Subspace embeddings

Daniel Hsu

COMS 4772

Supremum of simple stochastic processes

Recap: JL lemma

JL lemma. For any $\varepsilon \in(0,1 / 2)$, point set $S \subset \mathbb{R}^{d}$ of cardinality $|S|=n$, and $k \in \mathbb{N}$ such that $k \geq \frac{16 \ln n}{\varepsilon^{2}}$, there exists a linear map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ such that $(1-\varepsilon)\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} \leq\|f(\boldsymbol{x})-f(\boldsymbol{y})\|_{2}^{2} \leq(1+\varepsilon)\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} \quad$ for all $\boldsymbol{x}, \boldsymbol{y} \in S$.

Main probabilistic lemma
\exists random linear map $\boldsymbol{M}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ such that, for any $\boldsymbol{u} \in S^{d-1}$,

$$
\mathbb{P}\left(\left|\|\boldsymbol{M} \boldsymbol{u}\|_{2}^{2}-1\right|>\varepsilon\right) \leq 2 \exp \left(-\Omega\left(k \varepsilon^{2}\right)\right) .
$$

JL lemma is consequence of main probabilistic lemma as applied to collection $T \subset S^{d-1}$ of $|T|=\binom{n}{2}$ unit vectors (+ union bound):

$$
\mathbb{P}\left(\max _{\boldsymbol{u} \in T}\left|\|\boldsymbol{M} \boldsymbol{u}\|_{2}^{2}-1\right|>\varepsilon\right) \leq|T| \cdot 2 \exp \left(-\Omega\left(k \varepsilon^{2}\right)\right)
$$

Related question

For $T \subseteq S^{d-1}$, expected maximum deviation

$$
\mathbb{E} \max _{\boldsymbol{u} \in T}\left|\|\boldsymbol{M u}\|_{2}^{2}-1\right| \leq ?
$$

General questions
For arbitrary collection of zero-mean random variables $\left\{X_{t}: t \in T\right\}$:

$$
\begin{gathered}
\mathbb{E} \max _{t \in T} X_{t} \leq ? \\
\mathbb{E} \max _{t \in T}\left|X_{t}\right| \leq ?
\end{gathered}
$$

Finite collections

Let $\left\{X_{t}: t \in T\right\}$ be a finite collection of v-subgaussian and mean-zero random variables. Then

$$
\mathbb{E} \max _{t \in T} X_{t} \leq \sqrt{2 v \ln |T|} .
$$

- Doesn't assume independence of $\left\{X_{t}: t \in T\right\}$.
- (Independent case is the worst.)
- Get bound on $\mathbb{E} \max _{t \in T}\left|X_{t}\right|$ as corollary.
- Apply result to collection

$$
\left\{X_{t}: t \in T\right\} \cup\left\{-X_{t}: t \in T\right\} .
$$

Proof

Starting point is identity from two invertible operations $(\lambda>0)$:

$$
\mathbb{E} \max _{t \in T} X_{t}=\frac{1}{\lambda} \ln \exp \left(\mathbb{E} \max _{t \in T} \lambda X_{t}\right)
$$

- Apply Jensen's inequality:

$$
\leq \frac{1}{\lambda} \ln \mathbb{E} \exp \left(\max _{t \in T} \lambda X_{t}\right)=\frac{1}{\lambda} \ln \mathbb{E}\left(\max _{t \in T} \exp \left(\lambda X_{t}\right)\right)
$$

- Bound max with sum, and use linearity of expectation:

$$
\leq \frac{1}{\lambda} \ln \sum_{t \in T} \mathbb{E} \exp \left(\lambda X_{t}\right)
$$

- Exploit v-subgaussian property:

$$
\leq \frac{1}{\lambda} \ln \sum_{t \in T} \exp \left(v \lambda^{2} / 2\right)=\frac{\ln |T|}{\lambda}+\frac{v \lambda}{2}
$$

- Choose appropriate λ to conclude.

Alternative proof

Integrate tail bound: for any non-negative random variable Y,

$$
\mathbb{E}(Y)=\int_{0}^{\infty} \mathbb{P}(Y \geq y) \mathrm{d} y .
$$

For $Y:=\max _{t \in T}\left|X_{t}\right|$, gives same result up to constants.

