High-dimensional Gaussians

Daniel Hsu

COMS 4772

Gaussian distributions

Gaussian (normal) distributions

- $Z \sim N(0,1)$ means Z follows a standard Gaussian distribution, i.e., has probability density

$$
z \mapsto \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} .
$$

- If $Z_{1}, Z_{2}, \ldots, Z_{d}$ are iid $N(0,1)$ random variables, then say $\boldsymbol{Z}:=\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)$ follows a standard multivariate Gaussian distribution on \mathbb{R}^{d}, i.e., $\boldsymbol{Z} \sim \mathrm{N}(\mathbf{0}, \mathbf{I})$.
- Other Gaussian distributions on \mathbb{R}^{d} arise by applying (invertible) linear maps and translations to \mathbf{Z} :

$$
\overbrace{\boldsymbol{z} \mapsto \underbrace{\text { linear map }}_{\text {translation }} \boldsymbol{A z}_{\mapsto} \mapsto \boldsymbol{A z}+\boldsymbol{\mu}} .
$$

- $\boldsymbol{X}:=\boldsymbol{A} \boldsymbol{Z}+\boldsymbol{\mu} \sim \mathrm{N}\left(\boldsymbol{\mu}, \boldsymbol{A A}^{\top}\right)$ has

$$
\mathbb{E}(\boldsymbol{X})=\boldsymbol{\mu} \text { and } \operatorname{cov}(\boldsymbol{X})=\boldsymbol{A} \boldsymbol{A}^{\top}
$$

Shape of Gaussian distributions

- Let $\boldsymbol{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \boldsymbol{\mu} \in \mathbb{R}^{d}$, and $\boldsymbol{\Sigma} \succ \mathbf{0}$.
- Contours of equal density are ellipsoids around $\boldsymbol{\mu}$:

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{d}:(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})=r^{2}\right\} .
$$

- Let eigenvalues of $\boldsymbol{\Sigma}$ be $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}>0$, corresponding (orthonormal) eigenvectors be $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{d}}$.
- $\operatorname{var}\left(\left\langle\boldsymbol{v}_{i}, \boldsymbol{X}\right\rangle\right)=\lambda_{i}$. (This is true even if \boldsymbol{X} is not Gaussian.)
- If $Y_{i}:=\left\langle\boldsymbol{v}_{i}, \boldsymbol{X}-\boldsymbol{\mu}\right\rangle$, then $Y_{i} \sim \mathrm{~N}\left(0, \lambda_{i}\right)$.
- $Y_{1}, Y_{2}, \ldots, Y_{d}$ are independent; $\boldsymbol{Y}:=\left(Y_{1}, Y_{2}, \ldots, Y_{d}\right) \sim \mathrm{N}\left(\mathbf{0}, \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right)\right)$.
- What about concentration properties?

Concentration of spherical Gaussians

- Spherical Gaussian: $\boldsymbol{X} \sim \mathrm{N}\left(\boldsymbol{\mu}, \sigma^{2} \boldsymbol{I}\right)$.
- Pick any $\delta \in(0,1)$. Then

$$
\begin{aligned}
\text { for any } \boldsymbol{u} \in S^{d-1}, \quad \mathbb{P}(\langle\boldsymbol{u}, \boldsymbol{X}-\boldsymbol{\mu}\rangle \leq \sigma \sqrt{2 \ln (1 / \delta)}) & \geq 1-\delta, \\
\mathbb{P}\left(\|\boldsymbol{X}-\boldsymbol{\mu}\|_{2}^{2} \leq \sigma^{2} d\left(1+2 \sqrt{\frac{\ln (1 / \delta)}{d}}+\frac{2 \ln (1 / \delta)}{d}\right)\right) & \geq 1-\delta, \\
\mathbb{P}\left(\|\boldsymbol{X}-\boldsymbol{\mu}\|_{2}^{2} \geq \sigma^{2} d\left(1-2 \sqrt{\frac{\ln (1 / \delta)}{d}}\right)\right) & \geq 1-\delta .
\end{aligned}
$$

(Standard tail bounds for $N(0,1)$ and $\chi^{2}(d)$ distributions.)

