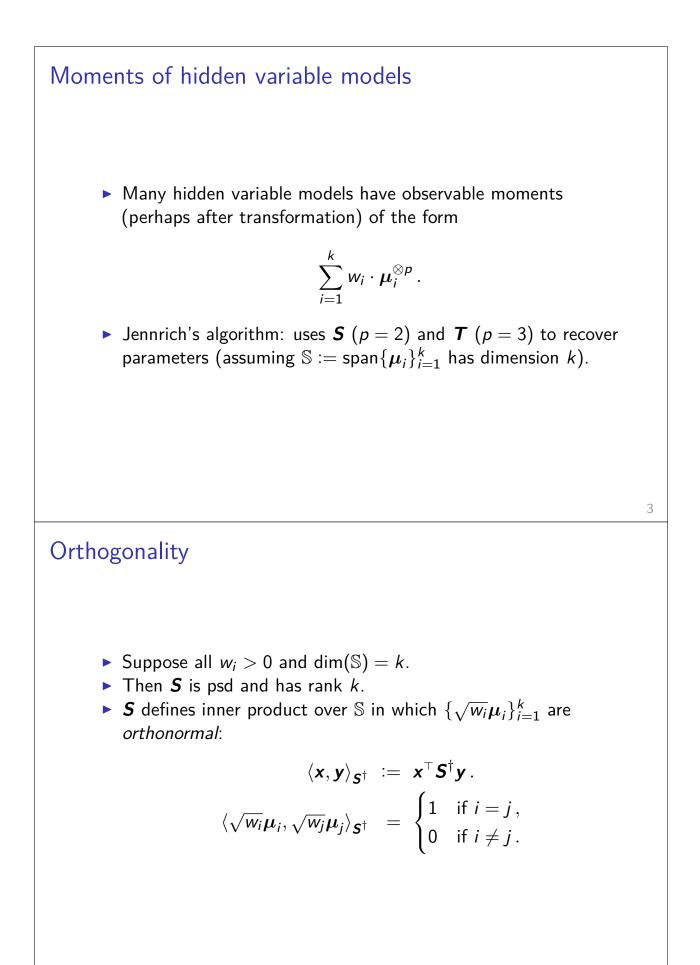
Tensor power method

Daniel Hsu

COMS 4772

Orthogonal tensor decompositions



Whitening • Can write $S^{\dagger} := WW^{\top}$ with rank k matrix $W \in \mathbb{R}^{d \times k}$ called "whitening transformation":

$$\boldsymbol{S}(\boldsymbol{W},\boldsymbol{W}) = \boldsymbol{W}^{\top}\boldsymbol{S}\boldsymbol{W} = \boldsymbol{I},$$

so $\{\boldsymbol{W}^{\top}(\sqrt{w_i}\boldsymbol{\mu}_i)\}_{i=1}^k$ is ONB in \mathbb{R}^k . • Can also apply \boldsymbol{W} to higher-order tensors, e.g.,

$$\begin{aligned} \boldsymbol{T}(\boldsymbol{W},\boldsymbol{W},\boldsymbol{W}) &= \sum_{i=1}^{k} w_i \cdot (\boldsymbol{W}^{\top}\boldsymbol{\mu}_i)^{\otimes 3} \\ &= \sum_{i=1}^{k} \frac{1}{\sqrt{w_i}} \cdot (\boldsymbol{W}^{\top}(\sqrt{w_i}\boldsymbol{\mu}_i))^{\otimes 3} \end{aligned}$$

Odeco tensors

Symmetric) orthogonally decomposable (odeco) tensors:

$$\sum_{i=1}^k \lambda_i \boldsymbol{v}_i^{\otimes \boldsymbol{p}}$$

where $\lambda_i > 0$ and $\{\mathbf{v}_i\}_{i=1}^k$ is ONB.

- (Assume positivity of λ_i for simplicity.)
- Is the decomposition of an odeco tensor unique?
 - ▶ *p* = 2: **no**
 - ▶ p ≥ 3: yes

Variational claim: for p ≥ 3, isolated local maximizers of degree-p homogeneous polynomial f_T(x) := T(x, x, ..., x) over B^k are {v_i}^k_{i=1}.