Infinite collections

For infinite collection of zero-mean random variables $\left\{X_{t}: t \in T\right\}$:

$$
\mathbb{E} \sup _{t \in T} X_{t} \leq ?
$$

- In general, can go $\rightarrow \infty$.
- To bound, must exploit correlations among the X_{t}.
- E.g., in $\left\{\left|\|\boldsymbol{M} \boldsymbol{u}\|_{2}^{2}-1\right|: \boldsymbol{u} \in T\right\}$ for $T \subseteq S^{d-1}$, the random variables for \boldsymbol{u} and $\boldsymbol{u}+\boldsymbol{\delta}$, for small $\boldsymbol{\delta}$, are highly correlated.

Convex hulls of linear functionals

Let $T \subset \mathbb{R}^{d}$ be a finite set of vectors, and let \boldsymbol{X} be a random vector in \mathbb{R}^{d} such that $\langle\boldsymbol{w}, \boldsymbol{X}\rangle$ is v-subgaussian for every $\boldsymbol{w} \in T$. Then

$$
\mathbb{E} \max _{\tilde{\boldsymbol{w}} \in \operatorname{conv}(T)}\langle\tilde{\boldsymbol{w}}, \boldsymbol{X}\rangle \leq \sqrt{2 v \ln |T|} .
$$

Proof:

- Write $\tilde{\boldsymbol{w}} \in \operatorname{conv}(T)$ as $\tilde{\boldsymbol{w}}=\sum_{\boldsymbol{w} \in T} p_{\boldsymbol{w}} \boldsymbol{w}$ for some $p_{\boldsymbol{w}} \geq 0$ that sum to one.
- Observe that

$$
\langle\tilde{\boldsymbol{w}}, \boldsymbol{x}\rangle=\sum_{\boldsymbol{w} \in T} p_{\boldsymbol{w}}\langle\boldsymbol{w}, \boldsymbol{x}\rangle \leq \max _{\boldsymbol{w} \in T}\langle\boldsymbol{w}, \boldsymbol{x}\rangle .
$$

- So max over $\tilde{\boldsymbol{w}} \in \operatorname{conv}(T)$ is at most max over $\boldsymbol{w} \in T$.
- Conclude by applying previous result for finite collections.

Euclidean norm

Let \boldsymbol{X} be a random vector such that $\langle\boldsymbol{u}, \boldsymbol{X}\rangle$ is v-subgaussian for every $\boldsymbol{u} \in S^{d-1}$. Then

$$
\mathbb{E}\|\boldsymbol{X}\|_{2}=\mathbb{E} \max _{\boldsymbol{u} \in S^{d-1}}\langle\boldsymbol{u}, \boldsymbol{X}\rangle \leq 2 \sqrt{2 v \ln 5^{d}}=O(\sqrt{v d}) .
$$

Key step of proof:

- For any $\varepsilon>0$, there is a finite subset $\mathcal{N} \subset S^{d-1}$ of cardinality $|\mathcal{N}| \leq(1+2 / \varepsilon)^{d}$ such that, for every $\boldsymbol{u} \in S^{d-1}$, there exists $\boldsymbol{u}_{0} \in \mathcal{N}$ with

$$
\left\|\boldsymbol{u}-\boldsymbol{u}_{0}\right\|_{2} \leq \varepsilon
$$

- Such a set \mathcal{N} is called an ε-net for S^{d-1}.
- We need a $1 / 2$-net, of cardinality at most 5^{d}.

