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Supremum of simple stochastic processes
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Recap: JL lemma
JL lemma. For any ε ∈ (0, 1/2), point set S ⊂ Rd of cardinality
|S| = n, and k ∈ N such that k ≥ 16 ln n

ε2 , there exists a linear map
f : Rd → Rk such that
(1−ε)‖x−y‖22 ≤ ‖f (x)−f (y)‖22 ≤ (1+ε)‖x−y‖22 for all x, y ∈ S .

Main probabilistic lemma
∃ random linear map M : Rd → Rk such that, for any u ∈ Sd−1,

P
(∣∣∣‖Mu‖22 − 1

∣∣∣ > ε

)
≤ 2 exp

(
−Ω(kε2)

)
.

JL lemma is consequence of main probabilistic lemma as applied to
collection T ⊂ Sd−1 of |T | =

(n
2
)
unit vectors (+ union bound):

P
(
max
u∈T

∣∣∣‖Mu‖22 − 1
∣∣∣ > ε

)
≤ |T | · 2 exp

(
−Ω(kε2)

)
.
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Related question

For T ⊆ Sd−1, expected maximum deviation

Emax
u∈T

∣∣∣‖Mu‖22 − 1
∣∣∣ ≤ ?

General questions
For arbitrary collection of zero-mean random variables {Xt : t ∈ T}:

Emax
t∈T

Xt ≤ ?

Emax
t∈T
|Xt | ≤ ?
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Finite collections

Let {Xt : t ∈ T} be a finite collection of v -subgaussian and
mean-zero random variables. Then

Emax
t∈T

Xt ≤
√
2v ln |T | .

I Doesn’t assume independence of {Xt : t ∈ T}.
I (Independent case is the worst.)

I Get bound on Emaxt∈T |Xt | as corollary.
I Apply result to collection

{Xt : t ∈ T} ∪ {−Xt : t ∈ T} .
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Proof
Starting point is identity from two invertible operations (λ > 0):

Emax
t∈T

Xt = 1
λ
ln exp

(
Emax

t∈T
λXt

)

I Apply Jensen’s inequality:

≤ 1
λ
lnE exp

(
max
t∈T

λXt

)
= 1

λ
lnE

(
max
t∈T

exp(λXt)
)

I Bound max with sum, and use linearity of expectation:

≤ 1
λ
ln
∑

t∈T
E exp(λXt)

I Exploit v -subgaussian property:

≤ 1
λ
ln
∑

t∈T
exp
(
vλ2/2

)
= ln |T |

λ
+ vλ

2

I Choose appropriate λ to conclude.
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Alternative proof

Integrate tail bound: for any non-negative random variable Y ,

E(Y ) =
∫ ∞

0
P(Y ≥ y) dy .

For Y := max
t∈T
|Xt |, gives same result up to constants.
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Infinite collections

For infinite collection of zero-mean random variables {Xt : t ∈ T}:

E sup
t∈T

Xt ≤ ?

I In general, can go →∞.
I To bound, must exploit correlations among the Xt .

I E.g., in
{∣∣‖Mu‖2

2 − 1
∣∣ : u ∈ T

}
for T ⊆ Sd−1, the random

variables for u and u + δ, for small δ, are highly correlated.
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Convex hulls of linear functionals
Let T ⊂ Rd be a finite set of vectors, and let X be a random vector
in Rd such that 〈w ,X〉 is v -subgaussian for every w ∈ T . Then

E max
w̃∈conv(T )

〈w̃ ,X〉 ≤
√
2v ln |T | .

Proof:

I Write w̃ ∈ conv(T ) as w̃ = ∑
w∈T pww for some pw ≥ 0 that

sum to one.
I Observe that

〈w̃ , x〉 =
∑

w∈T
pw〈w , x〉 ≤ max

w∈T
〈w , x〉 .

I So max over w̃ ∈ conv(T ) is at most max over w ∈ T .
I Conclude by applying previous result for finite collections.
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Euclidean norm

Let X be a random vector such that 〈u,X〉 is v -subgaussian for
every u ∈ Sd−1. Then

E ‖X‖2 = E max
u∈Sd−1

〈u,X〉 ≤ 2
√
2v ln 5d = O

(√
vd
)
.

Key step of proof:

I For any ε > 0, there is a finite subset N ⊂ Sd−1 of cardinality
|N | ≤ (1 + 2/ε)d such that, for every u ∈ Sd−1, there exists
u0 ∈ N with

‖u − u0‖2 ≤ ε .

I Such a set N is called an ε-net for Sd−1.
I We need a 1/2-net, of cardinality at most 5d .
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Proof

I Write u ∈ Sd−1 as
u = u0 + δq ,

where u0 ∈ N , q ∈ Sd−1, δ ∈ [0, 1/2], so

〈u,X〉 = 〈u0,X〉+ δ〈q,X〉 .