Variational characterization

- Claim: for $p \ge 3$, isolated local maximizers of $f_{\mathcal{T}}(\mathbf{x}) := \mathcal{T}(\mathbf{x}, \mathbf{x}, \dots, \mathbf{x})$ over B^k are $\{\mathbf{v}_i\}_{i=1}^k$.
- Observation: by orthogonality,

$$f_{\mathcal{T}}(\mathbf{v}_j) = \sum_{i=1}^k \lambda_i \langle \mathbf{v}_j, \mathbf{v}_i \rangle^p = \lambda_j.$$

- What about other vectors?
- May as well think of v_i as *i*-th coordinate basis vector.

$$\max_{\boldsymbol{x} \in \mathbb{R}^k} \sum_{i=1}^k \lambda_i x_i^{\boldsymbol{p}} \quad \text{s.t.} \quad \sum_{i=1}^k x_i^2 \leq 1.$$

• If both x_1 and x_2 are non-zero, then

$$\lambda_1 x_1^p + \lambda_2 x_2^p < \lambda_1 x_1^2 + \lambda_2 x_2^2 \leq \max\{\lambda_1, \lambda_2\}.$$

- Hence, better to only have a single non-zero entry.
- ▶ I.e., better to have $x = v_i$ for some *i*.

Tensor power method

Optimality condition

$$\max_{\boldsymbol{x}\in\mathbb{R}^k}\sum_{i=1}^k\lambda_i\langle \boldsymbol{x},\boldsymbol{v}_i\rangle^p\quad\text{s.t.}\quad\sum_{i=1}^kx_i^2 \leq 1.$$

► Lagrangian:

$$\mathcal{L}(\boldsymbol{x},\lambda) := \sum_{i=1}^{k} \lambda_i \langle \boldsymbol{x}, \boldsymbol{v}_i \rangle^p - \frac{p}{2} \lambda(\|\boldsymbol{x}\|_2^2 - 1).$$

First-order optimality condition:

$$p\sum_{i=1}^{\kappa}\lambda_i\langle \boldsymbol{x},\boldsymbol{v}_i\rangle^{p-1}\boldsymbol{v}_i-p\lambda\boldsymbol{x} = \boldsymbol{0}.$$

► I.e.,

$$T(\underbrace{\boldsymbol{x},\ldots,\boldsymbol{x}}_{p-1 \text{ times}},\boldsymbol{I}) = \sum_{i=1}^{k} \lambda_i \langle \boldsymbol{x},\boldsymbol{v}_i \rangle^{p-1} \boldsymbol{v}_i = \lambda \boldsymbol{x}.$$

• Maximizer must be an "eigenvector" of degree-(p-1) map.

9

Fixed-point iteration algorithm

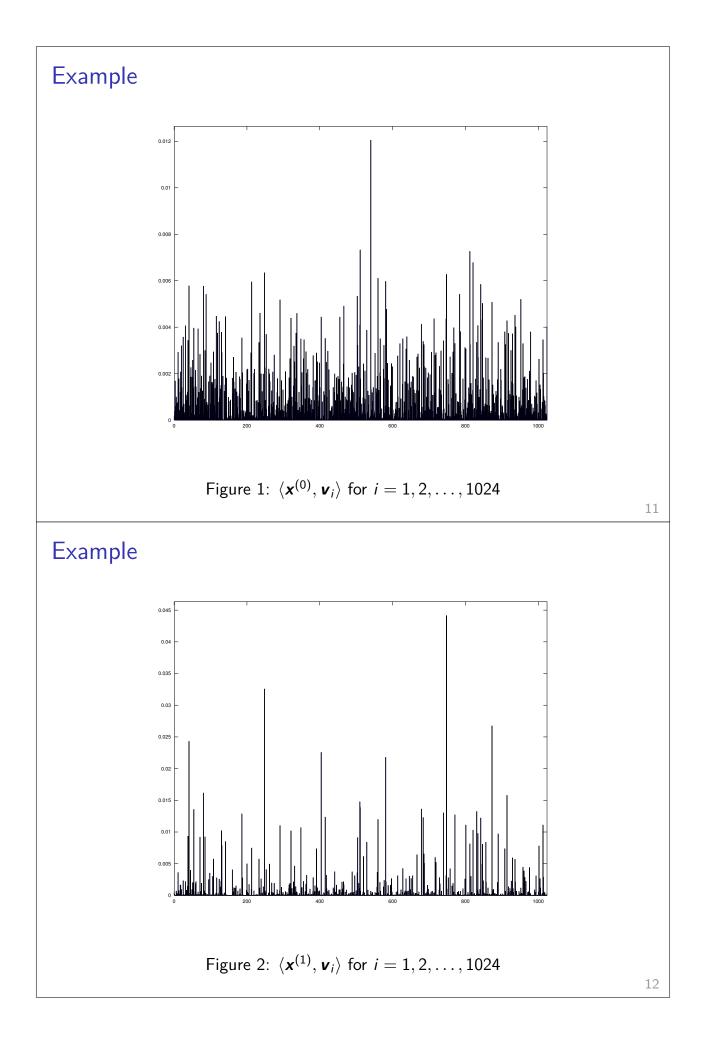
• Consider map from first-order condition:

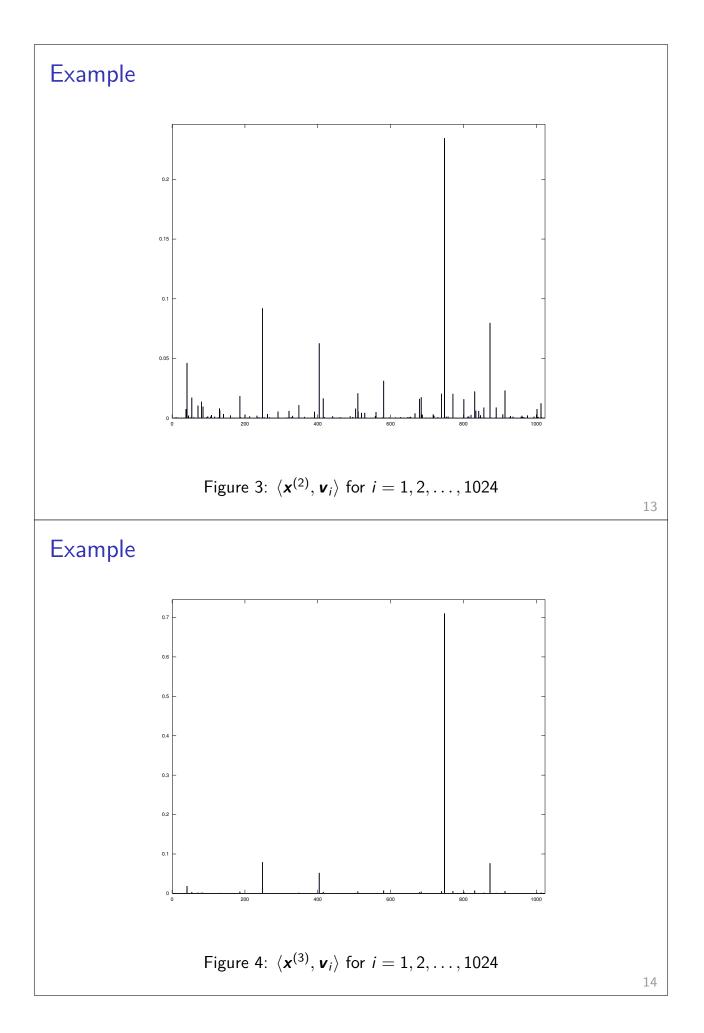
$$\phi_{\mathcal{T}}(\mathbf{x}) := \mathcal{T}(\underbrace{\mathbf{x},\ldots,\mathbf{x}}_{p-1 \text{ times}}, \mathbf{I}).$$

