

Gaussian (normal) distributions • $Z \sim N(0, 1)$ means Z follows a standard Gaussian distribution, i.e., has probability density $z \mapsto \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$. • If Z_1, Z_2, \ldots, Z_d are iid N(0, 1) random variables, then say $\mathbf{Z} := (Z_1, Z_2, \dots, Z_d)$ follows a standard multivariate Gaussian distribution on \mathbb{R}^d , i.e., $\boldsymbol{Z} \sim \mathsf{N}(\boldsymbol{0}, \boldsymbol{I})$. • Other Gaussian distributions on \mathbb{R}^d arise by applying (invertible) linear maps and translations to **Z**: linear map $z \mapsto Az \mapsto Az + \mu$. • $\pmb{X} := \pmb{A}\pmb{Z} + \pmb{\mu} \sim \mathsf{N}(\pmb{\mu}, \pmb{A}\pmb{A}^{ op})$ has $\mathbb{E}(\boldsymbol{X}) = \boldsymbol{\mu}$ and $\operatorname{cov}(\boldsymbol{X}) = \boldsymbol{A} \boldsymbol{A}^{\top}$. 3 Shape of Gaussian distributions • Let $\mathbf{X} \sim \mathsf{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \, \boldsymbol{\mu} \in \mathbb{R}^d$, and $\boldsymbol{\Sigma} \succ \mathbf{0}$. • Contours of equal density are ellipsoids around μ : $\{\mathbf{x} \in \mathbb{R}^d : (\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = r^2 \}.$ • Let eigenvalues of Σ be $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d > 0$, corresponding (orthonormal) eigenvectors be $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_d$. • var $(\langle \mathbf{v}_i, \mathbf{X} \rangle) = \lambda_i$. (This is true even if \mathbf{X} is not Gaussian.) • If $Y_i := \langle \mathbf{v}_i, \mathbf{X} - \boldsymbol{\mu} \rangle$, then $Y_i \sim N(0, \lambda_i)$. • Y_1, Y_2, \ldots, Y_d are independent; $\mathbf{Y} := (Y_1, Y_2, \dots, Y_d) \sim \mathsf{N}(\mathbf{0}, \mathsf{diag}(\lambda_1, \lambda_2, \dots, \lambda_d)).$ What about concentration properties?

Concentration of spherical Gaussians Spherical Gaussian: $\mathbf{X} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$. • Pick any $\delta \in (0, 1)$. Then for any $\boldsymbol{u} \in S^{d-1}$, $\mathbb{P}\Big(\langle \boldsymbol{u}, \boldsymbol{X} - \boldsymbol{\mu} \rangle \leq \sigma \sqrt{2 \ln(1/\delta)} \Big) \geq 1 - \delta$, $\mathbb{P}igg(\|oldsymbol{X}-oldsymbol{\mu}\|_2^2 \leq \sigma^2 d \left(1+2\sqrt{rac{\ln(1/\delta)}{d}}+rac{2\ln(1/\delta)}{d}
ight)igg) \ \geq \ 1-\delta\,,$ $\mathbb{P} \left(\| oldsymbol{X} - oldsymbol{\mu} \|_2^2 \geq \sigma^2 d \left(1 - 2 \sqrt{rac{\ln(1/\delta)}{d}}
ight)
ight) \ \geq \ 1 - \delta \,.$ (Standard tail bounds for N(0, 1) and $\chi^2(d)$ distributions.) • Behaves like spherical shell around μ of radius $\sigma\sqrt{d}$ and thickness $O(\sigma d^{1/4})$. 5 Concentration of general Gaussians • General Gaussian: $\boldsymbol{X} \sim \mathsf{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. • Concentration of $\langle \boldsymbol{u}, \boldsymbol{X} - \boldsymbol{\mu} \rangle$ for $\boldsymbol{u} \in S^{d-1}$ depends on \boldsymbol{u} : $\langle \boldsymbol{u}, \boldsymbol{X} - \boldsymbol{\mu} \rangle \sim \mathsf{N}(0, \boldsymbol{u}^{\top} \boldsymbol{\Sigma} \boldsymbol{u}).$ • Concentration of $\|\boldsymbol{X} - \boldsymbol{\mu}\|_2^2$: a mismatch of norms. • $\|\boldsymbol{\Sigma}^{-1/2}(\boldsymbol{X}-\boldsymbol{\mu})\|_2^2 \sim \chi^2(d).$ • $\|\boldsymbol{X} - \boldsymbol{\mu}\|_2^2$ distributed as linear combination of independent $\chi^2(1)$ random variables: $\sum^{a} \lambda_i Z_i^2$ where $Z_1, Z_2, ..., Z_d$ are iid N(0, 1). • $\mathbb{E} \| \boldsymbol{X} - \boldsymbol{\mu} \|_2^2 = \sum_{i=1}^d \lambda_i$. • $\| \boldsymbol{X} - \boldsymbol{\mu} \|_2^2$ is $(4 \sum_{i=1}^d \lambda_i^2, 4\lambda_1)$ -subexponential. 6

Multiple Gaussian populations

Multiple populations

- Often data do not come from just a single population, but rather several different populations.
- If data are "labeled" by population, then can partition data, and (say) fit a Gaussian distribution to each part (or whatever).
- What if data are not labeled?

9

Probabilistic analysis (continued)

Need previous concentration to hold for all triples in n data: union bound over O(n³) events means we need log(n) factors in separation, specifically

$$\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|_2 \geq C\Big((d\log(n))^{1/4} + \log(n)\Big) \quad ext{for all } i \neq j \,,$$

where C > 0 is a sufficiently large absolute constant.

Mixture models

Can think of overall population as a *mixture distribution*

$$\pi_1 \operatorname{\mathsf{N}}(\boldsymbol{\mu}_1, \boldsymbol{I}) + \pi_2 \operatorname{\mathsf{N}}(\boldsymbol{\mu}_2, \boldsymbol{I}) + \dots + \pi_k \operatorname{\mathsf{N}}(\boldsymbol{\mu}_k, \boldsymbol{I})$$

where π_i is expected proportion from N(μ_i , I).

- Usually MLE for mixture distribution parameters {(π_i, μ_i)}^k_{i=1} is computationally intractable in general.
- But with strict separation:
 - First separate data by *mixture component* source.
 - Then estimate π_i and μ_i using separated data.

15

Another approach

- Project data to line spanned by some $\boldsymbol{u} \in S^{d-1}$.
- ▶ With "good" *u*, projected means remain separated.
 - Use classical statistical methods to estimate projected means.
- Do this for *d* nearby but linearly independent *u*; can then back-out estimates of original means.

17

Projection pursuit