I Observe that

max
u∈Sd−1

〈u,X〉 ≤ max
u0∈N

〈u0,X〉+ max
δ∈[0,1/2]

max
q∈Sd−1

δ〈q,X〉

≤ max
u0∈N

〈u0,X〉+ 1
2 max

q∈Sd−1
〈q,X〉 .

I So max over Sd−1 is at most twice max over N .
I Conclude by applying previous result for finite collections.
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ε-nets for unit sphere
There is an ε-net for Sd−1 of cardinality at most (1 + 2/ε)d .
Proof:

I Repeatedly select points from Sd−1 so that each selected point
has distance more than ε from all previously selected points.

I Equivalent: repeatedly select points from Sd−1 as long as balls
of radius ε/2, centered at selected points, are disjoint.

I (Process must eventually stop.)
I When process stops, every u ∈ Sd−1 is at distance at most ε

from selected points.
I I.e., selected points form an ε-net for Sd−1.

I If select N points, then the N balls of radius ε/2 are disjoint,
and they are contained in a ball of radius 1 + ε/2. So

N vol((ε/2)Bd ) ≤ vol((1 + ε/2)Bd ) .

I This implies N ≤ (1 + 2/ε)d .
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Remarks

I All previous results also hold with random variables are
(v , c)-subexponential (possibly with c > 0), with a slightly
different bound: e.g.,

Emax
t∈T

Xt ≤ max
{√

2v ln |T |, 2c ln |T |
}
.

I Also easy to get probability tail bounds (rather than
expectation bounds).

13

Subspace embeddings
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Subspace JL lemma

Consider k×d random matrix M whose entries are iid N(0, 1/k).
For a W ⊆ Rd be a subspace of dimension r ,

E max
u∈Sd−1∩W

∣∣∣‖Mu‖22 − 1
∣∣∣ ≤ O

(√ r
k + r

k

)
.

Bound is at most ε when k ≥ O
(

r
ε2

)
.

Implies existence of mapping M : Rd → Rk that approximately
preserves all distances between points in W .
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Proof of subspace JL lemma

Let columns of Q be ONB for W . Then

max
u∈Sd−1∩W

∣∣∣‖Mu‖22 − 1
∣∣∣ = max

u∈Sr−1

∣∣∣u>Q>
(
M>M − I

)
Qu

∣∣∣

= max
u,v∈Sr−1

u>Q>
(
M>M − I

)
Qv .

Lemma. For any u, v ∈ Sr−1,

Xu,v := u>Q>
(
M>M − I

)
Qv

is (O(1/k),O(1/k))-subexponential.
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Proof of subspace JL lemma (continued)
For u, v ∈ Sr−1, Xu,v := u>Q>

(
M>M − I

)
Qv .

Let N be 1/4-net for Sr−1.

I Write u, v ∈ Sr−1 as

u = u0 + εp , v = v0 + δq ,

where u0, v0 ∈ N , p,q ∈ Sr−1 and ε, δ ∈ [0, 1/4], so
Xu,v = Xu0,v0 + εXp,v + δXu0,q .

I Therefore

max
u,v∈Sr−1

Xu,v ≤ max
u0,v0∈N

Xu0,v0 + 1
2 max

p,q∈Sr−1
Xp,q ,

which implies

max
u,v∈Sr−1

Xu,v ≤ 2 max
u0,v0∈N

Xu0,v0 .

I Conclude by applying previous result for finite collections.
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Application to least squares
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Big data least squares

I Input: matrix A ∈ Rn×d , vector b ∈ Rn (n� d).
I Goal: find x ∈ Rd so as to (approx.) minimize ‖Ax − b‖22.

I Computation time: O(nd2).
I Can we speed this up?
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Simple approach

I Pick m� n.
I Let M be random m×n matrix (e.g., entries iid N(0, 1/m),

Fast JL Transform).
I Let Ã := MA and b̃ := Mb.
I Obtain solution x̂ to least squares problem on (Ã, b̃).
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Simple (somewhat loose) analysis
I Let W be subspace spanned by columns of A and b.

I Dimension is at most d + 1.
I If m ≥ O(d/ε2), then M is subspace embedding for W :

(1− ε)‖x‖22 ≤ ‖Mx‖22 ≤ (1 + ε)‖x‖22 for all x ∈W .

I Let x? := argminx∈Rd ‖Ax − b‖22.
I

‖Ax̂ − b‖22 ≤
1

1− ε‖M(Ax̂ − b)‖22

≤ 1
1− ε‖M(Ax? − b)‖22

≤ 1 + ε

1− ε‖Ax? − b‖22 .

I Running time (using FJLT): O
(

(m + n)d log n + md2
)
.
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Another perspective: random sampling

I Pick random sample of m� n of rows of (A,b); obtain
solution x̂ for least squares problem on the sample.

I Hope x̂ is also good for the original problem.
I In statistics, this is the random design setting for regression.