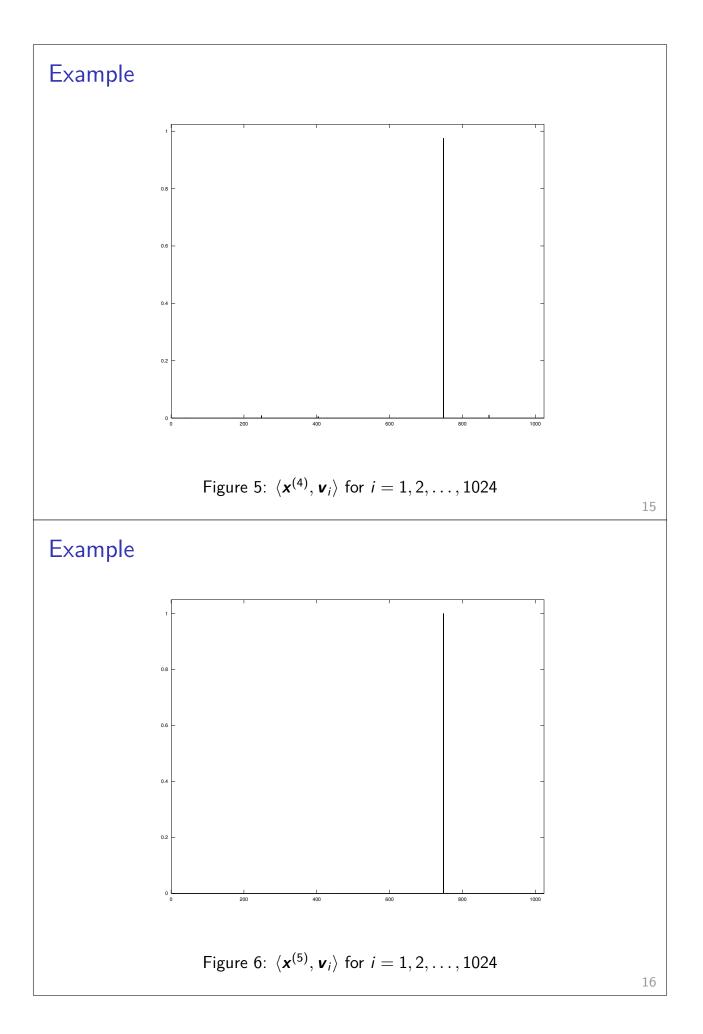
• Goal: find $\mathbf{x} \in S^{k-1}$ that is fixed under

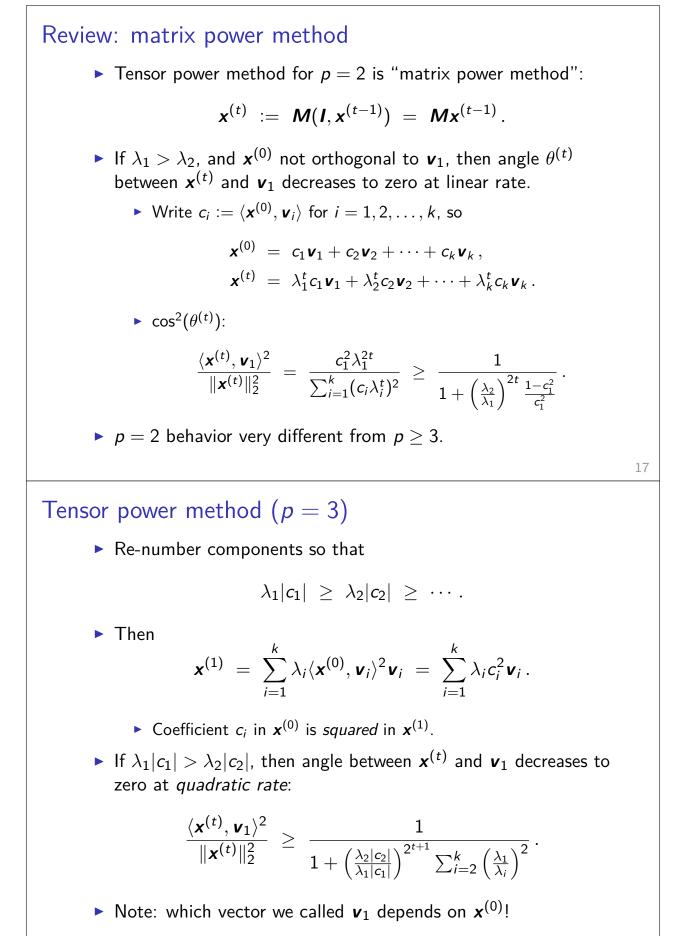
$$\mathbf{x} \mapsto \frac{\phi_{\mathbf{T}}(\mathbf{x})}{\|\phi_{\mathbf{T}}(\mathbf{x})\|_2}.$$

