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Finitely representing large sets

Let (X , ρ) be a metric space.

I I.e., ρ : X × X → R+ is symmetric, non-negative (with
ρ(x , y) = 0 iff x = y), and satisfies triangle inequality.

Goal: given a set S ⊂ X , find a set C ⊂ X (“centers”) that

I has small cardinality, and
I “represents” the set S well (as measured by a cost function).
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Covering / net formulations
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k-center clustering

I Fix the cardinality k ∈ N allowed for C .
I Cost function:

cost∞(S,C) := max
x∈S

ρ(x,C) ,

where ρ(x,C) := miny∈C ρ(x, y).
I Determines ε in ε-net criterion.
I NP-hard optimization problem.
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Farthest-first traversal (Gonzalez, 1985)

I Input: set S ⊂ X .
I Let y1 be any point in S.
I For t = 2, 3, . . .:

I Let y t be a point in S farthest from all previous y i :

y t ∈ argmax
x∈S

ρ(x, {y1, y2, . . . , y t−1}) .

I Theorem. For any k, cost of Ĉ := {y1, y2, . . . , yk} is at most
twice the cost of every C with |C | ≤ k.

5

Approximation analysis of farthest-first
I Let ri := ρ(y i+1, {y1, y2, . . . , y i}), so

rk = ρ(yk+1, Ĉ) = max
x∈S

ρ(x, Ĉ) = cost(S, Ĉ) .

I Pairwise distances among {y1, y2, . . . , y i+1} are at least ri .
I So r1 ≥ r2 ≥ · · · ≥ rk .

I Consider any set of at most k representatives C .
I At least two points in {y1, y2, . . . , yk+1} have same closest

representative in C .
I Say they are y i and y j , and they are represented by z ∈ C .
I By triangle inequality,

2 · cost∞(S,C) ≥ ρ(y i , z) + ρ(y j , z) ≥ ρ(y i , y j) ≥ rk .

I So cost∞(S, Ĉ) = rk ≤ 2 · cost∞(S,C).
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ε-nets

I Suppose we run farthest-first traversal to pick y1, y2, . . ., and
stop as soon as

rk = cost(S, {y1, y2, . . . , yk}) ≤ ε .

I Then Ĉ := {y1, y2, . . . , yk} satisfies

size of smallest ε-net ≤ |Ĉ | ≤ size of smallest ε/2-net .

I Size of smallest ε-net is called covering number of S (at scale
ε, with respect to ρ metric).
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Set cover

I Goal: given set S, family of subsets F := {Si : i ∈ I} ⊆ 2S ,
pick Si1 , Si2 , . . . ,Sik , with k as small as possible, that cover S:

k⋃

j=1
Sij = S .

I (Can assume
⋃

i∈I Si = S.)
I Example:

I S ⊆ X for some metric space (X , ρ).
I F = {B(c, ε) ∩ S : c ∈ S}, where

B(c, r) := {x ∈ X : ρ(x , c) ≤ r} is ball of radius r around c.
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Greedy algorithm

I Assume S has cardinality n <∞.
I Having already selected Si1 ,Si2 , . . . ,Sit , we next select

it+1 ∈ argmax
i∈I

∣∣∣∣∣∣
Si ∩


S \

t⋃

j=1
Sij



∣∣∣∣∣∣
.

(Halt when S is covered.)
I Theorem. If there is a cover of size k, then greedy finds a

cover of size k(1 + ln(n/k)).
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Analysis of greedy algorithm (Johnson, 1974)

I Suppose Si?
1
, Si?

2
, . . . ,Si?

k
covers S.

I After t steps of greedy, we have picked Si1 ,Si2 , . . . ,Sit .
I Let nt := |S \⋃t

j=1 Sij | be the number of points in S not
covered after t steps.

I We know Si?
1
,Si?

2
, . . . ,Si?

k
would cover all nt points.

I So there is one of them covers at least nt/k of the nt points.
I Greedy does at least well with its choice it+1.

I Starting with n0 = n, we have

nt+1 ≤
(
1− 1

k

)
nt .

I So nt ≤ k for t ≥ k ln(n/k).
I After this, just need k more sets to cover remaining points.
I Total of k(1 + ln(n/k)) sets.
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Average cost formulations
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k-medians and k-means cost functions

I Instead of requiring representatives close to every point in S,
just require representatives close to random point in S.

I Some common cost functions:
I k-medians: cost(S,C) =

∑
x∈S ρ(x,C).

I k-means: cost(S,C) =
∑

x∈S ρ(x,C)2.
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k-means

I X = Rd , ρ(x, y) = ‖x − y‖2.
I cost(S,C) =

∑
x∈S miny∈C ‖x − y‖2

2.
I NP-hard to approximate within some constant factor c > 1

(Awasthi et al, 2015).
I Easy cases:

I d = 1: dynamic programming in time O(n2k).
I k = 1: bias-variance decomposition
∑

x∈S
‖x − y‖2

2 = |S| · ‖y −mean(S)‖2
2 +

∑

x∈S
‖x −mean(S)‖2

2

implies solution is mean(S).
I Approximation schemes available when d = O(1) or k = O(1).
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General case
I Notation: for C = {y1, y2, . . . , yk},

I C(x) := argminy∈C ‖x − y‖2
2, ties broken using some fixed rule.

I SC
i = Si := {x ∈ S : C(x) = y i} for each i = 1, 2, . . . , k.

