Tensor power method

Daniel Hsu

COMS 4772

Orthogonal tensor decompositions

Moments of hidden variable models

- Many hidden variable models have observable moments (perhaps after transformation) of the form

$$
\sum_{i=1}^{k} w_{i} \cdot \boldsymbol{\mu}_{i}^{\otimes p}
$$

- Jennrich's algorithm: uses $\boldsymbol{S}(p=2)$ and $\boldsymbol{T}(p=3)$ to recover parameters (assuming $\mathbb{S}:=\operatorname{span}\left\{\boldsymbol{\mu}_{i}\right\}_{i=1}^{k}$ has dimension k).

Orthogonality

- Suppose all $w_{i}>0$ and $\operatorname{dim}(\mathbb{S})=k$.
- Then \boldsymbol{S} is psd and has rank k.
- \boldsymbol{S} defines inner product over \mathbb{S} in which $\left\{\sqrt{w_{i}} \boldsymbol{\mu}_{i}\right\}_{i=1}^{k}$ are orthonormal:

$$
\begin{aligned}
\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{\boldsymbol{S}^{\dagger}} & :=\boldsymbol{x}^{\top} \boldsymbol{S}^{\dagger} \boldsymbol{y} . \\
\left\langle\sqrt{w_{i}} \boldsymbol{\mu}_{i}, \sqrt{w_{j}} \boldsymbol{\mu}_{j}\right\rangle_{\boldsymbol{S}^{\dagger}} & = \begin{cases}1 & \text { if } i=j, \\
0 & \text { if } i \neq j\end{cases}
\end{aligned}
$$

Whitening

- Can write $\boldsymbol{S}^{\dagger}:=\boldsymbol{W} \boldsymbol{W}^{\top}$ with rank k matrix $\boldsymbol{W} \in \mathbb{R}^{d \times k}$ called "whitening transformation":

$$
\boldsymbol{S}(\boldsymbol{W}, \boldsymbol{W})=\boldsymbol{W}^{\top} \boldsymbol{S} \boldsymbol{W}=\boldsymbol{I}
$$

so $\left\{\boldsymbol{W}^{\top}\left(\sqrt{w_{i}} \boldsymbol{\mu}_{i}\right)\right\}_{i=1}^{k}$ is ONB in \mathbb{R}^{k}.

- Can also apply \boldsymbol{W} to higher-order tensors, e.g.,

$$
\begin{aligned}
\boldsymbol{T}(\boldsymbol{W}, \boldsymbol{W}, \boldsymbol{W}) & =\sum_{i=1}^{k} w_{i} \cdot\left(\boldsymbol{W}^{\top} \boldsymbol{\mu}_{i}\right)^{\otimes 3} \\
& =\sum_{i=1}^{k} \frac{1}{\sqrt{w_{i}}} \cdot\left(\boldsymbol{W}^{\top}\left(\sqrt{w_{i}} \boldsymbol{\mu}_{i}\right)\right)^{\otimes 3} .
\end{aligned}
$$

Odeco tensors

- (Symmetric) orthogonally decomposable (odeco) tensors:

$$
\sum_{i=1}^{k} \lambda_{i} \boldsymbol{v}_{i}^{\otimes p}
$$

where $\lambda_{i}>0$ and $\left\{\boldsymbol{v}_{i}\right\}_{i=1}^{k}$ is ONB.

- (Assume positivity of λ_{i} for simplicity.)
- Is the decomposition of an odeco tensor unique?
- $p=2$: no
- $p \geq 3$: yes
- Variational claim: for $p \geq 3$, isolated local maximizers of degree- p homogeneous polynomial $f_{\boldsymbol{T}}(\boldsymbol{x}):=\boldsymbol{T}(\boldsymbol{x}, \boldsymbol{x}, \ldots, \boldsymbol{x})$ over B^{k} are $\left\{\boldsymbol{v}_{i}\right\}_{i=1}^{k}$.