I Random sample of covariates Ã ∈ Rm×d and responses b̃ ∈ Rm

from full population (A,b).
I Least squares solution x̂ on (Ã, b̃) is MLE for linear regression

coefficients under linear model with Gaussian noise.
I Can also regard x̂ as empirical risk minimizer among all linear

predictors under squared loss.
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Simple random design analysis
I Let x? := argminx∈Rd ‖Ax − b‖22.
I With high probability over choice of random sample,

‖Ax̂ − b‖22 ≤
(
1 + O

(
κ

m

))
· ‖Ax? − b‖22

(up to lower-order terms), where

κ := n ·max
i∈[n]
‖(A>A)−1/2A>e i‖22

and e i is i-th coordinate basis vector.

I Write thin SVD of A as A = USV>, where U ∈ Rn×d . Then

(A>A)−1/2A> = (V S2V>)−1/2V SU> = V U> .
I So κ = n ·maxi∈[n] ‖U>e i‖22.

I ‖U>e i‖2
2 is statistical leverage score for i-th row of A: measures

how much “influence” i-th row has on least squares solution.
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Statistical leverage

I i-th statistical leverage score: `i := ‖U>e i‖22, where U ∈ Rn×d

is matrix of left singular vectors of A.
I Two extreme cases:

U =
[

Id×d
0(n−d)×d

]
⇒ n ·max

i∈[n]
`i = n .

U = 1√n
[
Hne1 Hne2 · · · Hned

]
⇒ n ·max

i∈[n]
`i = d ,

where Hn is n×n Hadamard matrix.
I First case: first d rows are the only rows that matter.
I Second case: all n rows equally important.
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Ensuring small statistical leverage

I To ensure situation is more like second case, apply random
rotation (e.g., randomized Hadamard transform) to A and b.

I Randomly mixes up rows of (A,b) so no single row is (much)
more important than another.

I Get n ·maxi∈[n] `i = O(d + log n) with high probability.
I To get 1 + ε approximation ratio, i.e.,

‖Ax̂ − b‖22 ≤ (1 + ε) · ‖Ax? − b‖22 ,

suffices to have

m ≥ O
(
d + log n

ε

)
.
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Application to compressed sensing
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Under-determined least squares

I Input: matrix A ∈ Rn×d , vector b ∈ Rn (n� d).
I Goal: find sparsest x ∈ Rd so as to minimize ‖Ax − b‖22.

I NP-hard in general.
I Suppose b = Ax̄ for some x̄ ∈ Rd with nnz(x̄) ≤ k.

I I.e., x̄ is k-sparse.
I Is x̄ the (unique) sparsest solution?
I If so, how to find it?
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Null space property
Lemma. Null space of A does not contain any non-zero 2k-sparse
vectors ⇐⇒ every k-sparse vector x̄ ∈ Rd is the unique solution to
Ax = Ax̄.

I Proof. (⇒) Take any k-sparse vectors x and y with Ax = Ay .
Want to show x = y .

I Then x − y is 2k-sparse, and A(x − y) = 0.
I By assumption, null space of A does not contain any non-zero

2k-sparse vectors.
I So x − y = 0, i.e., x = y .

I (⇐) Take any 2k-sparse vector z in the null space of A. Want
to show z = 0.

I Write it as z = x − y for some k-sparse vectors x and y with
disjoint supports.

I Then A(x − y) = 0, and hence x = y by assumption.
I But x and y have disjoint support, so it must be that

x = y = 0, so z = 0.
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Null space property from subspace embeddings

If A is n×d random matrix with iid N(0, 1) entries, then under what
conditions is there no non-zero 2k-sparse vector in its null space?

I Want: for any 2k-sparse vector z, Az 6= 0, i.e., ‖Az‖22 > 0.
I Consider a particular choice I ⊆ [d ] of |I| = 2k coordinates,

and the corresponding subspace WI spanned by {e i : i ∈ I}.
I Every 2k-sparse z is in WI for some I.

I Sufficient for A to be 1/2-subspace embedding for WI for all I:

1
2‖z‖

2
2 ≤ ‖Az‖22 ≤

3
2‖z‖

2
2 for all 2k-sparse z .
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Null space property from subspace embeddings (continued)

I Say A fails for I if it is not a 1/2-subspace embedding for WI .
I Subspace JL lemma:

P(A fails for I) ≤ 2O(k) exp
(−Ω(n)

)
.

I Union bound over all choices of I with |I| = 2k:

P(A fails for some I) ≤
(
d
2k

)
2O(k) exp

(−Ω(n)
)
.

I To ensure this is, say, at most 1/2, just need

n ≥ O


k + log

(
d
2k

)
 = O

(
k + k log(d/k)

)
.
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Restricted isometry property

(`, δ)-restricted isometry property (RIP):

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all `-sparse z .

I Many algorithms can recover unique sparsest solution under
RIP (with ` = O(k) and δ = Ω(1)).

I E.g., Basis pursuit, Lasso, orthogonal matching pursuit.
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