rn is given by

f(x) =
n∑

i=1

αi k(x
(i), x).

(Do you see the relevance of the identity in Problem 2 to kernel ridge regression?)

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
https://en.wikipedia.org/wiki/Schur_product_theorem
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The file hw4reg.pkl contains data from R×R for a regression problem, split into training,
validation, and test data.

import pickle

hw4reg = pickle.load(open('hw4reg.pkl', 'rb'))

Training data (features and labels) are in hw4reg['data'] and hw4reg['labels'], vali-
dation data are in hw4reg['valdata'] and hw4reg['vallabels'], and test data are in
hw4reg['testdata'] and hw4reg['testlabels'].

Problem 3. Consider the similarity function k: R+ × R+ → R given by

k(x, z) = min{x, z}.

(Here, R+ = [0,∞) is the non-negative part of the real line.)

(a) Explain why k is a positive definite kernel.

Hint: min{x, z} =
∫∞
0
1{t ≤ min{x, z}} dt =

∫∞
0
1{t ≤ x}1{t ≤ z} dt.

(b) Use kernel ridge regression with the kernel function given above to solve the regression
problem from hw4reg.pkl. Use the validation data to choose the regularization
parameter λ. Specifically, try using values of λ in the range {2−20, 2−19, . . . , 219, 220},
report all validation mean squared errors (using a plot or a table), and then choose
(and report) the value of λ that leads to the smallest validation mean squared error.
Report the test mean squared error of the final predictor using the chosen value of
λ. Also plot the predictions of your final predictor f : R → R on the “grid” of 1000
equally-spaced points in the interval [0, 1] supplied in hw4reg['grid']; superimpose
this plot over the training data, and include the plot in your write-up. The following
code may be helpful for this last part (although you are free to use your own code):

import matplotlib.pyplot as plt

pred = f(hw4reg['grid']) # change this line as needed

plt.figure()

plt.plot(hw4reg['data'], hw4reg['labels'], '.')

plt.plot(hw4reg['grid'], pred, linestyle='-')

plt.legend(['training data', '$f(x)$'], loc='lower left')

plt.xlabel('x')

plt.ylabel('y')

plt.savefig('hw4reg.pdf', bbox_inches='tight')

(c) (Optional.) Repeat Part (b) using the Gaussian kernel

kσ(x, z) = exp

(
−(x− z)2

2σ2

)
.

(Of course, you will need to also tune the hyperparameter σ > 0.) How does the final
predictor compare to what you obtained in Part (b)?
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SVD and LSA

Problem 4. Suppose the n×d matrix A of rank r = d ≥ 2 has singular value decomposition

A =
r∑

i=1

σiuiv
T

i ,

where σ1 ≥ · · · ≥ σr are the singular values of A, u1, . . . , ur ∈ Rn are corresponding left
singular vectors of A, and v1, . . . , vr ∈ Rd are corresponding right singular vectors of A.

(a) TRUE or FALSE: If q1 and q2 are orthonormal vectors in Rd such that ∥Aq1∥2 +
∥Aq2∥2 = σ2

1 + σ2
2, then the subspace spanned by {Aq1, Aq2} is the same as the

subspace spanned by {u1, u2}. Briefly justify your answer.

(b) (Tricky problem.) TRUE or FALSE: If q1 and q2 are orthonormal vectors in Rd such
that the subspace spanned by {Aq1, Aq2} is the same as the subspace spanned by
{u1, u2}, then ∥Aq1∥2 + ∥Aq2∥2 = σ2

1 + σ2
2. Briefly justify your answer.

Latent semantic analysis (LSA) is a technique based on SVD for studying the relationship
between documents and the words they contain. In this next problem, you will apply a simple
version of LSA to the Yelp restaurant review dataset.

The file reviews limited vocab.txt contains a subset of n = 100000 reviews from the
training dataset (without the labels), with one review per line. Several insufficiently-frequent
words have been removed from the reviews, leaving a vocabulary of just d = 1731 words.
Using this data, we define the n× d “document-term” matrix A, where Ai,j is the number of
times word j appears in review i.

• The rows of the matrix A represent the reviews in the dataset in terms of the words
they contain.

• The columns of the matrix A represent the words in the vocabulary in terms of how
many times they appear in the reviews from the dataset.

In LSA, the representations of the reviews and words are not taken directly from A, but
rather, they are obtained using the truncated SVD of A. Take, for instance, the representations
for the vocabulary words. Instead of using the columns of A, we use the orthogonal projections
of these columns onto the subspace spanned by left singular vectors of A corresponding to
the k largest singular values of A. Here, k, of course, is a hyperparameter of the LSA method.
This projection is thought to remove some of the “noise” in the data that is due to spurious
occurences of the words in reviews. (This vague statement can be made more precise using a
probabilistic model; see, e.g., the JCSS article by Papadimitriou, Raghavan, Tamaki, and
Vempala from 2000.)

What can one do with the vector representations of the words? One common application
is to find other words that are “similar” to a given word. Similarity is usualy measured by
the cosine of the angle between the corresponding vectors. This is called “cosine similarity”.
Words whose representations have high cosine similarity (i.e., close to 1) are consisdered

https://www.sciencedirect.com/science/article/pii/S0022000000917112
https://www.sciencedirect.com/science/article/pii/S0022000000917112
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similar, while those that have low cosine similarity (i.e., close to 0 or perhaps even negative)
are considered dissimilar.

Problem 5. Construct the document-term matrix A from the Yelp review data. For each
value of k ∈ {2, 4, 8}, apply LSA with the given k, and then compute the cosine similarity
between all pairs of words in the following list:

words_to_compare = ['excellent', 'amazing', 'delicious', 'fantastic', 'gem',

'perfectly', 'incredible', 'worst', 'mediocre', 'bland', 'meh', 'awful',

'horrible', 'terrible']

↪→

↪→

Present your results in three separate tables (one per choice of k), where the rows and
columns are the words in the list above, and the entries are the cosine similarities. (Feel
free to be creative and additionally present the results in an interesting way.)
Note: The numpy.linalg.svd function can be used to compute the SVD of a matrix, but
you should use the full_matrices=False option.

Problem 6. Sometimes LSA can be improved by ignoring the direction corresponding to
the largest singular value. So, instead of using the left singular vectors corresponding to
σ1, . . . , σk, one would use the left singular vectors corresponding to σ2, . . . , σk+1 instead.
Repeat Problem 5 using this modification and compare the results. Do you notice any
improvement? Feel free to consider other variants of LSA and show these results as well.
See the Wikipedia article on LSA for some ideas.

More kernel stuff

Problem 7. It turns out that ke from Problem 1(e) is positive definite. Suppose you have
feature maps φ : Rd → Rp and φ̃ : Rd → Rq (for some positive integers p and q) such that
k(x, z) = φ(x)Tφ(z) and φ̃(x)Tφ̃(z) = k̃(x, z) for all x, z ∈ Rd. Explicitly describe a feature
map φe : Rd → Rr (for some positive integer r) such that φe(x)

Tφe(z) = ke(x, z) for all
x, z ∈ Rd. (It should be defined in terms of φ and φ̃.)

Solutions

https://drive.google.com/file/d/1FXEOpIT44u_a7rfy8LgRSRuOqx1HDNi_/view?usp=drive_

link

https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://drive.google.com/file/d/1FXEOpIT44u_a7rfy8LgRSRuOqx1HDNi_/view?usp=drive_link
https://drive.google.com/file/d/1FXEOpIT44u_a7rfy8LgRSRuOqx1HDNi_/view?usp=drive_link

