1 Notes on matrix perturbation and Davis-Kahan $sin(\Theta)$ theorem

In many situations, there is a symmetric matrix of interest $A \in \mathbb{R}^{n \times n}$, but one only has a perturbed version of it $\tilde{A} = A + H$ (*H* is a "small" symmetric matrix). How is \tilde{A} affected by *H*?

Example: PCA. Let A = cov(X) for some random vector X, and let \tilde{A} be the sample covariance matrix on independent copies of X. If X is concentrated on a low dimensional subspace, then we can hope to discover this subspace from the principal components of \tilde{A} . How accurate is the subspace we find?

1.1 Spectral theorem

A non-zero vector v is an eigenvector of A if $Av = \lambda v$ for some scalar λ called the corresponding eigenvalue.

Theorem 1. If $A \in \mathbb{R}^{n \times n}$ is symmetric, then there is an orthonormal basis $\{v_1, \ldots, v_n\}$ consisting of eigenvectors of A with real corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$:

$$A = \lambda_1 v_1 v_1^* + \ldots + \lambda_n v_n v_n^*.$$

1.2 Eigenvalues

How are the eigenvalues of \tilde{A} affected by H?

Let $\lambda_i(M)$ be the *i*th largest eigenvalue of a matrix M. Then

$$\lambda_{1}(\tilde{A}) = \max_{\|u\|=1} u^{*}(A+H)u$$

$$\leq \max_{\|u\|=1} u^{*}Au + \max_{\|u\|=1} u^{*}Hu$$

$$= \lambda_{1}(A) + \lambda_{1}(H).$$

Also, letting v_1 be the top eigenvector of A,

$$\lambda_1(A) \ge v_1^*(A+H)v_1$$

= $\lambda_1(A) + v_1^*Hv_1$
 $\ge \lambda_1(A) + \lambda_n(H).$

Therefore

$$\lambda_1(A) + \lambda_n(H) \leq \lambda_1(A) \leq \lambda_1(A) + \lambda_1(H).$$

This can be extended to the 2nd, 3rd, etc. eigenvalues.

Theorem 2 (Weyl). For $i = 1, \ldots, n$:

$$\lambda_i(A) + \lambda_n(H) \leq \lambda_i(A) \leq \lambda_i(A) + \lambda_1(H).$$

Therefore the (ordered) eigenvalues of a matrix are fairly stable with respect to a small perturbation.

1.3 Eigenvectors, eigenspaces

An eigenspace of A is the span of some eigenvectors of A. We can decompose A into its action on an eigenspace S and its action on the orthogonal complement S^{\perp} :

$$A = E_0 A_0 E_0^* + E_1 A_1 E_1^*$$

where E_0 is an orthonormal basis for S (*e.g.*, the eigenvectors of A that span S), and E_1 is an orthonormal basis for S^{\perp} (this follows from the spectral theorem). We can similarly decompose $\tilde{A} = A + H$ with respect to a "corresponding" eigenspace \tilde{S} (with dim $\tilde{S} = \dim S$):

$$\tilde{A} = F_0 \Lambda_0 F_0^* + F_1 \Lambda_1 F_1^*.$$

How is close is \tilde{S} to S?

A few things to consider:

- 1. How are we choosing the eigenspace S of A, and what is a suitable corresponding eigenspace \tilde{S} of \tilde{A} ? (Or vice versa.)
- 2. How do we measure the closeness between subspaces?
- 3. Under what conditions will the subspaces be close?

Suppose we find a few eigenvalues of A that somehow stand out from the rest. For instance, as in PCA, we may find the first few eigenvalues to be much larger than the rest. Let \tilde{S} be the corresponding eigenspace. If there is a similarly outstanding group of eigenvalues of A, then the hope is that the corresponding eigenspace S will be close to \tilde{S} in some sense. For instance, we may be interested in how well \tilde{S} approximates vectors in S. Any vector in S can be written as $E_0\alpha$ for some $\alpha \in \mathbb{R}^{\dim S}$; the projection of this vector onto \tilde{S} is $F_0F_0^*E_0\alpha$. Then

$$||E_0\alpha - F_0F_0^*E_0\alpha|| = ||(I - F_0F_0^*)E_0\alpha||$$

= ||F_1F_1^*E_0\alpha||
= ||F_1^*E_0\alpha||.

