Topic 5: Principal component analysis

5.1 Covariance matrices

Suppose we are interested in a population whose members are represented by vectors in \mathbb{R}^d. We model the population as a probability distribution P over \mathbb{R}^d, and let X be a random vector with distribution P. The mean of X is the “center of mass” of P. The covariance of X is also a kind of “center of mass”, but it turns out to reveal quite a lot of other information.

Note: if we have a finite collection of data points $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$, then it is common to arrange these vectors as rows of a matrix $A \in \mathbb{R}^{n \times d}$. In this case, we can think of P as the uniform distribution over the n points x_1, x_2, \ldots, x_n. The mean of $X \sim P$ can be written as

$$\mathbb{E}(X) = \frac{1}{n} A^\top 1,$$

and the covariance of X is

$$\text{cov}(X) = \frac{1}{n} A^\top A - \left(\frac{1}{n} A^\top 1 \right) \left(\frac{1}{n} A^\top 1 \right)^\top = \frac{1}{n} \widetilde{A}^\top \widetilde{A}$$

where $\widetilde{A} = A - (1/n) 11^\top A$. We often call these the empirical mean and empirical covariance of the data x_1, x_2, \ldots, x_n.

Covariance matrices are always symmetric by definition. Moreover, they are always positive semidefinite, since for any non-zero $z \in \mathbb{R}^d$,

$$z^\top \text{cov}(X) z = z^\top \mathbb{E}[(X - \mathbb{E}(X))(X - \mathbb{E}(X))^\top] z = \mathbb{E}[(z, X - \mathbb{E}(X))^2] \geq 0.$$

This also shows that for any unit vector u, the variance of X in direction u is

$$\text{var}(\langle u, X \rangle) = \mathbb{E}[\langle u, X - \mathbb{E}(X) \rangle^2] = u^\top \text{cov}(X) u.$$

Consider the following question: in what direction does X have the highest variance? It turns out this is given by an eigenvector corresponding to the largest eigenvalue of $\text{cov}(X)$. This follows the following variational characterization of eigenvalues of symmetric matrices.

Theorem 5.1. Let $M \in \mathbb{R}^{d \times d}$ be a symmetric matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ and corresponding orthonormal eigenvectors v_1, v_2, \ldots, v_d. Then

$$\max_{u \neq 0} \frac{u^\top M u}{u^\top u} = \lambda_1,$$

$$\min_{u \neq 0} \frac{u^\top M u}{u^\top u} = \lambda_d.$$

These are achieved by v_1 and v_d, respectively. (The ratio $u^\top M u / u^\top u$ is called the Rayleigh quotient associated with M in direction u.)
Proof. Following Theorem 4.1, write the eigendecomposition of M as $M = VA V^T$ where $V = [v_1|v_2|\cdots|v_d]$ is orthogonal and $\Lambda = \text{diag}(\lambda_1,\lambda_2,\ldots,\lambda_d)$ is diagonal. For any $u \neq 0$,

$$\frac{\langle u^TMu \rangle}{u^Tu} = \frac{u^TVA V^Tu}{u^TVV^Tu} \quad \text{(since } VV^T = I)$$

$$\frac{\langle u^TMu \rangle}{u^Tu} = \frac{w^T\Lambda w}{w^Tw} \quad \text{(using } w := V^Tu)$$

$$\frac{\langle u^TMu \rangle}{u^Tu} = \frac{w_1^2 \lambda_1 + w_2^2 \lambda_2 + \cdots + w_d^2 \lambda_d}{w_1^2 + w_2^2 + \cdots + w_d^2}.$$

This final ratio represents a convex combination of the scalars $\lambda_1, \lambda_2, \ldots, \lambda_d$. Its largest value is λ_1, achieved by $w = e_1$ (and hence $u = Ve_1 = v_1$), and its smallest value is λ_d, achieved by $w = e_d$ (and hence $u = Ve_d = v_d$). \hfill \Box

Corollary 5.1. Let v_1 be a unit-length eigenvector of $\text{cov}(X)$ corresponding to the largest eigenvalue of $\text{cov}(X)$. Then

$$\text{var}(\langle v_1, X \rangle) = \max_{u \in S^{d-1}} \text{var}(\langle u, X \rangle).$$

Now suppose we are interested in the k-dimensional subspace of \mathbb{R}^d that captures the “most” variance of X. Recall that a k-dimensional subspace $W \subseteq \mathbb{R}^d$ can always be specified by a collection of k orthonormal vectors $u_1, u_2, \ldots, u_k \in W$. By the orthogonal projection to W, we mean the linear map

$$x \mapsto U^Tx, \quad \text{where } U = \begin{bmatrix} u_1 & u_2 & \cdots & u_k \end{bmatrix} \in \mathbb{R}^{d \times k}.$$

The covariance of U^TX, a $k \times k$ covariance matrix, is simply given by

$$\text{cov}(U^TX) = U^T \text{cov}(X)U.$$

The “total” variance in this subspace is often measured by the trace of the covariance: $\text{tr}(\text{cov}(U^TX))$. Recall, the trace of a square matrix is the sum of its diagonal entries, and it is a linear function.