Variational characterization

- Claim: for $p \geq 3$, isolated local maximizers of $f_{\boldsymbol{T}}(\boldsymbol{x}):=\boldsymbol{T}(\boldsymbol{x}, \boldsymbol{x}, \ldots, \boldsymbol{x})$ over B^{k} are $\left\{\boldsymbol{v}_{i}\right\}_{i=1}^{k}$.
- Observation: by orthogonality,

$$
f_{\boldsymbol{T}}\left(\boldsymbol{v}_{j}\right)=\sum_{i=1}^{k} \lambda_{i}\left\langle\boldsymbol{v}_{j}, \boldsymbol{v}_{i}\right\rangle^{p}=\lambda_{j}
$$

- What about other vectors?
- May as well think of \boldsymbol{v}_{i} as i-th coordinate basis vector.

$$
\max _{x \in \mathbb{R}^{k}} \sum_{i=1}^{k} \lambda_{i} x_{i}^{p} \quad \text { s.t. } \quad \sum_{i=1}^{k} x_{i}^{2} \leq 1 .
$$

- If both x_{1} and x_{2} are non-zero, then

$$
\lambda_{1} x_{1}^{p}+\lambda_{2} x_{2}^{p}<\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2} \leq \max \left\{\lambda_{1}, \lambda_{2}\right\} .
$$

- Hence, better to only have a single non-zero entry.
- I.e., better to have $\boldsymbol{x}=\boldsymbol{v}_{\boldsymbol{i}}$ for some i.

Tensor power method

Optimality condition

$$
\max _{\boldsymbol{x} \in \mathbb{R}^{k}} \sum_{i=1}^{k} \lambda_{i}\left\langle\boldsymbol{x}, \boldsymbol{v}_{i}\right\rangle^{p} \quad \text { s.t. } \quad \sum_{i=1}^{k} x_{i}^{2} \leq 1
$$

- Lagrangian:

$$
\mathcal{L}(\boldsymbol{x}, \lambda):=\sum_{i=1}^{k} \lambda_{i}\left\langle\boldsymbol{x}, \boldsymbol{v}_{i}\right\rangle^{p}-\frac{p}{2} \lambda\left(\|\boldsymbol{x}\|_{2}^{2}-1\right)
$$

- First-order optimality condition:

$$
p \sum_{i=1}^{k} \lambda_{i}\left\langle\boldsymbol{x}, \boldsymbol{v}_{i}\right\rangle^{p-1} \boldsymbol{v}_{i}-p \lambda \boldsymbol{x}=\mathbf{0}
$$

- I.e.,

$$
\boldsymbol{T}(\underbrace{\boldsymbol{x}, \ldots, \boldsymbol{x}}_{p-1 \text { times }}, \boldsymbol{I})=\sum_{i=1}^{k} \lambda_{i}\left\langle\boldsymbol{x}, \boldsymbol{v}_{i}\right\rangle^{p-1} \boldsymbol{v}_{i}=\lambda \boldsymbol{x} .
$$

- Maximizer must be an "eigenvector" of degree-($p-1$) map.

Fixed-point iteration algorithm

- Consider map from first-order condition:

$$
\phi_{\boldsymbol{T}}(\boldsymbol{x}):=\boldsymbol{T}(\underbrace{\boldsymbol{x}, \ldots, \boldsymbol{x}}_{p-1 \text { times }}, \boldsymbol{I}) .
$$

- Goal: find $x \in S^{k-1}$ that is fixed under

$$
\boldsymbol{x} \mapsto \frac{\phi_{\boldsymbol{T}}(\boldsymbol{x})}{\left\|\phi_{\boldsymbol{T}}(\boldsymbol{x})\right\|_{2}}
$$

- "Tensor power method" (De Lathauwer et al, 2000):
- Repeatedly apply $\phi_{\boldsymbol{T}}$ to initial $\boldsymbol{x}^{(0)} \in S^{k-1}$ (and re-normalize).
- Question: Does it find the $\boldsymbol{v}_{\boldsymbol{i}}$?

Example

Figure 1: $\left\langle\boldsymbol{x}^{(0)}, \boldsymbol{v}_{\boldsymbol{i}}\right\rangle$ for $i=1,2, \ldots, 1024$

Example

Figure 2: $\left\langle\boldsymbol{x}^{(1)}, \boldsymbol{v}_{i}\right\rangle$ for $i=1,2, \ldots, 1024$

Example

Figure 3: $\left\langle\boldsymbol{x}^{(2)}, \boldsymbol{v}_{i}\right\rangle$ for $i=1,2, \ldots, 1024$

Example

Figure 4: $\left\langle\boldsymbol{x}^{(3)}, \boldsymbol{v}_{i}\right\rangle$ for $i=1,2, \ldots, 1024$

Example

Figure 5: $\left\langle\boldsymbol{x}^{(4)}, \boldsymbol{v}_{i}\right\rangle$ for $i=1,2, \ldots, 1024$

