Planted partition models

Daniel Hsu

COMS 4772

Planted partition models

- Also called "stochastic block models" in statistics.
- Regarded as model for "community structure" in networks.
- Extremely fashionable, not very realistic.
- Interesting to study.

Planted bisection

- n people, partition into two groups of $n / 2$ each.
- Appearance of edges (e.g., links, friendship, interaction) between people are random and independent.
- Two people in same group have edge with probability p.
- Two people in different groups have edge with probability $q<p$.
- Only observe edges (adjacency matrix); partition is "hidden".
- Goal: recover the groups.

Random adjacency matrix

- Random adjacency matrix \boldsymbol{A} in $\{0,1\}^{n \times n}$
- Expected value:

$$
\mathbb{E}(\boldsymbol{A})=\left(\begin{array}{lll|lll}
p & p & p & q & q & q \\
p & p & p & q & q & q \\
p & p & p & q & q & q \\
\hline q & q & q & p & p & p \\
q & q & q & p & p & p \\
q & q & q & p & p & p
\end{array}\right)
$$

(Assuming people are ordered so first group is $1,2, \ldots, n / 2$.)

Spectral analysis

- $\mathbb{E}(\boldsymbol{A})$ has rank 2 :

$$
\begin{aligned}
\mathbb{E}(\boldsymbol{A})= & \frac{p+q}{2}\left(\begin{array}{lll|lll}
+1 & +1 & +1 & +1 & +1 & +1 \\
+1 & +1 & +1 & +1 & +1 & +1 \\
+1 & +1 & +1 & +1 & +1 & +1 \\
\hline+1 & +1 & +1 & +1 & +1 & +1 \\
+1 & +1 & +1 & +1 & +1 & +1 \\
+1 & +1 & +1 & +1 & +1 & +1
\end{array}\right) \\
& +\frac{p-q}{2}\left(\begin{array}{lll|lll}
+1 & +1 & +1 & -1 & -1 & -1 \\
+1 & +1 & +1 & -1 & -1 & -1 \\
+1 & +1 & +1 & -1 & -1 & -1 \\
\hline-1 & -1 & -1 & +1 & +1 & +1 \\
-1 & -1 & -1 & +1 & +1 & +1 \\
-1 & -1 & -1 & +1 & +1 & +1
\end{array}\right)
\end{aligned}
$$

Spectral clustering

- Top eigenvalue and eigenvector of $\mathbb{E}(\boldsymbol{A})$:

$$
\lambda_{1}=\frac{p+q}{2} \cdot n, \quad \boldsymbol{v}_{1}=\frac{1}{\sqrt{n}} \mathbf{1} .
$$

- Second eigenvalue and eigenvector of $\mathbb{E}(\boldsymbol{A})$:

$$
\lambda_{2}=\frac{p-q}{2} \cdot n, \quad v_{2, i}= \begin{cases}+\frac{1}{\sqrt{n}} & \text { if person } i \text { in group } 1, \\ -\frac{1}{\sqrt{n}} & \text { if person } i \text { in group } 2 .\end{cases}
$$

- Spectral clustering: extract second eigenvector $\hat{\boldsymbol{v}}_{2}$ of \boldsymbol{A}, and partition people based on sign of corresponding entry in $\hat{\mathbf{v}}_{2}$.

Noise

- $\boldsymbol{A}=\mathbb{E}(\boldsymbol{A})+\boldsymbol{Z}$ for some zero-mean random matrix \boldsymbol{Z}.
- Using Matrix Bernstein inequality: with high probability,

$$
\|\boldsymbol{Z}\|_{2} \leq O(\sqrt{p n \log n}+\log n) .
$$

- Sharper result (Vu, 2007): with high probability,

$$
\|\boldsymbol{Z}\|_{2} \leq C \sqrt{p n}
$$

whenever $p \geq \frac{C^{\prime} \log ^{4} n}{n}$.

- Now relate eigenvectors of \boldsymbol{A} to that of $\mathbb{E}(\boldsymbol{A})$.

Perturbation analysis

- Pretend we already know $(p+q) / 2$.
- Let \boldsymbol{v}^{*} be top eigenvector of $\mathbb{E}(\boldsymbol{A})-\frac{p+q}{2} \mathbf{1 1}^{\top}$
- $v_{i}^{*}= \pm \frac{1}{\sqrt{n}}$, corresponding eigenvalue $\lambda^{*}=\frac{p-q}{2} \cdot n$.
- Let $\hat{\boldsymbol{v}}$ be top eigenvector of $\boldsymbol{A}-\frac{p+q}{2} \mathbf{1 1}^{\top}$.
- Using Weyl's inequality: corresponding eigenvalue

$$
\hat{\lambda} \geq \frac{p-q}{2} \cdot n-C \sqrt{p n} .
$$

- Assume

$$
\frac{p-q}{\sqrt{p}} \gg \frac{1}{\sqrt{n}}
$$

so

$$
\hat{\lambda} \geq \frac{p-q}{2} \cdot n-C \sqrt{p n} \geq \frac{p-q}{4} \cdot n .
$$

- Using Davis-Kahan:

$$
\varepsilon:=\left\|\left(\boldsymbol{I}-\hat{\boldsymbol{v}} \hat{\boldsymbol{v}}^{\top}\right) \boldsymbol{v}^{*}\right\|_{2} \leq \frac{C \sqrt{p n}}{\frac{p-q}{4} \cdot n}=\frac{\sqrt{p}}{p-q} \cdot \frac{4 C}{\sqrt{n}} \ll 1 .
$$

Comparing unit vectors

- $\left\|\left(\boldsymbol{I}-\hat{\mathbf{v}} \hat{\mathbf{v}}^{\top}\right) \boldsymbol{v}^{*}\right\|_{2}^{2}=1-\left\langle\hat{\boldsymbol{v}}, \boldsymbol{v}^{*}\right\rangle^{2}$, so

$$
\min \left\{\left\|\boldsymbol{v}^{*}-\hat{\boldsymbol{v}}\right\|_{2}^{2},\left\|\boldsymbol{v}^{*}-(-\hat{\boldsymbol{v}})\right\|_{2}^{2}\right\}=2\left(1-\sqrt{1-\varepsilon^{2}}\right) \leq 2 \varepsilon^{2} .
$$

- (WLOG assume min achieved by $\left\|\boldsymbol{v}^{*}-\hat{\boldsymbol{v}}\right\|_{2}^{2}$.)
- Classification error rate: since $v_{i}^{*}= \pm \frac{1}{\sqrt{n}}$

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{\operatorname{sign}\left(v_{i}^{*}\right) \neq \operatorname{sign}\left(\hat{v}_{i}\right)\right\} & \leq \frac{1}{n} \sum_{i=1}^{n}\left(1-n v_{i}^{*} \hat{v}_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(v_{i}^{*}-\hat{v}_{i}\right)^{2} \\
& =\left\|\boldsymbol{v}^{*}-\hat{\boldsymbol{v}}\right\|_{2}^{2} \\
& \leq 2 \varepsilon^{2}
\end{aligned}
$$

Boosting accuracy

- Suppose $2 \varepsilon^{2} \approx 1 / 3$, but you really want perfect partitioning.
- Say $\hat{S} \subseteq\{1,2, \ldots, n\}$ is estimate of first group; about $1 / 3$ of them actually belong to second group.
- People who are really in first group will have more edges with people in \hat{S} than people who are really in second group.
- Use this fact to very accurately classify people.
- (Technically, need independence, but can achieve this by "sample splitting".)