Fact 5.1. For any $U \in \mathbb{R}^{d \times k}$, $\text{tr}(\text{cov}(U^TX)) = \mathbb{E}\|U^T(X - \mathbb{E}(X))\|_2^2$. Furthermore, if $U^TU = I$, then $\text{tr}(\text{cov}(U^TX)) = \mathbb{E}\|UU^T(X - \mathbb{E}(X))\|_2^2$.

Theorem 5.2. Let $M \in \mathbb{R}^{d \times d}$ be a symmetric matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ and corresponding orthonormal eigenvectors v_1, v_2, \ldots, v_d. Then for any $k \in [d]$,

$$\max_{U \in \mathbb{R}^{d \times k}:U^TU = I} \text{tr}(U^TMU) = \lambda_1 + \lambda_2 + \cdots + \lambda_k,$$

$$\min_{U \in \mathbb{R}^{d \times k}:U^TU = I} \text{tr}(U^TMU) = \lambda_{d-k+1} + \lambda_{d-k+2} + \cdots + \lambda_d.$$

The max is achieved by an orthogonal projection to the span of v_1, v_2, \ldots, v_k, and the min is achieved by an orthogonal projection to the span of $v_{d-k+1}, v_{d-k+2}, \ldots, v_d$.

Proof. Let u_1, u_2, \ldots, u_k denote the columns of U. Then, writing $M = \sum_{j=1}^d \lambda_j v_j v_j^T$ (Theorem 4.1),

$$\text{tr}(U^TMU) = \sum_{i=1}^k u_i^TMu_i = \sum_{i=1}^k u_i^T \left(\sum_{j=1}^d \lambda_j v_j v_j^T \right) u_i = \sum_{j=1}^d \lambda_j \sum_{i=1}^k \langle v_j, u_i \rangle^2 = \sum_{j=1}^d \langle v_j, c_j^2 \rangle.$$
where \(c_j := \sum_{i=1}^{k} \langle v_j, u_i \rangle^2 \) for each \(j \in [d] \). We’ll show that each \(c_j \in [0, 1] \), and \(\sum_{j=1}^{d} c_j = k \).

First, it is clear that \(c_j \geq 0 \) for each \(j \in [d] \). Next, extending \(u_1, u_2, \ldots, u_k \) to an orthonormal basis \(u_1, u_2, \ldots, u_d \) for \(\mathbb{R}^d \), we have for each \(j \in [d] \),

\[
c_j = \sum_{i=1}^{k} \langle v_j, u_i \rangle^2 \leq \sum_{i=1}^{d} \langle v_j, u_i \rangle^2 = 1.
\]

Finally, since \(v_1, v_2, \ldots, v_d \) is an orthonormal basis for \(\mathbb{R}^d \),

\[
\sum_{j=1}^{d} c_j = \sum_{j=1}^{k} \sum_{i=1}^{d} \langle v_j, u_i \rangle^2 = \sum_{i=1}^{k} \sum_{j=1}^{d} \langle v_j, u_i \rangle^2 = \sum_{i=1}^{k} \| u_i \|^2 = k.
\]

The maximum value of \(\sum_{j=1}^{d} c_j \lambda_j \) over all choices of \(c_1, c_2, \ldots, c_d \in [0, 1] \) with \(\sum_{j=1}^{d} c_j = k \) is \(\lambda_1 + \lambda_2 + \cdots + \lambda_k \). This is achieved when \(c_1 = c_2 = \cdots = c_k = 1 \) and \(c_{k+1} = \cdots = c_d = 0 \), i.e., when \(\text{span}(v_1, v_2, \ldots, v_k) = \text{span}(u_1, u_2, \ldots, u_k) \). The minimum value of \(\sum_{j=1}^{d} c_j \lambda_j \) over all choices of \(c_1, c_2, \ldots, c_d \in [0, 1] \) with \(\sum_{j=1}^{d} c_j = k \) is \(\lambda_{d-k+1} + \lambda_{d-k+2} + \cdots + \lambda_d \). This is achieved when \(c_1 = \cdots = c_{d-k} = 0 \) and \(c_{d-k+1} = c_{d-k+2} = \cdots = c_d = 1 \), i.e., when \(\text{span}(v_{d-k+1}, v_{d-k+2}, \ldots, v_d) = \text{span}(u_1, u_2, \ldots, u_k) \).

We’ll refer to the \(k \) largest eigenvalues of a symmetric matrix \(M \) as the top-\(k \) eigenvalues of \(M \), and the \(k \) smallest eigenvalues as the bottom-\(k \) eigenvalues of \(M \). We analogously use the term top-\(k \) (resp., bottom-\(k \)) eigenvectors to refer to orthonormal eigenvectors corresponding to the top-\(k \) (resp., bottom-\(k \)) eigenvalues. Note that the choice of top-\(k \) (or bottom-\(k \)) eigenvectors is not necessarily unique.