- Behaves like spherical shell around $\boldsymbol{\mu}$ of radius $\sigma \sqrt{d}$ and thickness $O\left(\sigma d^{1 / 4}\right)$.

Concentration of general Gaussians

- General Gaussian: $\boldsymbol{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
- Concentration of $\langle\boldsymbol{u}, \boldsymbol{X}-\boldsymbol{\mu}\rangle$ for $\boldsymbol{u} \in S^{d-1}$ depends on \boldsymbol{u} :

$$
\langle\boldsymbol{u}, \boldsymbol{X}-\boldsymbol{\mu}\rangle \sim \mathrm{N}\left(0, \boldsymbol{u}^{\top} \boldsymbol{\Sigma} \boldsymbol{u}\right) .
$$

- Concentration of $\|\boldsymbol{X}-\boldsymbol{\mu}\|_{2}^{2}$: a mismatch of norms.
- $\left\|\boldsymbol{\Sigma}^{-1 / 2}(\boldsymbol{X}-\boldsymbol{\mu})\right\|_{2}^{2} \sim \chi^{2}(d)$.
- $\|\boldsymbol{X}-\boldsymbol{\mu}\|_{2}^{2}$ distributed as linear combination of independent $\chi^{2}(1)$ random variables:

$$
\sum_{i=1}^{d} \lambda_{i} Z_{i}^{2}
$$

where $Z_{1}, Z_{2}, \ldots, Z_{d}$ are iid $\mathrm{N}(0,1)$.

- $\mathbb{E}\|\boldsymbol{X}-\boldsymbol{\mu}\|_{2}^{2}=\sum_{i=1}^{d} \lambda_{i}$.
- $\|\boldsymbol{X}-\boldsymbol{\mu}\|_{2}^{2}$ is ($4 \sum_{i=1}^{d} \lambda_{i}^{2}, 4 \lambda_{1}$)-subexponential.

Eccentricity of general Gaussians

- For $\boldsymbol{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with probability $1-\delta$,

$$
\|\boldsymbol{X}-\boldsymbol{\mu}\|_{2}^{2} \in \bar{\lambda} d\left(1 \pm O\left(\sqrt{\frac{\kappa \log (1 / \delta)}{d}}+\frac{\kappa \log (1 / \delta)}{d}\right)\right)
$$

where $\bar{\lambda}:=\frac{1}{d} \sum_{i=1}^{d} \lambda_{i}$ and $\kappa:=\lambda_{1} / \bar{\lambda}$.

- κ measure eccentricity of equal density ellipsoids: $1 \leq \kappa \leq d$.

Using multivariate Gaussians as a statistical model

- $\mathcal{P}:=\left\{\mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}): \boldsymbol{\mu} \in \mathbb{R}^{d}, \boldsymbol{\Sigma} \succ \mathbf{0}\right\}$
- Parameter estimation given data $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{d}$
- Maximum likelihood estimators:

$$
\hat{\boldsymbol{\mu}}:=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}, \quad \widehat{\boldsymbol{\Sigma}}:=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\boldsymbol{\mu}}\right)\left(\boldsymbol{x}_{i}-\hat{\boldsymbol{\mu}}\right)^{\top} .
$$

- Accuracy when data is iid sample from $\mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$:

$$
\|\hat{\boldsymbol{\mu}}-\boldsymbol{\mu}\|_{2} \leq ?, \quad\|\widehat{\boldsymbol{\Sigma}}-\boldsymbol{\Sigma}\|_{?} \leq ?
$$

- $\hat{\boldsymbol{\mu}} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma} / n)$.
- $\|\widehat{\boldsymbol{\Sigma}}-\boldsymbol{\Sigma}\|_{2}=\max _{\boldsymbol{u} \in S^{d-1}}\left|\boldsymbol{u}^{\top}(\widehat{\boldsymbol{\Sigma}}-\boldsymbol{\Sigma}) \boldsymbol{u}\right|$.
- Note that $\mathbb{E}(\widehat{\boldsymbol{\Sigma}}) \neq \boldsymbol{\Sigma}$, but almost.

