
COMS 4771 Machine Learning Fall 2025

Homework 3

Linear classifiers for text

The Yelp restaurant reviews dataset is comprised of user-contributed reviews posted to Yelp
for restaurants in Pittsburgh collected several years ago. Each review is accompanied by a
binary indicator of whether or not the reviewer-assigned rating is at least four (on a five-point
scale). The text of the reviews has been processed to replace all non-alphanumeric symbols
with whitespace, and all letters have been changed to lowercase. The prediction problem we
consider here is predicting the binary indicator from the review text.

The training data is contained in the file reviews tr.csv, and the test data is contained
in the file reviews te.csv. The following code can be used to load the training data.

from csv import DictReader

vocab = {}

vocab_size = 0

examples = []

with open('reviews_tr.csv', 'r') as f:

reader = DictReader(f)

for row in reader:

label = row['rating'] == '1'

words = row['text'].split(' ')

for word in words:

if word not in vocab:

vocab[word] = vocab_size

vocab_size += 1

examples.append((label, [vocab[word] for word in words]))

This code assigns every word that appears in training data a unique non-negative integer,
and the mapping is provided in the dictionary vocab. Each training example is represented
as a binary label paired with a list of non-negative integers (which we’ll call “word IDs”)
corresponding to the words that appear in the review. Note that the list may contain
repetitions of any given word ID (since a review may contain repetitions of a word). The
examples are collected in the array examples. Throughout the rest of this section, we’ll refer
to the variables defined by this code.

Of course, the test data can be loaded in a similar way. Note that the test data may
contain words that do not appear in the training data.

Different examples may have different number of words, so the lists of word IDs may have
different lengths. It may not be obvious how they can be used with common machine learning
algorithms. However, it is relatively easy to transform a list of word IDs into a “bag-of-words”
vector (also called “term frequency” vector), which is a vector x = (x0, . . . , xd−1) where xj is

COMS 4771 (Fall 2025) Homework 3 2

the number of times word ID j appears in the list. This is the representation you should
use for the feature vectors throughout this section. The dimension d of the vector
is equal to the vocabulary size vocab_size (and the vector indices, like the word IDs, start
from 0). Such a vector representation is readily usable by many machine learning algorithms.

The following code applies this transformation to the first training example.

from numpy import zeros

def bag_of_words_rep(word_ids, dim):

bow_vector = zeros(dim) # creates a numpy.ndarray of shape (dim,)

for word_id in word_ids:

bow_vector[word_id] += 1

return bow_vector

first_bow_vector = bag_of_words_rep(examples[0][1], vocab_size)

Note that applying this transformation to all training examples would result in a large
collection of high-dimensional vectors (each of dimension vocab_size), ultimately consuming
a lot of memory:

from sys import getsizeof

print('memory required for examples:', getsizeof(examples))

print('(estimate of) memory required for bag-of-words representation:',

len(examples) * getsizeof(first_bow_vector))↪→

The difference is quite a few orders-of-magnitude. Therefore, function bag_of_words_rep

should not be used explicitly; its purpose here is just to explain the semantics of the “bag-of-
words” representation. A memory-efficient learning algorithm should use examples directly
as input and avoid explicitly forming the “bag-of-words” vectors for these examples.

Online Perceptron

The Online Perceptron algorithm is a variant of the standard Perceptron algorithm. Recall
that the standard Perceptron algorithm maintains a weight vector w, and repeatedly updates
the weight vector with any training example that is misclassified by the (homogeneous) linear
classifier with parameter w. This continues until there are no misclassified training examples.
Of course, if the training data is not linearly separable, this will go on forever—some examples
will be used to update the weight vector infinitely often. The Online Perceptron, shown
below, rectifies this by only considering each training example exactly once, in some fixed
ordering over the training examples, and then halting.