Corollary 5.2. Let \(v_1, v_2, \ldots, v_k \) be top-\(k \) eigenvectors of \(\text{cov}(X) \), and let \(V_k := [v_1 | v_2 | \cdots | v_k] \). Then

\[
\text{tr}(\text{cov}(V_k^\top X)) = \max_{U \in \mathbb{R}^{d \times k} : U^\top U = I} \text{tr}(\text{cov}(U^\top X)).
\]

An orthogonal projection given by top-\(k \) eigenvectors of \(\text{cov}(X) \) is called a (rank-\(k \)) principal component analysis (PCA) projection. **Corollary 5.2** reveals an important property of a PCA projection: it maximizes the variance captured by the subspace.

5.2 Best affine and linear subspaces

PCA has another important property: it gives an affine subspace \(A \subseteq \mathbb{R}^d \) that minimizes the expected squared distance between \(X \) and \(A \).

Recall that a \(k \)-dimensional affine subspace \(A \) is specified by a \(k \)-dimensional (linear) subspace \(W \subseteq \mathbb{R}^d \)—say, with orthonormal basis \(u_1, u_2, \ldots, u_k \)—and a displacement vector \(u_0 \in \mathbb{R}^d \):

\[
A = \{ u_0 + \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_k u_k : \alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R} \}.
\]

Let \(U := [u_1 | u_2 | \cdots | u_k] \). Then, for any \(x \in \mathbb{R}^d \), the point in \(A \) closest to \(x \) is given by \(u_0 + UU^\top(x - u_0) \), and hence the squared distance from \(x \) to \(A \) is \(\|(I - UU^\top)(x - u_0)\|^2 \).

Theorem 5.3. Let \(v_1, v_2, \ldots, v_k \) be top-\(k \) eigenvectors of \(\text{cov}(X) \), let \(V_k := [v_1 | v_2 | \cdots | v_k] \), and \(v_0 := \mathbb{E}(X) \). Then

\[
\mathbb{E}\|(I - V_kV_k^\top)(X - v_0)\|^2 = \min_{U \in \mathbb{R}^{d \times k}, u_0 \in \mathbb{R}^d : U^\top U = I} \mathbb{E}\|(I - UU^\top)(X - u_0)\|^2.
\]
Proof. For any matrix $d \times d$ matrix M, the function $u_0 \mapsto \mathbb{E} \|M(X - u_0)\|_2^2$ is minimized when $M u_0 = M \mathbb{E}(X)$ (Fact 5.2). Therefore, we can plug-in $\mathbb{E}(X)$ for u_0 in the minimization problem, whereupon it reduces to

$$\min_{U \in \mathbb{R}^{d \times k} : U^\top U = I} \mathbb{E} \|(I - UU^\top)(X - \mathbb{E}(X))\|_2^2.$$

The objective function is equivalent to

$$\mathbb{E} \|(I - UU^\top)(X - \mathbb{E}(X))\|_2^2 = \mathbb{E} \|X - \mathbb{E}(X)\|_2^2 - \mathbb{E} \|UU^\top(X - \mathbb{E}(X))\|_2^2 = \mathbb{E} \|X - \mathbb{E}(X)\|_2^2 - \text{tr}(\text{cov}(U^\top X)),$$

where the second equality comes from Fact 5.1. Therefore, minimizing the objective is equivalent to maximizing $\text{tr}(\text{cov}(U^\top X))$, which is achieved by PCA (Corollary 5.2). \qed

The proof of Theorem 5.3 depends on the following simple but useful fact.

Fact 5.2 (Bias-variance decomposition). Let Y be a random vector in \mathbb{R}^d, and $b \in \mathbb{R}^d$ be any fixed vector. Then

$$\mathbb{E} \|Y - b\|_2^2 = \mathbb{E} \|Y - \mathbb{E}(Y)\|_2^2 + \|\mathbb{E}(Y) - b\|_2^2$$

(which, as a function of b, is minimized when $b = \mathbb{E}(Y)$).

A similar statement can be made about (linear) subspaces by using top-k eigenvectors of $\mathbb{E}(XX^\top)$ instead of $\text{cov}(X)$. This is sometimes called uncentered PCA.

Theorem 5.4. Let v_1, v_2, \ldots, v_k be top-k eigenvectors of $\mathbb{E}(XX^\top)$, and let $V_k := [v_1 | v_2 | \cdots | v_k]$. Then

$$\mathbb{E} \|(I - V_k V_k^\top)X\|_2^2 = \min_{U \in \mathbb{R}^{d \times k} : U^\top U = I} \mathbb{E} \|(I - UU^\top)X\|_2^2.$$

5.3 Noisy affine subspace recovery

Suppose there are n points $t_1, t_2, \ldots, t_n \in \mathbb{R}^d$ that lie on an affine subspace A, of dimension k. In this scenario, you don’t directly observe the t_i; rather, you only observe noisy versions of these points: Y_1, Y_2, \ldots, Y_n, where for some $\sigma_1, \sigma_2, \ldots, \sigma_n > 0$,

$$Y_j \sim N(t_j, \sigma_j^2 I) \quad \text{for all } j \in [n]$$

and Y_1, Y_2, \ldots, Y_n are independent. The observations Y_1, Y_2, \ldots, Y_n no longer all lie in the affine subspace A, but by applying PCA to the empirical covariance of Y_1, Y_2, \ldots, Y_n, you can hope to approximately recover A.

