1 Notes on matrix perturbation and Davis-Kahan $\sin (\Theta)$ theorem

In many situations, there is a symmetric matrix of interest $A \in \mathbb{R}^{n \times n}$, but one only has a perturbed version of it $\tilde{A}=A+H$ (H is a "small" symmetric matrix). How is \tilde{A} affected by H ?

Example: PCA. Let $A=\operatorname{cov}(X)$ for some random vector X, and let \tilde{A} be the sample covariance matrix on independent copies of X. If X is concentrated on a low dimensional subspace, then we can hope to discover this subspace from the principal components of \tilde{A}. How accurate is the subspace we find?

1.1 Spectral theorem

A non-zero vector v is an eigenvector of A if $A v=\lambda v$ for some scalar λ called the corresponding eigenvalue.

Theorem 1. If $A \in \mathbb{R}^{n \times n}$ is symmetric, then there is an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ consisting of eigenvectors of A with real corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$:

$$
A=\lambda_{1} v_{1} v_{1}{ }^{*}+\ldots+\lambda_{n} v_{n} v_{n}{ }^{*} .
$$

1.2 Eigenvalues

How are the eigenvalues of \tilde{A} affected by H ?
Let $\lambda_{i}(M)$ be the i th largest eigenvalue of a matrix M. Then

$$
\begin{aligned}
\lambda_{1}(\tilde{A}) & =\max _{\|u\|=1} u^{*}(A+H) u \\
& \leq \max _{\|u\|=1} u^{*} A u+\max _{\|u\|=1} u^{*} H u \\
& =\lambda_{1}(A)+\lambda_{1}(H) .
\end{aligned}
$$

Also, letting v_{1} be the top eigenvector of A,

$$
\begin{aligned}
\lambda_{1}(\tilde{A}) & \geq v_{1}{ }^{*}(A+H) v_{1} \\
& =\lambda_{1}(A)+v_{1}{ }^{*} H v_{1} \\
& \geq \lambda_{1}(A)+\lambda_{n}(H) .
\end{aligned}
$$

Therefore

$$
\lambda_{1}(A)+\lambda_{n}(H) \leq \lambda_{1}(\tilde{A}) \leq \lambda_{1}(A)+\lambda_{1}(H)
$$

This can be extended to the 2nd, 3rd, etc. eigenvalues.
Theorem 2 (Weyl). For $i=1, \ldots, n$:

$$
\lambda_{i}(A)+\lambda_{n}(H) \leq \lambda_{i}(\tilde{A}) \leq \lambda_{i}(A)+\lambda_{1}(H)
$$

Therefore the (ordered) eigenvalues of a matrix are fairly stable with respect to a small perturbation.

1.3 Eigenvectors, eigenspaces

An eigenspace of A is the span of some eigenvectors of A. We can decompose A into its action on an eigenspace S and its action on the orthogonal complement S^{\perp} :

$$
A=E_{0} A_{0} E_{0}^{*}+E_{1} A_{1} E_{1}^{*}
$$

where E_{0} is an orthonormal basis for S (e.g., the eigenvectors of A that span S), and E_{1} is an orthonormal basis for S^{\perp} (this follows from the spectral theorem). We can similarly decompose $\tilde{A}=A+H$ with respect to a "corresponding" eigenspace \tilde{S} (with $\operatorname{dim} \tilde{S}=\operatorname{dim} S$):

$$
\tilde{A}=F_{0} \Lambda_{0} F_{0}{ }^{*}+F_{1} \Lambda_{1} F_{1}{ }^{*}
$$

How is close is \tilde{S} to S ?
A few things to consider:

1. How are we choosing the eigenspace S of A, and what is a suitable corresponding eigenspace \tilde{S} of \tilde{A} ? (Or vice versa.)
2. How do we measure the closeness between subspaces?
3. Under what conditions will the subspaces be close?

Suppose we find a few eigenvalues of \tilde{A} that somehow stand out from the rest. For instance, as in PCA, we may find the first few eigenvalues to be much larger than the rest. Let \tilde{S} be the corresponding eigenspace. If there is a similarly outstanding group of eigenvalues of A, then the hope is that the corresponding eigenspace S will be close to \tilde{S} in some sense. For instance, we may be interested in how well \tilde{S} approximates vectors in S. Any vector in S can be written as $E_{0} \alpha$ for some $\alpha \in \mathbb{R}^{\operatorname{dim} S}$; the projection of this vector onto \tilde{S} is $F_{0} F_{0}{ }^{*} E_{0} \alpha$. Then

$$
\begin{aligned}
\left\|E_{0} \alpha-F_{0} F_{0}{ }^{*} E_{0} \alpha\right\| & =\left\|\left(I-F_{0} F_{0}{ }^{*}\right) E_{0} \alpha\right\| \\
& =\left\|F_{1} F_{1}{ }^{*} E_{0} \alpha\right\| \\
& =\left\|F_{1}{ }^{*} E_{0} \alpha\right\| .
\end{aligned}
$$