Example

Figure 6: $\left\langle\boldsymbol{x}^{(5)}, \boldsymbol{v}_{i}\right\rangle$ for $i=1,2, \ldots, 1024$

Review: matrix power method

- Tensor power method for $p=2$ is "matrix power method":

$$
\boldsymbol{x}^{(t)}:=\boldsymbol{M}\left(\boldsymbol{I}, \boldsymbol{x}^{(t-1)}\right)=\boldsymbol{M} \boldsymbol{x}^{(t-1)} .
$$

- If $\lambda_{1}>\lambda_{2}$, and $\boldsymbol{x}^{(0)}$ not orthogonal to \boldsymbol{v}_{1}, then angle $\theta^{(t)}$ between $\boldsymbol{x}^{(t)}$ and \boldsymbol{v}_{1} decreases to zero at linear rate.
- Write $c_{i}:=\left\langle\boldsymbol{x}^{(0)}, \boldsymbol{v}_{i}\right\rangle$ for $i=1,2, \ldots, k$, so

$$
\begin{aligned}
\boldsymbol{x}^{(0)} & =c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{k} \boldsymbol{v}_{k}, \\
\boldsymbol{x}^{(t)} & =\lambda_{1}^{t} c_{1} \boldsymbol{v}_{1}+\lambda_{2}^{t} c_{2} \boldsymbol{v}_{2}+\cdots+\lambda_{k}^{t} c_{k} \boldsymbol{v}_{k} .
\end{aligned}
$$

- $\cos ^{2}\left(\theta^{(t)}\right)$:

$$
\frac{\left\langle\boldsymbol{x}^{(t)}, \boldsymbol{v}_{1}\right\rangle^{2}}{\left\|\boldsymbol{x}^{(t)}\right\|_{2}^{2}}=\frac{c_{1}^{2} \lambda_{1}^{2 t}}{\sum_{i=1}^{k}\left(c_{i} \lambda_{i}^{t}\right)^{2}} \geq \frac{1}{1+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{2 t} \frac{1-c_{1}^{2}}{c_{1}^{2}}} .
$$

- $p=2$ behavior very different from $p \geq 3$.

Tensor power method $(p=3)$

- Re-number components so that

$$
\lambda_{1}\left|c_{1}\right| \geq \lambda_{2}\left|c_{2}\right| \geq \cdots .
$$

- Then

$$
\boldsymbol{x}^{(1)}=\sum_{i=1}^{k} \lambda_{i}\left\langle\boldsymbol{x}^{(0)}, \boldsymbol{v}_{i}\right\rangle^{2} \boldsymbol{v}_{i}=\sum_{i=1}^{k} \lambda_{i} c_{i}^{2} \boldsymbol{v}_{i} .
$$

- Coefficient $c_{\boldsymbol{i}}$ in $\boldsymbol{x}^{(0)}$ is squared in $\boldsymbol{x}^{(1)}$.
- If $\lambda_{1}\left|c_{1}\right|>\lambda_{2}\left|c_{2}\right|$, then angle between $\boldsymbol{x}^{(t)}$ and \boldsymbol{v}_{1} decreases to zero at quadratic rate:

$$
\frac{\left\langle\boldsymbol{x}^{(t)}, \boldsymbol{v}_{1}\right\rangle^{2}}{\left\|\boldsymbol{x}^{(t)}\right\|_{2}^{2}} \geq \frac{1}{1+\left(\frac{\lambda_{2}\left|c_{2}\right|}{\lambda_{1}\left|c_{1}\right|}\right)^{2^{t+1}} \sum_{i=2}^{k}\left(\frac{\lambda_{1}}{\lambda_{i}}\right)^{2}} .
$$

- Note: which vector we called \boldsymbol{v}_{1} depends on $\boldsymbol{x}^{(0)}$!

Initialization of tensor power method

- Convergence of tensor power method requires gap between largest and second-largest $\lambda_{i}\left|\left\langle\boldsymbol{x}^{(0)}, \boldsymbol{v}_{i}\right\rangle\right|^{p-2}$.
- Bad initialization:
- Suppose $\boldsymbol{T}=\sum_{i=1}^{k} \boldsymbol{v}_{i}^{\otimes p}$ and $\boldsymbol{x}^{(0)}=\boldsymbol{v}_{1}+\boldsymbol{v}_{2}:$

$$
\begin{aligned}
\phi_{\boldsymbol{T}}\left(\boldsymbol{x}^{(0)}\right) & =\left\langle\boldsymbol{x}^{(0)}, \boldsymbol{v}_{1}\right\rangle^{p} \boldsymbol{v}_{1}+\left\langle\boldsymbol{x}^{(0)}, \boldsymbol{v}_{2}\right\rangle^{p} \boldsymbol{v}_{2} \\
& =\boldsymbol{v}_{1}+\boldsymbol{v}_{2} .
\end{aligned}
$$

- But bad initialization points comprise measure-zero set.