Regard X as a random vector whose conditional distribution given the noisy points is uniform over Y_1, Y_2, \ldots, Y_n. In fact, the distribution of X is given by the following generative process:

1. Draw $J \in [n]$ uniformly at random.
2. Given J, draw $Z \sim N(0, \sigma_J^2 I)$.

Note that the empirical covariance based on Y_1, Y_2, \ldots, Y_n is not exactly $\text{cov}(X)$, but it can be a good approximation when n is large (with high probability). Similarly, the empirical average of Y_1, Y_2, \ldots, Y_n is a good approximation to $E(X)$ when n is large (with high probability). So here, we assume for simplicity that both $\text{cov}(X)$ and $E(X)$ are known exactly. We show that PCA produces a k-dimensional affine subspace that contains all of the t_j.

Theorem 5.5. Let X be the random vector as defined above, v_1, v_2, \ldots, v_k be top-k eigenvectors of $\text{cov}(X)$, and $v_0 := E(X)$. Then the affine subspace

$$\hat{A} := \{v_0 + \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k : \alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}\}$$

contains t_1, t_2, \ldots, t_n.

Proof. Theorem 5.3 says that the matrix $V_k := [v_1 | v_2 | \cdots | v_k]$ minimizes $E \| (I - UU^\top)(X - v_0) \|^2_2$ (as a function of $U \in \mathbb{R}^{d \times k}$, subject to $U^\top U = I$), or equivalently, maximizes $\text{tr}(\text{cov}(U^\top X))$. This maximization objective can be written as

$$\text{tr}(\text{cov}(U^\top X)) = E \| UU^\top (X - v_0) \|^2_2 \quad \text{(by Fact 5.1)}$$

$$= \frac{1}{n} \sum_{j=1}^n E \left[\| UU^\top (t_j - v_0 + Z) \|^2_2 \middle| J = j \right]$$

$$= \frac{1}{n} \sum_{j=1}^n E \left[\| UU^\top (t_j - v_0) \|^2_2 + 2\langle UU^\top (t_j - v_0), UU^\top Z \rangle + \| UU^\top Z \|^2_2 \middle| J = j \right]$$

$$= \frac{1}{n} \sum_{j=1}^n \left\{ \| UU^\top (t_j - v_0) \|^2_2 + E \left[\| UU^\top Z \|^2_2 \middle| J = j \right] \right\}$$

$$= \frac{1}{n} \sum_{j=1}^n \left\{ \| UU^\top (t_j - v_0) \|^2_2 + k \sigma_j^2 \right\},$$

where the penultimate step uses the fact that the conditional distribution of Z given $J = j$ is $N(0, \sigma_j^2 I)$, and the final step uses the fact that $\| UU^\top Z \|^2_2$ has the same conditional distribution (given $J = j$) as the squared length of a $N(0, \sigma_j^2 I)$ random vector in \mathbb{R}^k. Since $UU^\top (t_j - v_0)$ is the orthogonal projection of $t_j - v_0$ onto the subspace spanned by the columns of U (call it W),

$$\| UU^\top (t_j - v_0) \|^2_2 \leq \| t_j - v_0 \|^2_2 \quad \text{for all } j \in [n].$$

The inequalities above are equalities precisely when $t_j - v_0 \in W$ for all $j \in [n]$. This is indeed the case for the subspace $A_k - \{v_0\}$. Since V_k maximizes the objective, its columns must span a k-dimensional subspace \hat{W} that also contains all of the $t_j - v_0$; hence the affine subspace $\hat{A} = \{v_0 + x : x \in \hat{W}\}$ contains all of the t_j.

5.4 Singular value decomposition

Let A be any $n \times d$ matrix. Our aim is to define an extremely useful decomposition of A called the **singular value decomposition** (SVD). Our derivation starts by considering two related matrices, $A^\top A$ and AA^\top; their eigendecompositions will lead to the SVD of A.

Fact 5.3. $A^\top A$ and AA^\top are symmetric and positive semidefinite.
It is clear that the eigenvalues of $A^\top A$ and AA^\top are non-negative. In fact, the non-zero eigenvalues of $A^\top A$ and AA^\top are exactly the same.

Lemma 5.1. Let λ be an eigenvalue of $A^\top A$ with corresponding eigenvector v.

- If $\lambda > 0$, then λ is a non-zero eigenvalue of AA^\top with corresponding eigenvector Av.
- If $\lambda = 0$, then $Av = 0$.

Proof. First suppose $\lambda > 0$. Then

$$AA^\top(Av) = A(A^\top Av) = A(\lambda v) = \lambda(Av),$$

so λ is an eigenvalue of AA^\top with corresponding eigenvector Av.

