
Non-negative matrix factorization

Daniel Hsu

COMS 4772

1

Singular value decomposition

I A = USV >

I U>U = V >V = I
I S � 0 diagonal
I Truncations at rank k are optimal for spectral/Frobenius error

I What if we want to add constraints to factors?
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Non-negative matrix factorization (NMF)

I Given: X ∈ Rm×n non-negative
I Columns are, e.g., word frequencies of documents, pixel

intensities of images.
I Goal: factor X = V Y where V ∈ Rm×r and Y ∈ Rr×n have

only non-negative entries
I NP-hard to decide if this is possible (Vavasis, 2007)
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Heuristic (Lee & Seung, 1999)
I Write approximation objective f (V , Y ) := ‖X − V Y‖2F as

f (V , Y ) =
∑

i ,j
X 2

i ,j − 2Xi ,j(UV )i ,j + (V Y )2
i ,j

= ‖X‖2F + ‖V Y‖2F︸ ︷︷ ︸
≥0

− 2 tr(X>V Y )︸ ︷︷ ︸
≥0

= f+(V , Y )− f−(V , Y ) .

I Multiplicative updates (preserves non-negativity):

Vi ,k ← Vi ,k ·
∂

∂Vi,k
f−(V , Y )

∂
∂Vi,k

f+(V , Y )
, Yk,j ← Yk,j ·

∂
∂Yk,j

f−(V , Y )
∂

∂Yk,j
f+(V , Y )

I Update factor ≥ 1 iff f ′(V , Y ) ≤ 0.
I Fixed points: V = 0, Y = 0, or stationary point of f .
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Example

Figure 1: NMF for face images
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Recovery problem

I Suppose X = V Y for some non-negative V and Y of rank r .
I Assume (WLOG) rows of X , V , and Y sum to 1.
I Each row of X is a convex combination of rows of Y .

I Given: X .
I Goal: recover factors V and Y .
I Separability assumption: V has positive definite diagonal

submatrix.
I Ensures uniqueness (Donoho & Stodden, 2003; Arora, Ge,

Kannan, & Moitra, 2012)
I Each row of Y appears as a row of X (possibly scaled).
I (Scaling factor is 1 under assumption that rows of V sum to 1.)
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Recovery algorithm (Arora, Ge, Kannan, & Moitra, 2012)

I Main idea: identify the rows of X that are exactly rows of Y .
I For each i = 1, 2, . . . , m:

I If i-th row of X is in convex hull of all other rows of X , then
delete the i-th row of X

I What remains is exactly r rows of X , each being a row of Y .
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Application: topic models

I Xw ,d = number of times word w appears in document d
I Vw ,t = Pr(word w | topic t)
I Yt,d ∝ Pr(topic t | document d)
I E(X) = V Y
I Separability assumption: for every topic t, there is a word wt

that has non-zero probability in V only under topic t.
I E.g., word “backprop” only appears in documents about topic
“machine learning”

I Goal: estimate V from documents
I When model is well-specified,

X = V Y + zero-mean noise .
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Using co-occurrences (Arora, Ge, & Moitra, 2012)

I Assume each document has two tokens (i.e., length ≥ 2)
I Bag-of-words assumption with (V , Y ) model: for

document d ,
I First token is word w with probability

∑
t Vw ,tYt,d

I Second token is word w with probability
∑

t Vw ,tYt,d
(independent of first token)

I Co-occurrence matrix: Mw ,w ′ = number of documents
where first token is w and second token is w ′.

E(M) = V Y Y >V > .

I Separability of V can be used with E(M).
I If documents are independent, then M is sum of independent

random matrices; can exploit matrix concentration to bound
‖M − E(M)‖2.
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