Volumes in high-dimensional space

Daniel Hsu

COMS 4772

Simple volumes

▶ In \mathbb{R}^1 , line segment

 $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$

has one-dimensional volume (a.k.a. *length*) b - a.

▶ In \mathbb{R}^2 , square

$$[a, b]^2 = \{(x_1, x_2) \in \mathbb{R}^2 : x_1, x_2 \in [a, b]\}$$

has two-dimensional volume (a.k.a. *area*) $(b - a)^2$. In \mathbb{R}^3 , cube

 $[a,b]^3 = \{(x_1,x_2,x_3) \in \mathbb{R}^3 : x_1,x_2,x_3 \in [a,b]\}$

has three-dimensional volume (a.k.a. volume) $(b - a)^3$.

1

Volume of unit ball
• Consider an orthonormal basis
$$u_1, u_2, \dots, u_d$$
 of \mathbb{R}^d .
• Let T_i be the "tropics" when u_i is the "north pole".
• Volume of points in $\bigcap_{i=1}^d T_i$ is
 $\operatorname{vol}\left(\bigcap_{i=1}^d T_i\right) \ge \operatorname{vol}(B^d) - \sum_{i=1}^d \operatorname{vol}(T_i^c) \ge (1 - 2de^{-\varepsilon^2 d/2}) \operatorname{vol}(B^d)$.
• But $\operatorname{vol}\left(\bigcap_{i=1}^d T_i\right) = \operatorname{vol}([-\varepsilon, \varepsilon]^d) = (2\varepsilon)^d$.
• If $2de^{-\varepsilon^2 d/2} \le 1$, then
 $\operatorname{vol}(B^d) \le \frac{(2\varepsilon)^d}{1 - 2de^{-\varepsilon^2 d/2}}$.
• For $\varepsilon = \sqrt{2\ln(4d)/d}$, bound is
 $\operatorname{vol}(B^d) \le 2\left(\frac{8\ln(4d)}{d}\right)^{d/2} \xrightarrow{d \to \infty} 0$.