Now suppose $\lambda = 0$ (which is the only remaining case, as per Fact 5.3). Then

$$\|Av\|_2^2 = v^\top A^\top Av = v^\top(\lambda v) = 0.$$

Since only the zero vector has length 0, it must be that $Av = 0$. □

(We can apply Lemma 5.1 to both A and A^\top to conclude that $A^\top A$ and AA^\top have the same non-zero eigenvalues.)

Theorem 5.6 (Singular value decomposition). Let A be an $n \times d$ matrix. Let $v_1, v_2, \ldots, v_d \in \mathbb{R}^d$ be orthonormal eigenvectors of $A^\top A$ corresponding to eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \geq 0$. Let r be the number of positive λ_i. Define

$$u_i := \frac{Av_i}{\|Av_i\|_2} = \frac{Av_i}{\sqrt{v_i^\top A^\top Av_i}} = \frac{Av_i}{\sqrt{\lambda_i}} \text{ for each } i \in [r].$$

Then

$$A = \left[\begin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_r \end{array}\right] \left[\begin{array}{c} \sqrt{\lambda_1} \\ \sqrt{\lambda_2} \\ \vdots \\ \sqrt{\lambda_r} \end{array}\right] = \sum_{i=1}^r \sqrt{\lambda_i} u_i v_i^\top,$$

and u_1, u_2, \ldots, u_r are orthonormal.

Proof. It suffices to show that for some set of d linearly independent vectors $q_1, q_2, \ldots, q_d \in \mathbb{R}^d$,

$$Aq_j = \left(\sum_{i=1}^r \sqrt{\lambda_i} u_i v_i^\top\right)q_j \text{ for all } j \in [d].$$

We’ll use v_1, v_2, \ldots, v_d. Observe that

$$Av_j = \begin{cases} \sqrt{\lambda_j} u_j & \text{if } 1 \leq j \leq r, \\ 0 & \text{if } r < j \leq d, \end{cases}$$

and

$$Aq_j = \sum_{i=1}^r \sqrt{\lambda_i} u_i v_i^\top q_j.$$
by definition of u_i and by Lemma 5.1. Moreover,
\[
\left(\sum_{i=1}^{r} \sqrt{\lambda_i} u_i v_i^\top \right) v_j = \sum_{i=1}^{r} \sqrt{\lambda_i} \langle v_j, v_i \rangle u_i = \begin{cases} \sqrt{\lambda_j} u_j & \text{if } 1 \leq j \leq r, \\ 0 & \text{if } r < j \leq d, \end{cases}
\]

since v_1, v_2, \ldots, v_d are orthonormal. We conclude that $A v_j = (\sum_{i=1}^{r} \sqrt{\lambda_i} u_i v_i^\top) v_j$ for all $j \in [d]$, and hence $A = \sum_{i=1}^{r} \sqrt{\lambda_i} u_i v_i^\top$.

Note that
\[
u_i^\top u_j = \frac{v_i^\top A^\top A v_j}{\sqrt{\lambda_i} \lambda_j} = \frac{\lambda_j v_i^\top v_j}{\sqrt{\lambda_i} \lambda_j} = 0 \quad \text{for all } 1 \leq i < j \leq r,
\]

where the last step follows since v_1, v_2, \ldots, v_d are orthonormal. This implies that u_1, u_2, \ldots, u_r are orthonormal.

The decomposition of A into the sum $A = \sum_{i=1}^{r} \sqrt{\lambda_i} u_i v_i^\top$ from Theorem 5.6 is called the singular value decomposition (SVD) of A. The u_1, u_2, \ldots, u_r are the left singular vectors, and the v_1, v_2, \ldots, v_r are the right singular vectors. The scalars $\sqrt{\lambda_1} \geq \sqrt{\lambda_2} \geq \cdots \geq \sqrt{\lambda_r}$ are the (positive) singular values corresponding to the left/right singular vectors $(u_1, v_1), (u_2, v_2), \ldots, (u_r, v_r)$. The representation $A = \sum_{i=1}^{r} \sqrt{\lambda_i} u_i v_i^\top$ is actually typically called the thin SVD of A. The number r of positive λ_i is the rank of A, which is at most the smaller of n and d.

Of course, one can extend u_1, u_2, \ldots, u_r to an orthonormal basis for \mathbb{R}^n. Define the matrices $U := [u_1 | u_2 | \cdots | u_n] \in \mathbb{R}^{n \times n}$ and $V := [v_1 | v_2 | \cdots | v_d] \in \mathbb{R}^{d \times d}$. Also define $S \in \mathbb{R}^{n \times d}$ to be the matrix whose only non-zero entries are $\sqrt{\lambda_i}$ in the (i, i)-th position, for $1 \leq i \leq r$. Then $A = U S V^\top$.

This matrix factorization of A is typically called the full SVD of A. (The vectors $u_{r+1}, u_{r+2}, \ldots, u_n$ and $v_{r+1}, v_{r+2}, \ldots, v_d$ are also regarded as singular vectors of A; they correspond to the singular value equal to zero.)