Proof

- Write $\boldsymbol{u} \in S^{d-1}$ as

$$
\boldsymbol{u}=\boldsymbol{u}_{0}+\delta \boldsymbol{q}
$$

where $\boldsymbol{u}_{0} \in \mathcal{N}, \boldsymbol{q} \in S^{d-1}, \delta \in[0,1 / 2]$, so

$$
\langle\boldsymbol{u}, \boldsymbol{X}\rangle=\left\langle\boldsymbol{u}_{0}, \boldsymbol{X}\right\rangle+\delta\langle\boldsymbol{q}, \boldsymbol{X}\rangle .
$$

- Observe that

$$
\begin{aligned}
\max _{\boldsymbol{u} \in S^{d-1}}\langle\boldsymbol{u}, \boldsymbol{X}\rangle & \leq \max _{\boldsymbol{u}_{0} \in \mathcal{N}}\left\langle\boldsymbol{u}_{0}, \boldsymbol{X}\right\rangle+\max _{\delta \in[0,1 / 2]} \max _{\boldsymbol{q} \in S^{d-1}} \delta\langle\boldsymbol{q}, \boldsymbol{X}\rangle \\
& \leq \max _{\boldsymbol{u}_{0} \in \mathcal{N}}\left\langle\boldsymbol{u}_{0}, \boldsymbol{X}\right\rangle+\frac{1}{2} \max _{\boldsymbol{q} \in S^{d-1}}\langle\boldsymbol{q}, \boldsymbol{X}\rangle .
\end{aligned}
$$

- So max over S^{d-1} is at most twice max over \mathcal{N}.
- Conclude by applying previous result for finite collections.

ε-nets for unit sphere

There is an ε-net for S^{d-1} of cardinality at most $(1+2 / \varepsilon)^{d}$.

Proof:

- Repeatedly select points from S^{d-1} so that each selected point has distance more than ε from all previously selected points.
- Equivalent: repeatedly select points from S^{d-1} as long as balls of radius $\varepsilon / 2$, centered at selected points, are disjoint.
- (Process must eventually stop.)
- When process stops, every $\boldsymbol{u} \in S^{d-1}$ is at distance at most ε from selected points.
- I.e., selected points form an ε-net for S^{d-1}.
- If select N points, then the N balls of radius $\varepsilon / 2$ are disjoint, and they are contained in a ball of radius $1+\varepsilon / 2$. So

$$
N \operatorname{vol}\left((\varepsilon / 2) B^{d}\right) \leq \operatorname{vol}\left((1+\varepsilon / 2) B^{d}\right) .
$$

- This implies $N \leq(1+2 / \varepsilon)^{d}$.

Remarks

- All previous results also hold with random variables are (v, c)-subexponential (possibly with $c>0$), with a slightly different bound: e.g.,

$$
\mathbb{E} \max _{t \in T} X_{t} \leq \max \{\sqrt{2 v \ln |T|}, 2 c \ln |T|\} .
$$

- Also easy to get probability tail bounds (rather than expectation bounds).

Subspace embeddings

Subspace JL lemma

Consider $k \times d$ random matrix \boldsymbol{M} whose entries are iid $\mathrm{N}(0,1 / k)$.
For a $W \subseteq \mathbb{R}^{d}$ be a subspace of dimension r,

$$
\mathbb{E} \max _{\boldsymbol{u} \in S^{d-1} \cap W}\left|\|\boldsymbol{M} \boldsymbol{u}\|_{2}^{2}-1\right| \leq O\left(\sqrt{\frac{r}{k}}+\frac{r}{k}\right) .
$$

Bound is at most ε when $k \geq O\left(\frac{r}{\varepsilon^{2}}\right)$.
Implies existence of mapping $\boldsymbol{M}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ that approximately preserves all distances between points in W.

Proof of subspace JL lemma

Let columns of \boldsymbol{Q} be ONB for W. Then

$$
\begin{aligned}
\max _{\boldsymbol{u} \in S^{d-1} \cap W}\left|\|\boldsymbol{M} \boldsymbol{u}\|_{2}^{2}-1\right| & =\max _{\boldsymbol{u} \in S^{r-1}}\left|\boldsymbol{u}^{\top} \boldsymbol{Q}^{\top}\left(\boldsymbol{M}^{\top} \boldsymbol{M}-\boldsymbol{I}\right) \boldsymbol{Q} \boldsymbol{u}\right| \\
& =\max _{\boldsymbol{u}, \boldsymbol{v} \in S^{r-1}} \boldsymbol{u}^{\top} \boldsymbol{Q}^{\top}\left(\boldsymbol{M}^{\top} \boldsymbol{M}-\boldsymbol{I}\right) \boldsymbol{Q} \boldsymbol{v}
\end{aligned}
$$

Lemma. For any $\boldsymbol{u}, \boldsymbol{v} \in S^{r-1}$,

$$
X_{u, \boldsymbol{v}}:=\boldsymbol{u}^{\top} \boldsymbol{Q}^{\top}\left(\boldsymbol{M}^{\top} \boldsymbol{M}-\boldsymbol{I}\right) \boldsymbol{Q} \boldsymbol{v}
$$

is $(O(1 / k), O(1 / k))$-subexponential.