Recovering all components

- Power method with $\boldsymbol{T}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{v}_{i}^{\otimes p}$ returns some \boldsymbol{v}_{i}.
- Can also get λ_{i} via $\lambda_{i}=\boldsymbol{T}\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{i}, \ldots, \boldsymbol{v}_{i}\right)$.
- What about other components $j \neq i$?
- "Deflation": replace \boldsymbol{T} with $\boldsymbol{T}^{\prime}:=\boldsymbol{T}-\lambda_{i} \boldsymbol{v}_{i}^{\otimes p}$ so that

$$
\boldsymbol{T}^{\prime}=\sum_{j \neq i} \lambda_{j} \boldsymbol{v}_{i}^{\otimes p}
$$

- Can do this "inside" power method:

$$
\boldsymbol{T}^{\prime}(\boldsymbol{x}, \ldots, \boldsymbol{x}, \boldsymbol{I})=\boldsymbol{T}(\boldsymbol{x}, \ldots, \boldsymbol{x}, \boldsymbol{I})-\lambda_{i}\left\langle\boldsymbol{x}, \boldsymbol{v}_{i}\right\rangle^{p-1} \boldsymbol{v}_{i}
$$

- Implicitly tries to make power method (with \boldsymbol{T}^{\prime}) converge to something orthogonal to $\boldsymbol{v}_{\boldsymbol{i}}$.
- Caveat: don't have \boldsymbol{v}_{i} and λ_{i} exactly, but only up to some small error, e.g.,

$$
\left\|\hat{\boldsymbol{v}}_{i}-\boldsymbol{v}_{i}\right\|_{2} \leq \varepsilon, \quad\left|\hat{\lambda}_{i}-\lambda_{i}\right| \leq \varepsilon^{\prime}
$$

Error analysis

Nearly odeco tensors

- Suppose we have $\widehat{\boldsymbol{T}}=\boldsymbol{T}+\boldsymbol{E}$ for some odeco $\boldsymbol{T}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{v}_{i}^{\otimes p}$ and (symmetric) "error tensor" \boldsymbol{E} with $\|\boldsymbol{E}\|_{2} \leq \epsilon$, i.e.,

$$
\max _{\boldsymbol{u} \in S^{k-1}}|\boldsymbol{E}(\boldsymbol{u}, \boldsymbol{u}, \ldots, \boldsymbol{u})| \leq \epsilon .
$$

- Matrix case $(p=2):\left(\lambda_{1} \geq \lambda_{2} \geq \cdots\right)$
- Top eigenvalue/eigenvector $(\hat{\lambda}, \hat{\boldsymbol{v}})$ of $\widehat{\boldsymbol{T}}$.
- $\hat{\lambda}$ approximates λ_{1} :

$$
\left|\hat{\lambda}-\lambda_{1}\right| \leq \epsilon .
$$

- But need $\epsilon<\lambda_{1}-\lambda_{2}$ for $\hat{\boldsymbol{v}}$ to approximate \boldsymbol{v}_{1} (Davis-Kahan).

Nearly odeco tensors ($p \geq 3$)

- Higher-order case ($p \geq 3$):
- Maximum of $f_{\widehat{T}}$ approximates some λ_{i}, i.e.,

$$
\left|\max _{\boldsymbol{u} \in S^{k-1}} \widehat{\boldsymbol{T}}(\boldsymbol{u}, \boldsymbol{u}, \ldots, \boldsymbol{u})-\lambda_{i}\right| \leq \epsilon
$$

- Maximizers $\hat{\boldsymbol{v}}$ of $f_{\widehat{\boldsymbol{T}}}$ also approximate some λ_{i}, i.e.,

$$
\left\|\hat{\boldsymbol{v}}-\boldsymbol{v}_{i}\right\|_{2} \leq O\left(\frac{\epsilon}{\lambda_{i}}+\left(\frac{\epsilon}{\lambda_{i}}\right)^{2}\right)
$$

- Output of power method: depends on initialization

$$
\boldsymbol{x}^{(0)}=c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{k} \boldsymbol{v}_{k} .
$$

- E.g., if all $\lambda_{i} \in[\Omega(1), O(1)]$, then need $\max _{i} c_{i}^{2} \gg \epsilon$ to get

$$
\left|\hat{\lambda}-\lambda_{i}\right| \leq O(\epsilon), \quad\left\|\hat{\boldsymbol{v}}-\boldsymbol{v}_{i}\right\|_{2} \leq O(\epsilon)
$$

for some component i, after $O(\log (k)+\log \log (1 / \epsilon))$ iterations.