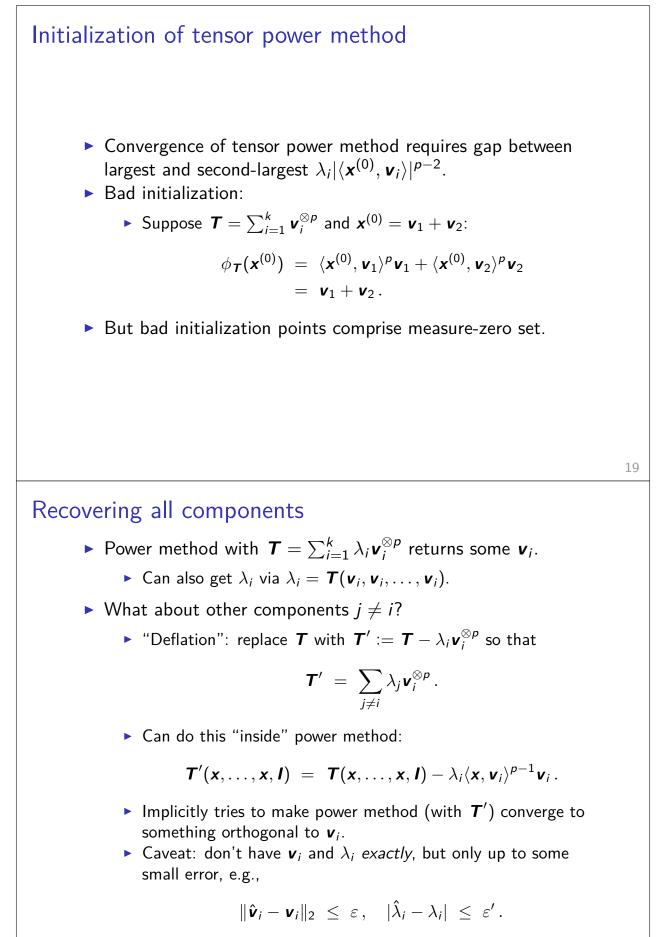
- "Tensor power method" (De Lathauwer et al, 2000):
 - Repeatedly apply ϕ_{τ} to initial $\mathbf{x}^{(0)} \in S^{k-1}$ (and re-normalize).
- Question: Does it find the v_i ?











Nearly odeco tensors

• Suppose we have $\hat{\boldsymbol{T}} = \boldsymbol{T} + \boldsymbol{E}$ for some odeco $\boldsymbol{T} = \sum_{i=1}^{k} \lambda_i \boldsymbol{v}_i^{\otimes p}$ and (symmetric) "error tensor" \boldsymbol{E} with $\|\boldsymbol{E}\|_2 \leq \epsilon$, i.e.,

$$\max_{\boldsymbol{u}\in S^{k-1}} |\boldsymbol{E}(\boldsymbol{u},\boldsymbol{u},\ldots,\boldsymbol{u})| \leq \epsilon.$$

- Matrix case (p = 2): $(\lambda_1 \ge \lambda_2 \ge \cdots)$
 - Top eigenvalue/eigenvector $(\hat{\lambda}, \hat{\boldsymbol{v}})$ of $\hat{\boldsymbol{T}}$.
 - $\hat{\lambda}$ approximates λ_1 :

$$|\hat{\lambda} - \lambda_1| \leq \epsilon.$$

• But need $\epsilon < \lambda_1 - \lambda_2$ for $\hat{\boldsymbol{v}}$ to approximate \boldsymbol{v}_1 (Davis-Kahan).