Just as before, we’ll refer to the k largest singular values of A as the top-k singular values of A, and the k smallest singular values as the bottom-k singular values of A. We analogously use the term top-k (resp., bottom-k) singular vectors to refer to orthonormal singular vectors corresponding to the top-k (resp., bottom-k) singular values. Again, the choice of top-k (or bottom-k) singular vectors is not necessarily unique.

Relationship between PCA and SVD

As seen above, the eigenvectors of $A^\top A$ are the right singular vectors A, and the eigenvectors of AA^\top are the left singular vectors of A.

Suppose there are n data points $a_1, a_2, \ldots, a_n \in \mathbb{R}^d$, arranged as the rows of the matrix $A \in \mathbb{R}^{n \times d}$. Now regard X as a random vector with the uniform distribution on the n data points. Then $\mathbb{E}(X X^\top) = \frac{1}{n} \sum_{i=1}^{n} a_i a_i^\top = \frac{1}{n} A^\top A$: top-$k$ eigenvectors of $\frac{1}{n} A^\top A$ are top-k right singular vectors of A. Hence, rank-k uncentered PCA (as in Theorem 5.4) corresponds to the subspace spanned by the top-k right singular vectors of A.

Variational characterization of singular values

Given the relationship between the singular values of A and the eigenvalues of $A^\top A$ and AA^\top, it is easy to obtain variational characterizations of the singular values. We can also obtain the characterization directly.
Fact 5.4. Let the SVD of a matrix $A \in \mathbb{R}^{n \times d}$ be given by $A = \sum_{i=1}^{r} \sigma_i u_i v_i^\top$, where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$. For each $i \in [r]$,
$$
\sigma_i = \max_{\substack{x \in S^{d-1}: (v_j, x) = 0 \forall j < i \\ y \in S^{n-1}: (u_j, y) = 0 \forall j < i}} y^\top Ax = u_i^\top A v_i.
$$

Relationship between eigendecomposition and SVD

If $M \in \mathbb{R}^{d \times d}$ is symmetric and has eigendecomposition $M = \sum_{i=1}^{d} \lambda_i v_i v_i^\top$, then its singular values are the absolute values of the λ_i. We can take v_1, v_2, \ldots, v_d as corresponding right singular vectors. For corresponding left singular vectors, we can take $u_i := v_i$ whenever $\lambda_i \geq 0$ (which is the case for all i if M is also psd), and $u_i := -v_i$ whenever $\lambda_i < 0$. Therefore, we have the following variational characterization of the singular values of M.

Fact 5.5. Let the eigendecomposition of a symmetric matrix $M \in \mathbb{R}^{d \times d}$ be given by $M = \sum_{i=1}^{d} \lambda_i v_i v_i^\top$, where $|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_d|$. For each $i \in [d]$,
$$
|\lambda_i| = \max_{\substack{x \in S^{d-1}: (v_j, x) = 0 \forall j < i \\ y \in S^{n-1}: (u_j, y) = 0 \forall j < i}} y^\top M x = \max_{\substack{x \in S^{d-1}: (v_j, x) = 0 \forall j < i}} |x^\top M x| = |v_i^\top M v_i|.
$$

Moore-Penrose pseudoinverse

The SVD defines a kind of matrix inverse that is applicable to non-square matrices $A \in \mathbb{R}^{n \times d}$ (where possibly $n \neq d$). Let the SVD be given by $A = USV^\top$, where $U \in \mathbb{R}^{n \times r}$ and $V \in \mathbb{R}^{d \times r}$ satisfy $U^\top U = V^\top V = I$, and $S \in \mathbb{R}^{r \times r}$ is diagonal with positive diagonal entries. Here, the rank of A is r. The **Moore-Penrose pseudoinverse** of A is given by
$$
A^\dagger := VS^{-1}U^\top \in \mathbb{R}^{d \times n}.
$$

Note that A^\dagger is well-defined: S is invertible because its diagonal entries are all strictly positive. What is the effect of multiplying A by A^\dagger on the left? Using the SVD of A,
$$
A^\dagger A = VS^{-1}U^\top USV^\top = VV^\top \in \mathbb{R}^{d \times d},
$$
which is the orthogonal projection to the row space of A. In particular, this means that
$$
AA^\dagger A = A.
$$

Similarly, $AA^\dagger = UU^\top \in \mathbb{R}^{n \times n}$, the orthogonal projection to the column space of A. Note that if $r = d$, then $A^\dagger A = I$, as the row space of A is simply \mathbb{R}^d; similarly, if $r = n$, then $AA^\dagger = I$.

