Non-negative matrix factorization

Daniel Hsu

COMS 4772

Singular value decomposition

- $\boldsymbol{A}=\boldsymbol{U S} \boldsymbol{V}^{\top}$
- $\boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{V}^{\top} \boldsymbol{V}=\boldsymbol{I}$
- $S \succ 0$ diagonal
- Truncations at rank k are optimal for spectral/Frobenius error
- What if we want to add constraints to factors?

Non-negative matrix factorization (NMF)

- Given: $\boldsymbol{X} \in \mathbb{R}^{m \times n}$ non-negative
- Columns are, e.g., word frequencies of documents, pixel intensities of images.
- Goal: factor $\boldsymbol{X}=\boldsymbol{V} \boldsymbol{Y}$ where $\boldsymbol{V} \in \mathbb{R}^{m \times r}$ and $\boldsymbol{Y} \in \mathbb{R}^{r \times n}$ have only non-negative entries
- NP-hard to decide if this is possible (Vavasis, 2007)

Heuristic (Lee \& Seung, 1999)

- Write approximation objective $f(\boldsymbol{V}, \boldsymbol{Y}):=\|\boldsymbol{X}-\boldsymbol{V} \boldsymbol{Y}\|_{F}^{2}$ as

$$
\begin{aligned}
f(\boldsymbol{V}, \boldsymbol{Y}) & =\sum_{i, j} X_{i, j}^{2}-2 X_{i, j}(\boldsymbol{U} \boldsymbol{V})_{i, j}+(\boldsymbol{V} \boldsymbol{Y})_{i, j}^{2} \\
& =\underbrace{\|\boldsymbol{X}\|_{F}^{2}+\|\boldsymbol{V} \boldsymbol{Y}\|_{F}^{2}}_{\geq 0}-\underbrace{2 \operatorname{tr}\left(\boldsymbol{X}^{\top} \boldsymbol{V} \boldsymbol{Y}\right)}_{\geq 0} \\
& =f_{+}(\boldsymbol{V}, \boldsymbol{Y})-f_{-}(\boldsymbol{V}, \boldsymbol{Y}) .
\end{aligned}
$$

- Multiplicative updates (preserves non-negativity):

$$
V_{i, k} \leftarrow V_{i, k} \cdot \frac{\frac{\partial}{\partial V_{i, k}} f_{-}(\boldsymbol{V}, \boldsymbol{Y})}{\frac{\partial}{\partial V_{i, k}} f_{+}(\boldsymbol{V}, \boldsymbol{Y})}, \quad Y_{k, j} \leftarrow Y_{k, j} \cdot \frac{\frac{\partial}{\partial Y_{k, j}} f_{-}(\boldsymbol{V}, \boldsymbol{Y})}{\frac{\partial}{\partial Y_{k, j}} f_{+}(\boldsymbol{V}, \boldsymbol{Y})}
$$

- Update factor ≥ 1 iff $f^{\prime}(\boldsymbol{V}, \boldsymbol{Y}) \leq 0$.
- Fixed points: $\boldsymbol{V}=\mathbf{0}, \boldsymbol{Y}=\mathbf{0}$, or stationary point of f.

Example

Figure 1: NMF for face images

Recovery problem

- Suppose $\boldsymbol{X}=\boldsymbol{V} \boldsymbol{Y}$ for some non-negative \boldsymbol{V} and \boldsymbol{Y} of rank r.
- Assume (WLOG) rows of $\boldsymbol{X}, \boldsymbol{V}$, and \boldsymbol{Y} sum to 1 .
- Each row of \boldsymbol{X} is a convex combination of rows of \boldsymbol{Y}.
- Given: X.
- Goal: recover factors \boldsymbol{V} and \boldsymbol{Y}.
- Separability assumption: \boldsymbol{V} has positive definite diagonal submatrix.
- Ensures uniqueness (Donoho \& Stodden, 2003; Arora, Ge, Kannan, \& Moitra, 2012)
- Each row of \boldsymbol{Y} appears as a row of \boldsymbol{X} (possibly scaled).
- (Scaling factor is 1 under assumption that rows of \boldsymbol{V} sum to 1.)

Recovery algorithm (Arora, Ge, Kannan, \& Moitra, 2012)

- Main idea: identify the rows of \boldsymbol{X} that are exactly rows of \boldsymbol{Y}.
- For each $i=1,2, \ldots, m$:
- If i-th row of \boldsymbol{X} is in convex hull of all other rows of \boldsymbol{X}, then delete the i-th row of \boldsymbol{X}
- What remains is exactly r rows of \boldsymbol{X}, each being a row of \boldsymbol{Y}.

Application: topic models

- $X_{w, d}=$ number of times word w appears in document d
- $V_{w, t}=\operatorname{Pr}($ word $w \mid$ topic $t)$
- $Y_{t, d} \propto \operatorname{Pr}($ topic $t \mid$ document $d)$
- $\mathbb{E}(\boldsymbol{X})=\boldsymbol{V} \boldsymbol{Y}$
- Separability assumption: for every topic t, there is a word w_{t} that has non-zero probability in \boldsymbol{V} only under topic t.
- E.g., word "backprop" only appears in documents about topic "machine learning"
- Goal: estimate \boldsymbol{V} from documents
- When model is well-specified,

$$
\boldsymbol{X}=\boldsymbol{V} \boldsymbol{Y}+\text { zero-mean noise } .
$$

Using co-occurrences (Arora, Ge, \& Moitra, 2012)

- Assume each document has two tokens (i.e., length ≥ 2)
- Bag-of-words assumption with ($\boldsymbol{V}, \boldsymbol{Y}$) model: for document d,
- First token is word w with probability $\sum_{t} V_{w, t} Y_{t, d}$
- Second token is word w with probability $\sum_{t} V_{w, t} Y_{t, d}$ (independent of first token)
- Co-occurrence matrix: $M_{w, w^{\prime}}=$ number of documents where first token is w and second token is w^{\prime}.

$$
\mathbb{E}(\boldsymbol{M})=\boldsymbol{V} \boldsymbol{Y} \boldsymbol{Y}^{\top} \boldsymbol{V}^{\top}
$$

- Separability of \boldsymbol{V} can be used with $\mathbb{E}(\boldsymbol{M})$.
- If documents are independent, then \boldsymbol{M} is sum of independent random matrices; can exploit matrix concentration to bound $\|\boldsymbol{M}-\mathbb{E}(\boldsymbol{M})\|_{2}$.