Nearly odeco tensors ($p \ge 3$) • Higher-order case $(p \ge 3)$: Maximum of f_τ approximates some λ_i, i.e., $|\max_{\boldsymbol{u}\in S^{k-1}} \widehat{\boldsymbol{T}}(\boldsymbol{u},\boldsymbol{u},\ldots,\boldsymbol{u}) - \lambda_i| \leq \epsilon.$ • Maximizers $\hat{\mathbf{v}}$ of $f_{\widehat{\boldsymbol{\tau}}}$ also approximate some λ_i , i.e., $\|\hat{\boldsymbol{v}} - \boldsymbol{v}_i\|_2 \leq O\left(\frac{\epsilon}{\lambda_i} + \left(\frac{\epsilon}{\lambda_i}\right)^2\right).$ Output of power method: depends on initialization $\mathbf{x}^{(0)} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k.$ • E.g., if all $\lambda_i \in [\Omega(1), O(1)]$, then need max_i $c_i^2 \gg \epsilon$ to get $|\hat{\lambda} - \lambda_i| < O(\epsilon), \qquad \|\hat{\boldsymbol{v}} - \boldsymbol{v}_i\|_2 < O(\epsilon)$ for some component *i*, after $O(\log(k) + \log \log(1/\epsilon))$ iterations. 23 Error from deflation Since $(\hat{\lambda}, \hat{\boldsymbol{v}})$ obtained from $\hat{\boldsymbol{T}} = \boldsymbol{T} + \boldsymbol{E}$ is not exactly $(\lambda_i, \boldsymbol{v}_i)$ for any component *i* of T, "deflation" introduces some error: $\hat{\boldsymbol{\tau}}' := \hat{\boldsymbol{\tau}} - \hat{\boldsymbol{\lambda}} \hat{\boldsymbol{v}}^{\otimes p}$ $= \sum_{i=1}^{k} \lambda_{j} \boldsymbol{v}_{j}^{\otimes \boldsymbol{p}} + \boldsymbol{E} - \hat{\lambda} \hat{\boldsymbol{v}}^{\otimes \boldsymbol{p}}$ $= \sum_{i \neq j} \lambda_j \boldsymbol{v}_j^{\otimes \boldsymbol{p}} + \boldsymbol{E} + \left(\lambda_i \boldsymbol{v}_i^{\otimes \boldsymbol{p}} - \hat{\lambda} \hat{\boldsymbol{v}}^{\otimes \boldsymbol{p}}\right)$

• **Danger**: $\|\boldsymbol{E}_i\|_2$ can be as large as $\|\boldsymbol{E}\|_2$.

 $=: T' + E + E_i$

So "error" has doubled?

Analysis of deflation error • (For simplicity, assume all $\lambda_i = 1$.) • Deflation error: $\boldsymbol{E}_i = \boldsymbol{v}_i^{\otimes p} - \hat{\boldsymbol{v}}^{\otimes p}$ • All we know is that $\|\hat{\boldsymbol{\nu}} - \boldsymbol{\nu}_i\|_2 \leq O(\epsilon)$. • Consider a unit vector \boldsymbol{u} orthogonal to \boldsymbol{v}_i : $\|\phi_{\boldsymbol{E}_i}(\boldsymbol{u})\|_2 = \|\langle \boldsymbol{u}, \boldsymbol{v}_i \rangle^{p-1} \boldsymbol{v}_1 - \langle \boldsymbol{u}, \hat{\boldsymbol{v}} \rangle^{p-1} \hat{\boldsymbol{v}}\|_2$ $= \|\langle \boldsymbol{u}, \hat{\boldsymbol{v}} \rangle^{p-1} \hat{\boldsymbol{v}} \|_2$ $= |\langle \boldsymbol{u}, \hat{\boldsymbol{v}} - \boldsymbol{v}_i \rangle|^{p-1}$ $\leq O(\epsilon^{p-1}).$ ► Therefore, for such **u**, $\|\phi_{E+E_i}(u)\|_2 \leq (1+O(\epsilon^{p-2}))\epsilon.$ • When $p \ge 3$, errors due to deflation have **lower-order effect** on ability to approximate remaining components. • Not true for p = 2. Recap High-order moments Get parameter identifiability. But for very high-order moments, estimation may be difficult. Higher-than-order-2 moments in high-dimensions Can still get parameter identifiability in many cases. Arrangement in higher-order tensor facilitates reasoning/computation. Higher-than-order-2 tensors Most computational problems (that were easy for matrices) become hard. But when there is a lot of structure, some computational issues are better than in matrix case!

26