• Input: training examples (x(1), y(1)), . . . , (x(n), y(n))

• Initialize: w(0) = (0, . . . , 0)

• For i = 1, 2, . . . , n:

COMS 4771 (Fall 2025) Homework 3 3

– If (x(i), y(i)) is misclassified by the linear classifier with parameter w(i−1), then

w(i) ←

{
w(i−1) + x(i) if y(i) = true

w(i−1) − x(i) if y(i) = false

– Else w(i) ← w(i−1)

• Return: w(n)

Here, we have assumed that each label is either “true” or “false”, and that a linear classifier
with parameter w predicts “true” on an input feature vector x if and only if wTx > 0.

Problem 1. Implement the Online Perceptron algorithm and apply it to the training data
(in the order that they appear in reviews tr.csv). Briefly explain how you avoid explicitly
forming the bag-of-words feature vectors in your implementation. What is the training error
rate of the linear classifier returned by Online Perceptron? And what is the test error rate
(based on the test data from reviews te.csv)? Please report three significant digits for all
computed error rates.

Recall, that the test data may contain words that do not appear in the training data. It
may seem that this could be cumbersome to deal with. However, it turns out to be easy to
handle because the initial weight vector in Online Perceptron is the zero vector.

Problem 2. To get a sense of the behavior of the linear classifier that you obtained above,
determine the 10 words that have the highest (i.e., most positive) weights in the weight
vector, and also determine the 10 words that have the lowest (i.e., most negative) weights
in the weight vector. Report the actual words, not the word IDs. You may find it helpful to
invert the mapping given in vocab.

Upgrades

There are many ways to upgrade Online Perceptron. Below, we discuss two possibilities.
The first is the “Averaged Perceptron” variant, which is exactly the same as Online

Perceptron, except that the weight vector returned is wavg := 1
n

∑n
i=1 w

(i) (instead of just
w(n)). This is more “stable” than Online Perceptron, since the average of the weight vectors
is much less sensitive to a single training example than the current weight vector maintained
by Online Perceptron. (Of course, wsum :=

∑n
i=1w

(i) works just as well.)
The second is to improve the feature representation. So far, we have only used the

bag-of-words representation of the reviews. It is called bag-of-words because it only depends
on the number of times words appear in the review; the order of the words doesn’t matter
at all. One way to take the order of words into account (in a very limited way) is to also
consider the number of times “bigrams” appear in the review. A bigram is a pair of words
that appear consecutively. For example, in “a rose is a rose”, the bigrams that appear are: (a,
rose), which appears twice; (rose, is); and (is, a). If there are d words in a vocabulary, then
there are d2 possible bigrams, which can be enormous when d is even just moderately large.

COMS 4771 (Fall 2025) Homework 3 4

This makes it even more important to avoid explicitly forming the bag-of-words-and-bigrams
feature vectors.

Problem 3. Implement one of the above suggested improvements, or any other improvement
you can think of. (If you come up with your own improvement, give a high-level description
of it and explain its motivation.) Apply the new algorithm to the training data. What are
the training and test error rates of the classifier you obtain? Which 10 words (or bigrams)
have the highest weights in the weight vector (à la Problem 2), and which have the lowest
weights?

COMS 4771 (Fall 2025) Homework 3 5

Logistic regression

Problem 4. Let LL: Rd → R be the log-likelihood function based on training data
(x(1), y(1)), . . . , (x(n), y(n)) from Rd × {0, 1} under the logistic regression model:

LL(w) =
n∑

i=1

(
y(i)wTx(i) − ln(1 + ew

Tx(i)

)
)
.

Suppose you have a weight vector ŵ ∈ Rd such that

ŵTx(i) > 0 if and only if y(i) = 1, for all i = 1, . . . , n.

A statistician friend asks you if ŵ (approximately) maximizes the log-likelihood func-
tion. However, in a computing accident, you lose access to the training data and can-
not compute LL(ŵ). The system administrator is only able to recover two pieces of
information about the training data for you: the number of training examples n, and
γ = min{|ŵTx(1)|, . . . , |ŵTx(n)|}. Assume that γ > 0. Write a procedure that, given ŵ, n, γ,
and an arbitrary positive number ϵ > 0, returns another weight vector v ∈ Rd such that
LL(v) ≥ −ϵ. Explain why your procedure works.