Multiple Gaussian populations

Multiple populations

- Often data do not come from just a single population, but rather several different populations.
- If data are "labeled" by population, then can partition data, and (say) fit a Gaussian distribution to each part (or whatever).
- What if data are not labeled?

Simple case: multiple Gaussian populations

- Suppose data come from k populations $P_{1}, P_{2}, \ldots, P_{k}$.
- Further, for extreme simplicity, suppose $P_{i}=\mathrm{N}\left(\boldsymbol{\mu}_{i}, \boldsymbol{I}\right)$.
- When can we separate data from P_{i} and $P_{j}(i \neq j)$?
- Easier when means $\boldsymbol{\mu}_{i}$ and $\boldsymbol{\mu}_{j}$ are farther apart.
- Strict separation condition:
- Whenever \boldsymbol{a} and \boldsymbol{b} come from same P_{i}, and \boldsymbol{c} comes from different P_{j},

$$
\|\boldsymbol{a}-\boldsymbol{b}\|_{2}<\|\boldsymbol{a}-\boldsymbol{c}\|_{2} .
$$

- Under strict separation, Kruskal's minimum spanning tree (where edge weight $=$ Euclidean distance) connects data from same population, before connecting across populations.
- How far apart should μ_{i} and μ_{j} be to have strict separation?

Disjoint spherical shells

- Recall: $\mathrm{N}\left(\boldsymbol{\mu}_{i}, \boldsymbol{I}\right) \approx$ thin spherical shell around $\boldsymbol{\mu}_{i}$ of radius \sqrt{d}.
- If $\left\|\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right\|_{2} \gg \sqrt{d}$, then " $\mathrm{N}\left(\boldsymbol{\mu}_{i}, \boldsymbol{I}\right) \cap \mathrm{N}\left(\boldsymbol{\mu}_{j}, \boldsymbol{I}\right) \approx 0$ ".
- (This can be easily formalized.)
- But this reasoning ignores approximate orthogonality!

Approximate orthogonality

Figure 1: Distances between points from spherical Gaussian populations

Probabilistic analysis

- Let $\boldsymbol{A}, \boldsymbol{B} \sim \mathrm{N}\left(\boldsymbol{\mu}_{i}, \boldsymbol{I}\right)$ and $\boldsymbol{C} \sim \mathrm{N}\left(\boldsymbol{\mu}_{j}, \boldsymbol{l}\right)$ (all independent).
- Write

$$
\begin{aligned}
& \boldsymbol{A}=\boldsymbol{\mu}_{i}+\boldsymbol{Z}_{A}, \quad \boldsymbol{C}=\boldsymbol{\mu}_{j}+\boldsymbol{Z}_{C}, \\
& \boldsymbol{B}=\boldsymbol{\mu}_{i}+\boldsymbol{Z}_{B}
\end{aligned}
$$

where $\boldsymbol{Z}_{A}, \boldsymbol{Z}_{B}, \boldsymbol{Z}_{C}$ are iid $\mathrm{N}(\mathbf{0}, \boldsymbol{I})$.

- Then

$$
\begin{aligned}
& \|\boldsymbol{A}-\boldsymbol{C}\|_{2}^{2}-\|\boldsymbol{A}-\boldsymbol{B}\|_{2}^{2} \\
& =\left\|\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right\|_{2}^{2}+2\left\langle\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}, \boldsymbol{Z}_{A}-\boldsymbol{Z}_{C}\right\rangle+\left\|\boldsymbol{Z}_{A}-\boldsymbol{Z}_{C}\right\|_{2}^{2} \\
& \quad-\left\|\boldsymbol{Z}_{A}-\boldsymbol{Z}_{B}\right\|_{2}^{2} .
\end{aligned}
$$

- With high probability, this is at least

$$
\left\|\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right\|_{2}^{2}-O\left(\left\|\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right\|_{2}\right)-O(\sqrt{d})
$$

which is positive when $\left\|\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right\|_{2} \gg d^{1 / 4}$.