Therefore vectors in S will be well-approximated by \tilde{S} if $F_1^*E_0$ is "small".

The condition we will need is separation between the eigenvalues corresponding to S and those corresponding to \tilde{S}^{\perp} . Suppose the eigenvalues corresponding to S are all contained in an interval [a, b]. Then we will require that the eigenvalues corresponding to \tilde{S}^{\perp} be excluded from the interval $(a - \delta, b + \delta)$ for some $\delta > 0$. To see why this is necessary, consider the following example:

$$A := \begin{bmatrix} 1+\delta & 0\\ 0 & 1-\delta \end{bmatrix}, \quad H := \begin{bmatrix} -\delta & \delta\\ \delta & \delta \end{bmatrix}, \quad \tilde{A} := \begin{bmatrix} 1 & \delta\\ \delta & 1 \end{bmatrix}.$$

Here, the "size" of H is comparable to the gap between the relevant eigenvalues. Then the eigenvalues of A are $\lambda_1 = 1 + \delta$ and $\lambda_2 = 1 - \delta$, and its corresponding eigenvectors are $v_1 = (1,0)$ and $v_2 = (0,1)$. The eigenvalues of \tilde{A} are also $\tilde{\lambda}_1 = 1 + \delta$ and $\tilde{\lambda}_2 = 1 - \delta$, but its corresponding eigenvectors are $\tilde{v}_1 = (1/\sqrt{2}, 1/\sqrt{2})$ and $\tilde{v}_2 = (-1/\sqrt{2}, 1/\sqrt{2})$; we have $\tilde{v}_2^* v_1 = 1/\sqrt{2}$, which can be arbitrarily large relative to δ .

Theorem 3 (Davis-Kahan $\sin(\Theta)$ theorem). Let $A = E_0 A_0 E_0^* + E_1 A_1 E_1^*$ and $A + H = F_0 \Lambda_0 F_0^* + F_1 \Lambda_1 F_1^*$ be symmetric matrices with $[E_0, E_1]$ and $[F_0, F_1]$ orthogonal. If the eigenvalues of A_0 are contained in an interval (a, b), and the eigenvalues of Λ_1 are excluded from the interval $(a - \delta, b + \delta)$ for some $\delta > 0$, then

$$||F_1^*E_0|| \le \frac{||F_1^*HE_0||}{\delta}$$

for any unitarily invariant norm $\|\cdot\|$.

Proof. Since $AE_0 = E_0 A_0 E_0^* E_0 + E_1 A_1 E_1^* E_0 = E_0 A_0$, we have

$$HE_0 = AE_0 + HE_0 - E_0A_0$$

= (A + H)E_0 - E_0A_0.

Furthermore, $F_1^*(A+H) = \Lambda_1 F_1^*$, so

$$F_1^* H E_0 = F_1^* (A + H) E_0 - F_1^* E_0 A_0$$

= $\Lambda_1 F_1^* E_0 - F_1^* E_0 A_0.$

Let c := (a+b)/2 and $r := (b-a)/2 \ge 0$. By the triangle inequality, we have

$$||F_1^*HE_0|| = ||\Lambda_1F_1^*E_0 - F_1^*E_0A_0||$$

= $||(\Lambda_1 - cI)F_1^*E_0 - F_1^*E_0(A_0 - cI)||$
 $\ge ||(\Lambda_1 - cI)F_1^*E_0|| - ||F_1^*E_0(A_0 - cI)||.$

Here we have used a centering trick so that $A_0 - cI$ has eigenvalues contained in [-r, r], and $\Lambda_1 - cI$ has eigenvalues excluded from $(-r - \delta, r + \delta)$. This implies that $||A_1 - cI||_2 \leq r$ and $||(\Lambda_1 - cI)^{-1}||_2 \leq (r + \delta)^{-1}$, respectively. Therefore

$$\|(\Lambda_1 - cI)F_1^* E_0\| \ge \frac{1}{\|(\Lambda_1 - cI)^{-1}\|_2} \|F_1^* E_0\|$$

$$\ge (r+\delta) \|F_1^* E_0\|$$

and

$$||F_1^* E_0(A_0 - cI)|| \le ||A_0 - cI||_2 ||F_1^* E_0||$$

$$\le r ||F_1^* E_0||.$$

We conclude that $||F_1^*HE_0|| \ge \delta ||F_1^*E_0||$.