Error from deflation

- Since $(\hat{\lambda}, \hat{\boldsymbol{v}})$ obtained from $\widehat{\boldsymbol{T}}=\boldsymbol{T}+\boldsymbol{E}$ is not exactly $\left(\lambda_{i}, \boldsymbol{v}_{\boldsymbol{i}}\right)$ for any component i of \boldsymbol{T}, "deflation" introduces some error:

$$
\begin{aligned}
\hat{\boldsymbol{T}}^{\prime} & :=\widehat{\boldsymbol{T}}-\hat{\lambda} \hat{\mathbf{v}}^{\otimes p} \\
& =\sum_{j=1}^{k} \lambda_{j} \boldsymbol{v}_{j}^{\otimes p}+\boldsymbol{E}-\hat{\lambda} \hat{\mathbf{v}}^{\otimes p} \\
& =\sum_{j \neq i} \lambda_{j} \boldsymbol{v}_{j}^{\otimes p}+\boldsymbol{E}+\left(\lambda_{i} \boldsymbol{v}_{i}^{\otimes p}-\hat{\lambda} \hat{\mathbf{v}}^{\otimes p}\right) \\
& =: \boldsymbol{T}^{\prime}+\boldsymbol{E}+\boldsymbol{E}_{i} .
\end{aligned}
$$

- Danger: $\left\|\boldsymbol{E}_{i}\right\|_{2}$ can be as large as $\|\boldsymbol{E}\|_{2}$.
- So "error" has doubled?

Analysis of deflation error

- (For simplicity, assume all $\lambda_{i}=1$.)
- Deflation error: $\boldsymbol{E}_{i}=\boldsymbol{v}_{i}^{\otimes p}-\hat{\boldsymbol{v}}^{\otimes p}$
- All we know is that $\left\|\hat{\boldsymbol{v}}-\boldsymbol{v}_{i}\right\|_{2} \leq O(\epsilon)$.
- Consider a unit vector \boldsymbol{u} orthogonal to $\boldsymbol{v}_{\boldsymbol{i}}$:

$$
\begin{aligned}
\left\|\phi_{\boldsymbol{E}_{i}}(\boldsymbol{u})\right\|_{2} & =\left\|\left\langle\boldsymbol{u}, \boldsymbol{v}_{i}\right\rangle^{p-1} \boldsymbol{v}_{1}-\langle\boldsymbol{u}, \hat{\mathbf{v}}\rangle^{p-1} \hat{\boldsymbol{v}}\right\|_{2} \\
& =\left\|\langle\boldsymbol{u}, \hat{\mathbf{v}}\rangle^{p-1} \hat{\boldsymbol{v}}\right\|_{2} \\
& =\left|\left\langle\boldsymbol{u}, \hat{\boldsymbol{v}}-\boldsymbol{v}_{i}\right\rangle\right|^{p-1} \\
& \leq O\left(\epsilon^{p-1}\right) .
\end{aligned}
$$

- Therefore, for such \boldsymbol{u},

$$
\left\|\phi_{\boldsymbol{E}+\boldsymbol{E}_{i}}(\boldsymbol{u})\right\|_{2} \leq\left(1+O\left(\epsilon^{p-2}\right)\right) \epsilon .
$$

- When $p \geq 3$, errors due to deflation have lower-order effect on ability to approximate remaining components.
- Not true for $p=2$.

Recap

- High-order moments
- Get parameter identifiability.
- But for very high-order moments, estimation may be difficult.
- Higher-than-order-2 moments in high-dimensions
- Can still get parameter identifiability in many cases.
- Arrangement in higher-order tensor facilitates reasoning/computation.
- Higher-than-order-2 tensors
- Most computational problems (that were easy for matrices) become hard.
- But when there is a lot of structure, some computational issues are better than in matrix case!