Proof of subspace JL lemma (continued)

For $\boldsymbol{u}, \boldsymbol{v} \in S^{r-1}, X_{\boldsymbol{u}, \boldsymbol{v}}:=\boldsymbol{u}^{\top} \boldsymbol{Q}^{\top}\left(\boldsymbol{M}^{\top} \boldsymbol{M}-\boldsymbol{I}\right) \boldsymbol{Q} \boldsymbol{v}$.
Let \mathcal{N} be $1 / 4$-net for S^{r-1}.

- Write $\boldsymbol{u}, \boldsymbol{v} \in S^{r-1}$ as

$$
\boldsymbol{u}=\boldsymbol{u}_{0}+\varepsilon \boldsymbol{p}, \quad \boldsymbol{v}=\boldsymbol{v}_{0}+\delta \boldsymbol{q}
$$

where $\boldsymbol{u}_{0}, \boldsymbol{v}_{0} \in \mathcal{N}, \boldsymbol{p}, \boldsymbol{q} \in S^{r-1}$ and $\varepsilon, \delta \in[0,1 / 4]$, so

$$
X_{\boldsymbol{u}, \boldsymbol{v}}=X_{\boldsymbol{u}_{0}, \boldsymbol{v}_{0}}+\varepsilon X_{\boldsymbol{p}, \boldsymbol{v}}+\delta X_{\boldsymbol{u}_{0}, \boldsymbol{q}}
$$

- Therefore

$$
\max _{\boldsymbol{u}, \boldsymbol{v} \in S^{r-1}} X_{\boldsymbol{u}, \boldsymbol{v}} \leq \max _{\boldsymbol{u}_{0}, \boldsymbol{v}_{0} \in \mathcal{N}} X_{\boldsymbol{u}_{0}, \boldsymbol{v}_{0}}+\frac{1}{2} \max _{\boldsymbol{p}, \boldsymbol{q} \in S^{r-1}} X_{\boldsymbol{p}, \boldsymbol{q}}
$$

which implies

$$
\max _{\boldsymbol{u}, \boldsymbol{v} \in S^{r-1}} X_{\boldsymbol{u}, \boldsymbol{v}} \leq 2 \max _{\boldsymbol{u}_{0}, \boldsymbol{v}_{0} \in \mathcal{N}} X_{\boldsymbol{u}_{0}, \boldsymbol{v}_{0}}
$$

- Conclude by applying previous result for finite collections.

Application to least squares

Big data least squares

- Input: matrix $\boldsymbol{A} \in \mathbb{R}^{n \times d}$, vector $\boldsymbol{b} \in \mathbb{R}^{n}(n \gg d)$.
- Goal: find $\boldsymbol{x} \in \mathbb{R}^{d}$ so as to (approx.) minimize $\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}$.
- Computation time: $O\left(n d^{2}\right)$.
- Can we speed this up?

Simple approach

- Pick $m \ll n$.
- Let \boldsymbol{M} be random $m \times n$ matrix (e.g., entries iid $\mathrm{N}(0,1 / m)$, Fast JL Transform).
- Let $\widetilde{\boldsymbol{A}}:=\boldsymbol{M} \boldsymbol{A}$ and $\tilde{\boldsymbol{b}}:=\boldsymbol{M b}$.
- Obtain solution $\hat{\boldsymbol{x}}$ to least squares problem on $(\tilde{\boldsymbol{A}}, \tilde{\boldsymbol{b}})$.

