Some extra problems for COMS 4771 Fall 2025

Daniel Hsu

September 24, 2025

1 Problems

In this part of the assignment, you'll work out why $f_{\text{avg}} := \frac{1}{M} \sum_{t=1}^{M} f_t$ satisfies

$$\mathbb{E}[(f_{\text{avg}}(\vec{X}) - Y)^2] = \frac{1}{M} \sum_{t=1}^{M} \mathbb{E}[(f_t(\vec{X}) - Y)^2] - \frac{1}{2M^2} \sum_{s=1}^{M} \sum_{t=1}^{M} \mathbb{E}[(f_s(\vec{X}) - f_t(\vec{X}))^2]$$
(1)

for any random example (\vec{X}, Y) and any real-valued functions f_1, \ldots, f_M .

Problem 1.1 (1 point). Suppose A and B are independent and identically distributed random variables, each with variance σ^2 . Determine the relationship between $\mathbb{E}[(A-B)^2]$ and σ^2 . Briefly (but precisely) explain your answer. Hint: The bias-variance decomposition can be useful here. Or, just expand the square.

It turns out the original claim in Equation (1) is true even if we remove the expectations and replace (\vec{X}, Y) with an arbitrary (non-random) example (\vec{x}, y) :

$$(f_{\text{avg}}(\vec{x}) - y)^2 = \frac{1}{M} \sum_{t=1}^{M} (f_t(\vec{x}) - y)^2 - \frac{1}{2M^2} \sum_{s=1}^{M} \sum_{t=1}^{M} (f_s(\vec{x}) - f_t(\vec{x}))^2.$$
 (2)

The original claim in Equation (1) follows from Equation (2) simply by replacing (\vec{x}, y) with (\vec{X}, Y) and taking expectations. So let's just focus on understanding why Equation (2) is true.

Problem 1.2 (2 points). Rewrite Equation (2) using the relationship identified in Problem 1.1 (in particular to change the final term on the right-hand side), so that the rewritten equation can be interpreted as an instance of the bias-variance decomposition. Briefly (but precisely) explain the interpretation. Hint: Define a random variable T whose distribution is uniform over $\{1, 2, \ldots, M\}$, and consider the random variable $f_T(\vec{x})$.

2 Solutions

Problem 1.1 Let us define μ to be the mean of A (which is also the mean of B). We first write

$$\mathbb{E}[(A-B)^2] = \mathbb{E}\Big[\mathbb{E}[(A-B)^2 \mid A]\Big]$$
(3)

using the tower property of conditional expectations. Now we apply the bias-variance decomposition to re-write the "inner" (conditional) expectation:

$$\mathbb{E}[(A-B)^2 \mid A] = \underbrace{(A - \mathbb{E}[B \mid A])^2}_{\text{squared bias}} + \underbrace{\mathbb{E}[(B - \mathbb{E}[B \mid A])^2 \mid A]}_{\text{variance}}$$

(Here, "squared bias" and "variance" are understood to be conditional on A.) But since A and B are independent, the right-hand side can be simplified as follows:

$$(A - \mathbb{E}[B \mid A])^{2} + \mathbb{E}[(B - \mathbb{E}[B \mid A])^{2} \mid A] = (A - \mathbb{E}[B])^{2} + \mathbb{E}[(B - \mathbb{E}[B])^{2}]$$
$$= (A - \mu)^{2} + \mathbb{E}[(B - \mu)^{2}]$$
$$= (A - \mu)^{2} + \sigma^{2}.$$

Plugging this back into (3) and computing the "outer" expectation,

$$\mathbb{E}[(A-B)^2] = \mathbb{E}[(A-\mu)^2 + \sigma^2]$$

$$= \mathbb{E}[(A-\mu)^2] + \sigma^2 \quad \text{(by linearity of expectation)}$$

$$= \sigma^2 + \sigma^2 = 2\sigma^2.$$

We see that $\mathbb{E}[(A-B)^2]$ for iid random variables A and B is twice the variance of each random variable.

Problem 1.2 Our task is to explain how

$$(f_{\text{avg}}(\vec{x}) - y)^2 = \frac{1}{M} \sum_{t=1}^{M} (f_t(\vec{x}) - y)^2 - \frac{1}{2M^2} \sum_{s=1}^{M} \sum_{t=1}^{M} (f_s(\vec{x}) - f_t(\vec{x}))^2$$
(4)

is a consequence of the bias-variance decomposition.

Let T be a random variable uniformly distributed in $\{1, 2, ..., M\}$, and let $A := f_T(\vec{x})$. Observe that $\mathbb{E}[A] = f_{\text{avg}}(\vec{x})$. The bias-variance decomposition implies

$$\mathbb{E}[(A-y)^2] = (\mathbb{E}[A] - y)^2 + \operatorname{var}(A),$$

which we can re-arrange to

$$(\mathbb{E}[A] - y)^2 = \mathbb{E}[(A - y)^2] - \operatorname{var}(A). \tag{5}$$

If we write out each expectation explicitly, (5) becomes

$$\underbrace{(f_{\text{avg}}(\vec{x}) - y)^2}_{(\mathbb{E}[A] - y)^2} = \underbrace{\frac{1}{M} \sum_{t=1}^{M} (f_t(\vec{x}) - y)^2}_{\mathbb{E}[(A - y)^2]} - \underbrace{\frac{1}{M} \sum_{t=1}^{M} (f_t(\vec{x}) - f_{\text{avg}}(\vec{x}))^2}_{\text{var}(A)}.$$
 (6)

We claim that (6) is equivalent to (4). To see this, recall that by Problem 6,

$$\operatorname{var}(A) = \frac{1}{2} \mathbb{E}[(A - B)^2], \tag{7}$$

where B is an "independent copy" of A (i.e., B has the same distribution as A and is independent of A). If we write out the expectation in (7), we obtain

$$\operatorname{var}(A) = \frac{1}{2} \mathbb{E}[(A - B)^{2}] = \frac{1}{2} \sum_{s=1}^{M} \sum_{t=1}^{M} \Pr[(A, B) = (s, t)] \times (f_{s}(\vec{x}) - f_{t}(\vec{x}))^{2}$$
$$= \frac{1}{2M^{2}} \sum_{s=1}^{M} \sum_{t=1}^{M} (f_{s}(\vec{x}) - f_{t}(\vec{x}))^{2}.$$

Plugging this back into (6) yields the equation (4) that we wanted to establish.