Volumes in high-dimensional space

Daniel Hsu

COMS 4772

Simple volumes

- $\ln \mathbb{R}^{1}$, line segment

$$
[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}
$$

has one-dimensional volume (a.k.a. length) $b-a$.

- $\ln \mathbb{R}^{2}$, square

$$
[a, b]^{2}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}, x_{2} \in[a, b]\right\}
$$

has two-dimensional volume (a.k.a. area) $(b-a)^{2}$.

- $\ln \mathbb{R}^{3}$, cube

$$
[a, b]^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}, x_{2}, x_{3} \in[a, b]\right\}
$$

has three-dimensional volume (a.k.a. volume) $(b-a)^{3}$.

d-dimensional volumes

- Hypercube

$$
[a, b]^{d}=\left\{\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: x_{1}, x_{2}, \ldots, x_{d} \in[a, b]\right\}
$$

has d-dimensional volume $(b-a)^{d}$.

- Use $\operatorname{vol}(A)$ to denote d-dimensional volume of $A \subseteq \mathbb{R}^{d}$.
- For $A \subseteq \mathbb{R}^{d}$ and $c \geq 0$, let

$$
c A:=\{c \boldsymbol{x}: \mathbf{x} \in A\} .
$$

- Example: if $A=[0,1]^{d}$, then $c A=[0, c]^{d}$ and $\operatorname{vol}(c A)=c^{d}$.
- In general,

$$
\operatorname{vol}(c A)=c^{d} \operatorname{vol}(A)
$$

Weird facts about the unit ball

Unit ball $B^{d}:=\left\{\boldsymbol{x} \in \mathbb{R}^{d}:\|\boldsymbol{x}\|_{2} \leq 1\right\}$.

1. Lengths of most points in B^{d} are close to one.
2. Most points in B^{d} are near the "equator".
3. $\lim _{d \rightarrow \infty} \operatorname{vol}\left(B^{d}\right)=0$.

- By contrast, hypercube $[-1,1]^{d}$ has volume 2^{d}.

Length of most points in the unit ball

- For $\varepsilon \in(0,1)$, consider $(1-\varepsilon) B^{d}$ (i.e., ball of radius $\left.1-\varepsilon\right)$.
- $\operatorname{vol}\left((1-\varepsilon) B^{d}\right)=(1-\varepsilon)^{d} \operatorname{vol}\left(B^{d}\right)$
- Therefore

$$
(1-\varepsilon)^{d} \leq e^{-\varepsilon d}
$$

fraction of points in B^{d} have length at most $1-\varepsilon$.

Most points in unit ball are near the "equator"

- Let \boldsymbol{u} be a unit vector ("north pole"), and $\varepsilon \in(0,1)$.
- "Equator": $\left\{\boldsymbol{x} \in B^{d}:\langle\boldsymbol{u}, \boldsymbol{x}\rangle=0\right\}$
- "Tropics": $\left\{\boldsymbol{x} \in B^{d}:-\varepsilon \leq\langle\boldsymbol{u}, \boldsymbol{x}\rangle \leq \varepsilon\right\}$
- Points north of the tropics, $\left\{\boldsymbol{x} \in B^{d}:\langle\boldsymbol{u}, \boldsymbol{x}\rangle>\varepsilon\right\}$, are within distance $\sqrt{1-\varepsilon^{2}}$ of $\varepsilon \boldsymbol{u}$.
- Hence contained in ball of radius $\sqrt{1-\varepsilon^{2}}$.
- Volume is at most $\left(1-\varepsilon^{2}\right)^{d / 2} \operatorname{vol}\left(B^{d}\right)$.
- Similarly, points south of tropics have volume at most $\left(1-\varepsilon^{2}\right)^{d / 2} \operatorname{vol}\left(B^{d}\right)$.
- So volume outside tropics is at most

$$
2\left(1-\varepsilon^{2}\right)^{d / 2} \operatorname{vol}\left(B^{d}\right) \leq 2 e^{-\varepsilon^{2} d / 2} \operatorname{vol}\left(B^{d}\right)
$$

Volume of unit ball

- Consider an orthonormal basis $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{d}$ of \mathbb{R}^{d}.
- Let T_{i} be the "tropics" when \boldsymbol{u}_{i} is the "north pole".
- Volume of points in $\bigcap_{i=1}^{d} T_{i}$ is

$$
\operatorname{vol}\left(\bigcap_{i=1}^{d} T_{i}\right) \geq \operatorname{vol}\left(B^{d}\right)-\sum_{i=1}^{d} \operatorname{vol}\left(T_{i}^{c}\right) \geq\left(1-2 d e^{-\varepsilon^{2} d / 2}\right) \operatorname{vol}\left(B^{d}\right)
$$

- But $\operatorname{vol}\left(\bigcap_{i=1}^{d} T_{i}\right)=\operatorname{vol}\left([-\varepsilon, \varepsilon]^{d}\right)=(2 \varepsilon)^{d}$.
- If $2 d e^{-\varepsilon^{2} d / 2} \leq 1$, then

$$
\operatorname{vol}\left(B^{d}\right) \leq \frac{(2 \varepsilon)^{d}}{1-2 d e^{-\varepsilon^{2} d / 2}}
$$

- For $\varepsilon=\sqrt{2 \ln (4 d) / d}$, bound is

$$
\operatorname{vol}\left(B^{d}\right) \leq 2\left(\frac{8 \ln (4 d)}{d}\right)^{d / 2} \xrightarrow{d \rightarrow \infty} 0
$$