Feature maps

Problem 5. Specify a feature map φ : Rd → Rp, with p as small as possible, so that
homogeneous linear classifiers in the feature space are able to represent all binary classifiers
fc,r : Rd → {0, 1} of the following form:

fc,r(x) =

{
1 if ∥x− c∥ < r

0 otherwise.

Here, c ∈ Rd and r > 0 are parameters of the classifier. In other words, for every c ∈ Rd

and r > 0, there should exist w ∈ Rp such that

φ(x)Tw > 0 if and only if fc,r(x) = 1, for all x ∈ Rd.

Explain why your feature map works.

Problem 6. Suppose the distribution P over R2 × {0, 1} comes from the bivariate normal
generative model.

(a) It turns out the log-odds function x 7→ ln Pr(Y=1|X=x)
Pr(Y=0|X=x)

for (X, Y) ∼ P can be expressed
as a polynomial in x. What is the degree of this polynomial?

(b) Let f : R2 → {0, 1} be the classifier that has smallest possible error rate under P . If φ
is a polynomial feature map, how large must its degree be so that f can be represented

COMS 4771 (Fall 2025) Homework 3 6

as a homogeneous linear classifier in the feature space given by φ?

(c) Repeat the previous parts in the case where the bivariate normal generative model
comes with additional restriction that the covariance matrix for each of the two class
conditional distributions is the identity matrix.

Problem 7. Consider training data (x(1), y(1)), . . . , (x(n), y(n)) from Rd × {0, 1} for a binary
classification problem about individuals from a population. Within this population, there
are d well-defined subgroups (e.g., subgroup 1 is “people born in New York”, subgroup 2
is “people with blue eyes”). Let (X, Y) be a random example whose distribution is the
empirical distribution on these n training examples, i.e., for each (x, y) ∈ Rd × {0, 1},

Pr[(X, Y) = (x, y)] =
1

n

n∑
i=1

1{(x(i), y(i)) = (x, y)}.

Each feature vector x(i) = (x
(i)
1 , . . . , x

(i)
d) is comprised of {0, 1}-valued features that indicate

membership in these subgroups: for each subgroup j ∈ {1, 2, . . . , d},

x
(i)
j =

{
1 if individual i belongs to subgroup j;

0 otherwise.

Specify a feature map φ : Rd → Rp (with p as small as possible) so that the maximum
likelihood estimate ŵ ∈ Rp of the weight vector parameter in logistic regression (with feature
map φ) ensures all the following simultaneously:

1. Pr[Y = 1] = E[logistic(φ(X)Tŵ)];

2. Pr[Y = 1 | Xj = 1 ∧ Xk = 1] = E[logistic(φ(X)Tŵ) | Xj = 1 ∧ Xk = 1] for each
j ∈ {1, . . . , d} and k ∈ {1, . . . , d}.

(You should assume that ŵ is a maximizer of the log-likelihood objective in the logistic
regression model.)

Solutions

• https://drive.google.com/file/d/1l5zEQmb5eiJ2rXaXrosSMh6PIZy7pdza/view?usp=

drive_link

• https://drive.google.com/file/d/1Vu1car7p5j8ALat6fL2FUPhIY5B-eK4v/view?usp=

drive_link

https://drive.google.com/file/d/1l5zEQmb5eiJ2rXaXrosSMh6PIZy7pdza/view?usp=drive_link
https://drive.google.com/file/d/1l5zEQmb5eiJ2rXaXrosSMh6PIZy7pdza/view?usp=drive_link
https://drive.google.com/file/d/1Vu1car7p5j8ALat6fL2FUPhIY5B-eK4v/view?usp=drive_link
https://drive.google.com/file/d/1Vu1car7p5j8ALat6fL2FUPhIY5B-eK4v/view?usp=drive_link