Simple (somewhat loose) analysis

- Let W be subspace spanned by columns of \boldsymbol{A} and \boldsymbol{b}.
- Dimension is at most $d+1$.
- If $m \geq O\left(d / \varepsilon^{2}\right)$, then \boldsymbol{M} is subspace embedding for W :

$$
(1-\varepsilon)\|\boldsymbol{x}\|_{2}^{2} \leq\|\boldsymbol{M} \boldsymbol{x}\|_{2}^{2} \leq(1+\varepsilon)\|\boldsymbol{x}\|_{2}^{2} \quad \text { for all } \boldsymbol{x} \in W .
$$

- Let $\boldsymbol{x}_{\star}:=\arg \min _{\boldsymbol{x} \in \mathbb{R}^{d}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}$.

$$
\begin{aligned}
\|\boldsymbol{A} \hat{\boldsymbol{x}}-\boldsymbol{b}\|_{2}^{2} & \leq \frac{1}{1-\varepsilon}\|\boldsymbol{M}(\boldsymbol{A} \hat{\boldsymbol{x}}-\boldsymbol{b})\|_{2}^{2} \\
& \leq \frac{1}{1-\varepsilon}\left\|\boldsymbol{M}\left(\boldsymbol{A} \boldsymbol{x}_{\star}-\boldsymbol{b}\right)\right\|_{2}^{2} \\
& \leq \frac{1+\varepsilon}{1-\varepsilon}\left\|\boldsymbol{A} \boldsymbol{x}_{\star}-\boldsymbol{b}\right\|_{2}^{2} .
\end{aligned}
$$

- Running time (using FJLT): $O\left((m+n) d \log n+m d^{2}\right)$.

Another perspective: random sampling

- Pick random sample of $m \ll n$ of rows of $(\boldsymbol{A}, \boldsymbol{b})$; obtain solution $\hat{\boldsymbol{x}}$ for least squares problem on the sample.
- Hope $\hat{\boldsymbol{x}}$ is also good for the original problem.
- In statistics, this is the random design setting for regression.
- Random sample of covariates $\tilde{\boldsymbol{A}} \in \mathbb{R}^{m \times d}$ and responses $\tilde{\boldsymbol{b}} \in \mathbb{R}^{m}$ from full population $(\boldsymbol{A}, \boldsymbol{b})$.
- Least squares solution $\hat{\boldsymbol{x}}$ on $(\tilde{\boldsymbol{A}}, \tilde{\boldsymbol{b}})$ is MLE for linear regression coefficients under linear model with Gaussian noise.
- Can also regard $\hat{\boldsymbol{x}}$ as empirical risk minimizer among all linear predictors under squared loss.

Simple random design analysis

- Let $\boldsymbol{x}_{\star}:=\arg \min _{x_{x} \in \mathbb{R}^{d}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}$.
- With high probability over choice of random sample,

$$
\|\boldsymbol{A} \hat{\boldsymbol{x}}-\boldsymbol{b}\|_{2}^{2} \leq\left(1+O\left(\frac{\kappa}{m}\right)\right) \cdot\left\|\boldsymbol{A} \boldsymbol{x}_{\star}-\boldsymbol{b}\right\|_{2}^{2}
$$

(up to lower-order terms), where

$$
\kappa:=n \cdot \max _{i \in[n]}\left\|\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1 / 2} \boldsymbol{A}^{\top} \boldsymbol{e}_{i}\right\|_{2}^{2}
$$

and $\boldsymbol{e}_{\boldsymbol{i}}$ is i-th coordinate basis vector.

- Write thin SVD of \boldsymbol{A} as $\boldsymbol{A}=\boldsymbol{U S} \boldsymbol{V}^{\top}$, where $\boldsymbol{U} \in \mathbb{R}^{n \times d}$. Then

$$
\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1 / 2} \boldsymbol{A}^{\top}=\left(\boldsymbol{V} \boldsymbol{S}^{2} \boldsymbol{V}^{\top}\right)^{-1 / 2} \boldsymbol{V} \boldsymbol{S} \boldsymbol{U}^{\top}=\boldsymbol{V} \boldsymbol{U}^{\top} .
$$

- So $\kappa=n \cdot \max _{i \in[n]}\left\|\boldsymbol{U}^{\top} \boldsymbol{e}_{i}\right\|_{2}^{2}$.
- $\left\|\boldsymbol{U}^{\top} \boldsymbol{e}_{i}\right\|_{2}^{2}$ is statistical leverage score for i-th row of \boldsymbol{A} : measures how much "influence" i-th row has on least squares solution.