The Moore-Penrose pseudoinverse is also related to least squares. For any $y \in \mathbb{R}^n$, the vector $AA^\dagger y$ is the orthogonal projection of y onto the column space of A. This means that $\min_{x \in \mathbb{R}^d} \|Ax - y\|_2^2$ is minimized by $x = A^\dagger y$. The more familiar expression for the least squares solution $x = (A^\top A)^{-1}A^\top y$ only applies in the special case where $A^\top A$ is invertible. The connection to the general form of a solution can be seen by using the easily verified identity
$$
A^\dagger = (A^\top A)^\dagger A^\top
$$
and using the fact that $(A^\top A)^\dagger = (A^\top A)^{-1}$ when $A^\top A$ is invertible.
5.5 Matrix norms and low rank SVD

Matrix inner product and the Frobenius norm

The space of $n \times d$ real matrices is a real vector space in its own right, and it can, in fact, be viewed as a Euclidean space with inner product given by $\langle X, Y \rangle := \text{tr}(X^T Y)$. It can be checked that this indeed is a valid inner product. For instance, the fact that the trace function is linear can be used to establish linearity in the first argument:

$$\langle cX + Y, Z \rangle = \text{tr}((cX + Y)^T Z) = \text{tr}(cX^T Z + Y^T Z) = c \text{tr}(X^T Z) + \text{tr}(Y^T Z) = c\langle X, Z \rangle + \langle Y, Z \rangle.$$

The inner product naturally induces an associated norm $X \mapsto \sqrt{\langle X, X \rangle}$. Viewing $X \in \mathbb{R}^{n \times d}$ as a data matrix whose rows are the vectors $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$, we see that

$$\langle X, X \rangle = \text{tr}(X^T X) = \text{tr} \left(\sum_{i=1}^{n} x_i x_i^T \right) = \sum_{i=1}^{n} \text{tr}(x_i x_i^T) = \sum_{i=1}^{n} \sum_{i=1}^{n} \|x_i\|_2^2.$$

Above, we make use of the fact that for any matrices $A, B \in \mathbb{R}^{n \times d}$,

$$\text{tr}(A^T B) = \text{tr}(BA^T),$$

which is called the cyclic property of the matrix trace. Therefore, the square of the induced norm is simply the sum-of-squares of the entries in the matrix. We call this norm the Frobenius norm of the matrix X, and denote it by $\|X\|_F$. It can be checked that this matrix inner product and norm are exactly the same as the Euclidean inner product and norm when you view the $n \times d$ matrices as nd-dimensional vectors obtained by stacking columns on top of each other (or rows side-by-side).

Suppose a matrix X has thin SVD $X = USV^T$, where $S = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_r)$, and $U^T U = V^T V = I$. Then its squared Frobenius norm is

$$\|X\|_F^2 = \text{tr}(VSU^TUSV^T) = \text{tr}(VS^2V^T) = \text{tr}(S^2V^T V) = \text{tr}(S^2) = \sum_{i=1}^{r} \sigma_i^2,$$

the sum-of-squares of X’s singular values.

Best rank-k approximation in Frobenius norm

Let the SVD of a matrix $A \in \mathbb{R}^{n \times d}$ be given by $A = \sum_{i=1}^{r} \sigma_i u_i v_i^T$. Here, we assume $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$. For any $k \leq r$, a rank-k SVD of A is obtained by just keeping the first k components (corresponding to the k largest singular values), and this yields a matrix $A_k \in \mathbb{R}^{n \times d}$ with rank k:

$$A_k := \sum_{i=1}^{k} \sigma_i u_i v_i^T. \quad (5.1)$$

This matrix A_k is the best rank-k approximation to A in the sense that it minimizes the Frobenius norm error over all matrices of rank (at most) k. This is remarkable because the set of matrices of rank at most k is not a set over which it is typically easy to optimize. (For instance, it is not a convex set.)
Theorem 5.7. Let $A \in \mathbb{R}^{n \times d}$ be any matrix, with SVD as given in Theorem 5.6, and A_k as defined in (5.1). Then:

1. The rows of A_k are the orthogonal projections of the corresponding rows of A to the k-dimensional subspace spanned by top-k right singular vectors v_1, v_2, \ldots, v_k of A.

2. $\|A - A_k\|_F \leq \min\{\|A - B\|_F : B \in \mathbb{R}^{n \times d}, \text{rank}(B) \leq k\}$.

3. If $a_1, a_2, \ldots, a_n \in \mathbb{R}^d$ are the rows of A, and $\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_n \in \mathbb{R}^d$ are the rows of A_k, then

$$\sum_{i=1}^{n} \|a_i - \hat{a}_i\|_2^2 \leq \sum_{i=1}^{n} \|a_i - b_i\|_2^2$$

for any vectors $b_1, b_2, \ldots, b_n \in \mathbb{R}^d$ that span a subspace of dimension at most k.

Proof. The orthogonal projection to the subspace W_k spanned by v_1, v_2, \ldots, v_k is given by $x \mapsto V_k V_k^T x$, where $V_k := [v_1|v_2|\cdots|v_k]$. Since $V_k V_k^T v_i = v_i$ for $i \in [k]$ and $V_k V_k^T v_i = 0$ for $i > k$, $A V_k V_k^T = \sum_{i=1}^{k} \sigma_i u_i v_i^T V_k V_k^T = \sum_{i=1}^{k} \sigma_i u_i v_i^T = A_k$.