Therefore vectors in S will be well-approximated by \tilde{S} if $F_{1}{ }^{*} E_{0}$ is "small".
The condition we will need is separation between the eigenvalues corresponding to S and those corresponding to \tilde{S}^{\perp}. Suppose the eigenvalues corresponding to S are all contained in an interval $[a, b]$. Then we will require that the eigenvalues corresponding to \tilde{S}^{\perp} be excluded from the interval $(a-\delta, b+\delta)$ for some $\delta>0$. To see why this is necessary, consider the following example:

$$
A:=\left[\begin{array}{cc}
1+\delta & 0 \\
0 & 1-\delta
\end{array}\right], \quad H:=\left[\begin{array}{rr}
-\delta & \delta \\
\delta & \delta
\end{array}\right], \quad \tilde{A}:=\left[\begin{array}{ll}
1 & \delta \\
\delta & 1
\end{array}\right] .
$$

Here, the "size" of H is comparable to the gap between the relevant eigenvalues. Then the eigenvalues of A are $\lambda_{1}=1+\delta$ and $\lambda_{2}=1-\delta$, and its corresponding eigenvectors are $v_{1}=(1,0)$ and $v_{2}=(0,1)$. The eigenvalues of \tilde{A} are also $\tilde{\lambda}_{1}=1+\delta$ and $\tilde{\lambda}_{2}=1-\delta$, but its corresponding eigenvectors are $\tilde{v}_{1}=(1 / \sqrt{2}, 1 / \sqrt{2})$ and $\tilde{v}_{2}=(-1 / \sqrt{2}, 1 / \sqrt{2})$; we have $\tilde{v}_{2}^{*} v_{1}=1 / \sqrt{2}$, which can be arbitrarily large relative to δ.

Theorem 3 (Davis-Kahan $\sin (\Theta)$ theorem). Let $A=E_{0} A_{0} E_{0}{ }^{*}+E_{1} A_{1} E_{1}{ }^{*}$ and $A+H=F_{0} \Lambda_{0} F_{0}{ }^{*}+$ $F_{1} \Lambda_{1} F_{1}{ }^{*}$ be symmetric matrices with $\left[E_{0}, E_{1}\right]$ and $\left[F_{0}, F_{1}\right]$ orthogonal. If the eigenvalues of A_{0} are contained in an interval (a, b), and the eigenvalues of Λ_{1} are excluded from the interval $(a-\delta, b+\delta)$ for some $\delta>0$, then

$$
\left\|F_{1}{ }^{*} E_{0}\right\| \leq \frac{\left\|F_{1}{ }^{*} H E_{0}\right\|}{\delta}
$$

for any unitarily invariant norm $\|\cdot\|$.
Proof. Since $A E_{0}=E_{0} A_{0} E_{0}{ }^{*} E_{0}+E_{1} A_{1} E_{1}{ }^{*} E_{0}=E_{0} A_{0}$, we have

$$
\begin{aligned}
H E_{0} & =A E_{0}+H E_{0}-E_{0} A_{0} \\
& =(A+H) E_{0}-E_{0} A_{0} .
\end{aligned}
$$

Furthermore, $F_{1}{ }^{*}(A+H)=\Lambda_{1} F_{1}{ }^{*}$, so

$$
\begin{aligned}
F_{1}{ }^{*} H E_{0} & =F_{1}{ }^{*}(A+H) E_{0}-F_{1}{ }^{*} E_{0} A_{0} \\
& =\Lambda_{1} F_{1}{ }^{*} E_{0}-F_{1}{ }^{*} E_{0} A_{0} .
\end{aligned}
$$

Let $c:=(a+b) / 2$ and $r:=(b-a) / 2 \geq 0$. By the triangle inequality, we have

$$
\begin{aligned}
\left\|F_{1}{ }^{*} H E_{0}\right\| & =\left\|\Lambda_{1} F_{1}{ }^{*} E_{0}-F_{1}{ }^{*} E_{0} A_{0}\right\| \\
& =\left\|\left(\Lambda_{1}-c I\right) F_{1}{ }^{*} E_{0}-F_{1}{ }^{*} E_{0}\left(A_{0}-c I\right)\right\| \\
& \geq\left\|\left(\Lambda_{1}-c I\right) F_{1}{ }^{*} E_{0}\right\|-\left\|F_{1}{ }^{*} E_{0}\left(A_{0}-c I\right)\right\| .
\end{aligned}
$$

Here we have used a centering trick so that $A_{0}-c I$ has eigenvalues contained in [$-r, r$], and $\Lambda_{1}-c I$ has eigenvalues excluded from $(-r-\delta, r+\delta)$. This implies that $\left\|A_{1}-c I\right\|_{2} \leq r$ and $\left\|\left(\Lambda_{1}-c I\right)^{-1}\right\|_{2} \leq(r+\delta)^{-1}$, respectively. Therefore

$$
\begin{aligned}
\left\|\left(\Lambda_{1}-c I\right) F_{1}{ }^{*} E_{0}\right\| & \geq \frac{1}{\left\|\left(\Lambda_{1}-c I\right)^{-1}\right\|_{2}}\left\|F_{1}{ }^{*} E_{0}\right\| \\
& \geq(r+\delta)\left\|F_{1}{ }^{*} E_{0}\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|F_{1}{ }^{*} E_{0}\left(A_{0}-c I\right)\right\| & \leq\left\|A_{0}-c I\right\|_{2}\left\|F_{1}{ }^{*} E_{0}\right\| \\
& \leq r\left\|F_{1}{ }^{*} E_{0}\right\| .
\end{aligned}
$$

We conclude that $\left\|F_{1}{ }^{*} H E_{0}\right\| \geq \delta\left\|F_{1}{ }^{*} E_{0}\right\|$.