Statistical leverage

- i-th statistical leverage score: $\ell_{i}:=\left\|\boldsymbol{U}^{\top} \boldsymbol{e}_{i}\right\|_{2}^{2}$, where $\boldsymbol{U} \in \mathbb{R}^{n \times d}$ is matrix of left singular vectors of \boldsymbol{A}.
- Two extreme cases:

$$
\begin{aligned}
\boldsymbol{U} & =\left[\begin{array}{c}
\boldsymbol{I}_{d \times d} \\
\mathbf{0}_{(n-d) \times d}
\end{array}\right]
\end{aligned} \Rightarrow \begin{gathered}
n \cdot \max _{i \in[n]} \ell_{i}=n . \\
\boldsymbol{U}
\end{gathered}=\frac{1}{\sqrt{n}}\left[\begin{array}{llll}
\boldsymbol{H}_{n} \boldsymbol{e}_{1} & \boldsymbol{H}_{n} \boldsymbol{e}_{2} & \cdots & \boldsymbol{H}_{n} \boldsymbol{e}_{d}
\end{array}\right] \Rightarrow n_{\substack{n \cdot \max _{i \in[n]} \ell_{i}=d,\\
}} .
$$

where \boldsymbol{H}_{n} is $n \times n$ Hadamard matrix.

- First case: first d rows are the only rows that matter.
- Second case: all n rows equally important.

Ensuring small statistical leverage

- To ensure situation is more like second case, apply random rotation (e.g., randomized Hadamard transform) to \boldsymbol{A} and \boldsymbol{b}.
- Randomly mixes up rows of $(\boldsymbol{A}, \boldsymbol{b})$ so no single row is (much) more important than another.
- Get $n \cdot \max _{i \in[n]} \ell_{i}=O(d+\log n)$ with high probability.
- To get $1+\varepsilon$ approximation ratio, i.e.,

$$
\|\boldsymbol{A} \hat{\boldsymbol{x}}-\boldsymbol{b}\|_{2}^{2} \leq(1+\varepsilon) \cdot\left\|\boldsymbol{A} \boldsymbol{x}_{\star}-\boldsymbol{b}\right\|_{2}^{2}
$$

suffices to have

$$
m \geq O\left(\frac{d+\log n}{\varepsilon}\right)
$$

Application to compressed sensing

Under-determined least squares

- Input: matrix $\boldsymbol{A} \in \mathbb{R}^{n \times d}$, vector $\boldsymbol{b} \in \mathbb{R}^{n}(n \ll d)$.
- Goal: find sparsest $\boldsymbol{x} \in \mathbb{R}^{d}$ so as to minimize $\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}$.
- NP-hard in general.
- Suppose $\boldsymbol{b}=\boldsymbol{A} \overline{\boldsymbol{x}}$ for some $\overline{\boldsymbol{x}} \in \mathbb{R}^{d}$ with $\mathrm{nnz}(\overline{\boldsymbol{x}}) \leq k$.
- I.e., \bar{x} is k-sparse.
- Is \bar{x} the (unique) sparsest solution?
- If so, how to find it?

Null space property

Lemma. Null space of \boldsymbol{A} does not contain any non-zero $2 k$-sparse vectors \Longleftrightarrow every k-sparse vector $\overline{\boldsymbol{x}} \in \mathbb{R}^{d}$ is the unique solution to $\boldsymbol{A x}=\boldsymbol{A} \overline{\boldsymbol{x}}$.