This equality says that the rows of A_k are the orthogonal projections of the rows of A onto W_k. This proves the first claim.

Consider any matrix $B \in \mathbb{R}^{n \times d}$ with rank $(B) \leq k$, and let W be the subspace spanned by the rows of B. Let Π_W denote the orthogonal projector to W. Then clearly we have $\|A - A \Pi_W\|_F \leq \|A - B\|_F$. This means that

$$\min_{B \in \mathbb{R}^{n \times d} : \text{rank}(B) \leq k} \|A - B\|_F^2 = \min_{\text{subspace } W \subseteq \mathbb{R}^d : \dim W \leq k} \|A - A \Pi_W\|_F^2 = \min_{\text{subspace } W \subseteq \mathbb{R}^d : \dim W \leq k} \sum_{i=1}^{n} \|(I - \Pi_W) a_i\|_2^2,$$

where $a_i \in \mathbb{R}^d$ denotes the i-th row of A. In fact, it is clear that we can take the minimization over subspaces W with $\dim W = k$. Since the orthogonal projector to a subspace of dimension k is of the form $U U^T$ for some $U \in \mathbb{R}^{d \times k}$ satisfying $U^T U = I$, it follows that the expression above is the same as

$$\min_{U \in \mathbb{R}^{d \times k} : U^T U = I} \sum_{i=1}^{n} \|(I - U U^T) a_i\|_2^2.$$

Observe that $\frac{1}{n} \sum_{i=1}^{n} a_i a_i^T = \frac{1}{n} A^T A$, so Theorem 5.6 implies that top-k eigenvectors of the $\frac{1}{n} \sum_{i=1}^{n} a_i a_i^T$ are top-k right singular vectors of A. By Theorem 5.4, the minimization problem above is achieved when $U = V_k$. This proves the second claim. The third claim is just a different interpretation of the second claim.

Best rank-k approximation in spectral norm

Another important matrix norm is the spectral norm: for a matrix $X \in \mathbb{R}^{n \times d}$,

$$\|X\|_2 := \max_{u \in S^{d-1}} \|X u\|_2.$$

By Theorem 5.6, the spectral norm of X is equal to its largest singular value.
Fact 5.6. Let the SVD of a matrix $A \in \mathbb{R}^{n \times d}$ be as given in Theorem 5.6, with $r = \text{rank}(A)$.

- For any $x \in \mathbb{R}^d$,
 \[\|Ax\|_2 \leq \sigma_1\|x\|_2. \]

- For any x in the span of v_1, v_2, \ldots, v_r,
 \[\|Ax\|_2 \geq \sigma_r\|x\|_2. \]

Unlike the Frobenius norm, the spectral norm does not arise from a matrix inner product. Nevertheless, it can be checked that it has the required properties of a norm: it satisfies $\|cX\|_2 = |c|\|X\|_2$ and $\|X + Y\|_2 \leq \|X\|_2 + \|Y\|_2$, and the only matrix with $\|X\|_2 = 0$ is $X = 0$. Because of this, the spectral norm also provides a metric between matrices, $\text{dist}(X, Y) = \|X - Y\|_2$, satisfying the properties given in Section 1.1.

The rank-k SVD of a matrix A also provides the best rank-k approximation in terms of spectral norm error.

Theorem 5.8. Let $A \in \mathbb{R}^{n \times d}$ be any matrix, with SVD as given in Theorem 5.6, and A_k as defined in (5.1). Then $\|A - A_k\|_2 \leq \min\{\|A - B\|_2 : B \in \mathbb{R}^{n \times d}, \text{rank}(B) \leq k\}$.

Proof. Since the largest singular value of $A - A_k = \sum_{i=k+1}^{r} \sigma_i u_i v_i^\top$ is σ_{k+1}, it follows that

\[\|A - A_k\|_2 = \sigma_{k+1}. \]

Consider any matrix $B \in \mathbb{R}^{n \times d}$ with $\text{rank}(B) \leq k$. Its null space $\ker(B)$ has dimension at least $d - \text{rank}(B) \geq d - k$. On the other hand, the span W_{k+1} of $v_1, v_2, \ldots, v_{k+1}$ has dimension $k + 1$. Therefore, there must be some non-zero vector $x \in \ker(B) \cap W_{k+1}$. For any such vector x,

\[\|A - B\|_2 \geq \frac{\|(A - B)x\|_2}{\|x\|_2} \quad \text{(by Fact 5.6)} \]
\[\geq \frac{\|Ax\|_2}{\|x\|_2} \quad \text{(since x is in the null space of B)} \]
\[= \sqrt{\|A_{k+1}x\|_2^2 + \|(A - A_{k+1})x\|_2^2} \]
\[\geq \frac{\|A_{k+1}x\|_2}{\|x\|_2} \]
\[\geq \sigma_{k+1} \quad \text{(by Fact 5.6)}. \]

Therefore $\|A - B\|_2 \geq \|A - A_k\|_2$. \qed