Probabilistic analysis (continued)

- Need previous concentration to hold for all triples in n data: union bound over $O\left(n^{3}\right)$ events means we need $\log (n)$ factors in separation, specifically

$$
\left\|\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right\|_{2} \geq C\left((d \log (n))^{1 / 4}+\log (n)\right) \quad \text { for all } i \neq j
$$

where $C>0$ is a sufficiently large absolute constant.

Mixture models

- Can think of overall population as a mixture distribution

$$
\pi_{1} \mathrm{~N}\left(\boldsymbol{\mu}_{1}, \boldsymbol{I}\right)+\pi_{2} \mathrm{~N}\left(\boldsymbol{\mu}_{2}, \boldsymbol{I}\right)+\cdots+\pi_{k} \mathrm{~N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{I}\right),
$$

where π_{i} is expected proportion from $\mathrm{N}\left(\boldsymbol{\mu}_{i}, \boldsymbol{I}\right)$.

- Usually MLE for mixture distribution parameters $\left\{\left(\pi_{i}, \boldsymbol{\mu}_{i}\right)\right\}_{i=1}^{k}$ is computationally intractable in general.
- But with strict separation:
- First separate data by mixture component source.
- Then estimate π_{i} and $\boldsymbol{\mu}_{i}$ using separated data.

Another approach

- Project data to line spanned by some $\boldsymbol{u} \in S^{d-1}$.
- With "good" u, projected means remain separated.
- Use classical statistical methods to estimate projected means.
- Do this for d nearby but linearly independent \boldsymbol{u}; can then back-out estimates of original means.

Projection pursuit

Exploratory data analysis (Tukey)

- Many classical data analysis methods based on finding "interesting" features of data set.
- E.g., visually inspect many one-dimensional projections of data.
- Called projection pursuit.
- Folklore: most projections are not interesting.

Two examples

- $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ is Rademacher (i.e., uniform on $\left.\{ \pm 1\}^{d}\right)$.
- $\boldsymbol{u}_{1}:=(1 / \sqrt{d}, 1 / \sqrt{d}, \ldots, 1 / \sqrt{d})$:

$$
\left\langle\boldsymbol{u}_{1}, \boldsymbol{x}\right\rangle=\frac{1}{\sqrt{d}} \sum_{i=1}^{d} X_{i} .
$$

- By central limit theorem, this is approximately $\mathrm{N}(0,1)$.
- $\boldsymbol{u}_{2}:=(1,0, \ldots, 0)$:

$$
\left\langle\boldsymbol{u}_{2}, \boldsymbol{X}\right\rangle=X_{1} .
$$

- Very different from $\mathrm{N}(0,1)$.
- "Theorem": Most projections are more like \boldsymbol{u}_{1} rather than \boldsymbol{u}_{2}.

Projection pursuit asymptotics (Diaconis-Freedman, 1984)

- Suppose $X_{1}, X_{2}, \ldots, X_{d}$ are independent random variables.
- Assume $\mathbb{E}\left(X_{i}\right)=0, \mathbb{E}\left(X_{i}^{2}\right)=1, \mathbb{E}\left|X_{i}\right|^{3} \leq \rho<\infty$.
- For nearly all $\boldsymbol{u} \in S^{d-1}$,

$$
\sup _{t \in \mathbb{R}}|\mathbb{P}(\langle\boldsymbol{u}, \boldsymbol{X}\rangle \leq t)-\Phi(t)| \leq \tilde{O}\left(\frac{\rho}{\sqrt{d}}\right),
$$

where Φ is $\mathrm{N}(0,1) \mathrm{CDF}$.

Application to mixture models

- Suppose $\boldsymbol{X} \sim \pi_{1} P_{1}+\pi_{2} P_{2}+\cdots+\pi_{k} P_{k}$, where each P_{i} is a product distribution.
- \boldsymbol{X} generally does not have independent coordinates.
- But for most $\boldsymbol{u} \in S^{d-1}$, distribution of $\langle\boldsymbol{u}, \boldsymbol{X}\rangle$ is close to

$$
\pi_{1} N_{1}+\pi_{2} N_{2}+\cdots+\pi_{k} N_{k}
$$

for some univariate normal distributions $N_{1}, N_{2}, \ldots, N_{k}$.