- Proof. (\Rightarrow) Take any k-sparse vectors \boldsymbol{x} and \boldsymbol{y} with $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{A} \boldsymbol{y}$. Want to show $\boldsymbol{x}=\boldsymbol{y}$.
- Then $\boldsymbol{x}-\boldsymbol{y}$ is $2 k$-sparse, and $\boldsymbol{A}(\boldsymbol{x}-\boldsymbol{y})=\mathbf{0}$.
- By assumption, null space of \boldsymbol{A} does not contain any non-zero $2 k$-sparse vectors.
- So $\boldsymbol{x}-\boldsymbol{y}=0$, i.e., $\boldsymbol{x}=\boldsymbol{y}$.
- (\Leftarrow) Take any $2 k$-sparse vector \boldsymbol{z} in the null space of \boldsymbol{A}. Want to show $\boldsymbol{z}=\mathbf{0}$.
- Write it as $\boldsymbol{z}=\boldsymbol{x}-\boldsymbol{y}$ for some k-sparse vectors \boldsymbol{x} and \boldsymbol{y} with disjoint supports.
- Then $\boldsymbol{A}(\boldsymbol{x}-\boldsymbol{y})=\mathbf{0}$, and hence $\boldsymbol{x}=\boldsymbol{y}$ by assumption.
- But \boldsymbol{x} and \boldsymbol{y} have disjoint support, so it must be that $\boldsymbol{x}=\boldsymbol{y}=\mathbf{0}$, so $\boldsymbol{z}=\mathbf{0}$.

Null space property from subspace embeddings

If \boldsymbol{A} is $n \times d$ random matrix with iid $\mathrm{N}(0,1)$ entries, then under what conditions is there no non-zero $2 k$-sparse vector in its null space?

- Want: for any $2 k$-sparse vector $\boldsymbol{z}, \boldsymbol{A} \boldsymbol{z} \neq \mathbf{0}$, i.e., $\|\boldsymbol{A} \boldsymbol{z}\|_{2}^{2}>0$.
- Consider a particular choice $\mathcal{I} \subseteq[d]$ of $|\mathcal{I}|=2 k$ coordinates, and the corresponding subspace $W_{\mathcal{I}}$ spanned by $\left\{\boldsymbol{e}_{i}: i \in \mathcal{I}\right\}$.
- Every $2 k$-sparse \boldsymbol{z} is in $W_{\mathcal{I}}$ for some \mathcal{I}.
- Sufficient for \boldsymbol{A} to be $1 / 2$-subspace embedding for $W_{\mathcal{I}}$ for all \mathcal{I} :

$$
\frac{1}{2}\|\boldsymbol{z}\|_{2}^{2} \leq\|\boldsymbol{A}\|_{2}^{2} \leq \frac{3}{2}\|\boldsymbol{z}\|_{2}^{2} \quad \text { for all } 2 k \text {-sparse } \boldsymbol{z}
$$

Null space property from subspace embeddings (continued)

- Say \boldsymbol{A} fails for \mathcal{I} if it is not a $1 / 2$-subspace embedding for $W_{\mathcal{I}}$.
- Subspace JL lemma:

$$
\mathbb{P}(\boldsymbol{A} \text { fails for } \mathcal{I}) \leq 2^{O(k)} \exp (-\Omega(n))
$$

- Union bound over all choices of \mathcal{I} with $|\mathcal{I}|=2 k$:

$$
\mathbb{P}(\boldsymbol{A} \text { fails for some } \mathcal{I}) \leq\binom{ d}{2 k} 2^{O(k)} \exp (-\Omega(n))
$$

- To ensure this is, say, at most $1 / 2$, just need

$$
n \geq O\left(k+\log \binom{d}{2 k}\right)=O(k+k \log (d / k))
$$

Restricted isometry property

(ℓ, δ)-restricted isometry property (RIP):

$$
(1-\delta)\|\boldsymbol{z}\|_{2}^{2} \leq\|\boldsymbol{A} \boldsymbol{z}\|_{2}^{2} \leq(1+\delta)\|\boldsymbol{z}\|_{2}^{2} \quad \text { for all } \ell \text {-sparse } \boldsymbol{z}
$$

- Many algorithms can recover unique sparsest solution under RIP (with $\ell=O(k)$ and $\delta=\Omega(1))$.
- E.g., Basis pursuit, Lasso, orthogonal matching pursuit.