I Improving C :

cost(S,C) =
k∑

i=1
cost(Si ,C)

=
k∑

i=1
cost(Si , y i )

≥
k∑

i=1
cost(Si ,mean(Si ))

≥
k∑

i=1
cost(Si , {mean(Sj) : j = 1, 2, . . . , k})

= cost(S, {mean(Sj) : j = 1, 2, . . . , k}) .
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Local search algorithm (Lloyd, 1982)

I Start with C = {y1, y2, . . . , yk}; repeat:
I Partition S into S1,S2, . . . ,Sk using C .
I Set C := {mean(Si ) : i = 1, 2, . . . , k}.

I Alternative: start with partition of S into S1,S2, . . . ,Sk .
I Cost is non-increasing.
I Eventually halts, because there are only O(ndk2) ways to

partition n points in Rd with k Voronoi cells.
I Could take 2Ω(n) iterations (when k = Θ(n)), but atypical.

I How good is final solution?
I Depends on initialization.
I Could be arbitrarily worse than optimal.
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Bad case for Lloyd’s algorithm














Figure 1: Bad case for Lloyd’s algorithm
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Aside: dimension reduction
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Another look at bias-variance

∑

x∈S
‖x − y‖22 = |S| · ‖y −mean(S)‖22 +

∑

x∈S
‖x −mean(S)‖22 .

Now averaging over y ∈ S:

1
|S|

∑

x,y∈S
‖x − y‖22 =

∑

y∈S
‖y −mean(S)‖22 +

∑

x∈S
‖x −mean(S)‖22

= 2
∑

x∈S
‖x −mean(S)‖22 .
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Dimension reduction for k-means
Let S be partitioned into S1,S2, . . . ,Sk by C = {y1, y2, . . . , yk}.

I Assume y i = mean(Si ) (i.e., C is locally optimal).
I Bias-variance implies

cost(S,C) =
k∑

i=1

∑

x∈Si

‖x −mean(Si )‖22

=
k∑

i=1

1
2|Si |

∑

x,x∈Si

‖x − x ′‖22 ,

so cost only depends on pairwise distances between data.
I Can thus reduce dimension (using JL) to O(log(n)/ε2) and

preserve cost of all locally-optimal solutions up to 1± ε factor.
I Also implies that we cannot expect poly(n, k, 2O(d))-time exact

algorithm for k-means.
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D2 sampling
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D2 sampling

Problem. Lloyd’s algorithm requires good initialization.

D2 sampling / k-means++ (Arthur and Vassilvitskii, 2007)

I Pick Y 1 u.a.r. from S, and set C1 := {Y 1}.
I For t = 2, 3, . . .:

I Pick Y t ∼ pt , where

pt(y) = cost({y},Ct−1)
cost(S,Ct−1) for each y ∈ S .

I Theorem.

E cost(S,Ck) ≤ O(log k) · min
C⊆Rd :|C |≤k

cost(S,C) .
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Analysis of the first center selection
I Let C? := {µ1,µ2, . . . ,µk} be optimal solution, and let

A1,A2, . . . ,Ak be partitioning of S with respect to C?.
I First analyze Y 1, which is distributed uniformly at random in S.
I Claim.

E
[
cost(Ai ,C1) | {Y 1 ∈ Ai}

]
= 2 cost(Ai ,C?) .

I Proof. By bias-variance,

E


∑

x∈Ai

‖x − Y 1‖22 | {Y 1 ∈ Ai}



= E


∑

x∈Ai

‖x − µi‖22 + |Ai | · ‖Y 1 − µi‖22 | {Y 1 ∈ Ai}



= 2
∑

x∈Ai

‖x − µi‖22 .

I (Lose factor of two by restricting centers to data points.)
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Selection of subsequent centers
I Now consider Y t for t > 1 (conditional on Ct−1).
I Distribution of Y t not necessarily uniform in S.

I Points farther from Ct−1 get higher weight in pt .
I Write, for y ∈ Ai ,

pt(y) = cost({y},Ct−1)
cost(Ai ,Ct−1)︸ ︷︷ ︸

=: pt (y |Ai )

· cost(Ai ,Ct−1)
cost(S,Ct−1)︸ ︷︷ ︸

=: pt (Ai )

.

I Claim (non-uniformity bound). For y ∈ Ai ,

pt(y | Ai ) ≤
2
|Ai |

(
1 + cost(Ai , {y})

cost(Ai ,Ct−1)

)
.

I Claim (cost bound).

E
[
cost(Ai ,Ct−1 ∪ {Y t}) | {Y t ∈ Ai},Ct−1

] ≤ 8 cost(Ai ,C?) .
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Non-uniformity bound
Proof of non-uniformity bound.

I For any x ∈ Ai ,

cost({y},Ct−1) ≤ cost({y}, {Ct−1(x)}) = ‖y−Ct−1(x)‖22 .

I By triangle inequality,

cost({y},Ct−1) ≤ 2
(
‖x − Ct−1(x)‖22 + ‖x − y‖22

)
.

I Now average with respect to x ∈ Ai :

cost({y},Ct−1) ≤ 2
|Ai |

cost(Ai ,Ct−1) + 2
|Ai |

cost(Ai , {y}) .

I So

pt(y | Ai ) = cost({y},Ct−1)
cost(Ai ,Ct−1) ≤ 2

|Ai |

(
1 + cost(Ai , {y})

cost(Ai ,Ct−1)

)
.
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Cost bound
Proof of cost bound.

I Expected cost:
∑

y∈Ai

pt(y | Ai ) · cost(Ai ,Ct−1 ∪ {y})

I Using non-uniformity bound on pt(· | Ai ):

≤
∑

y∈Ai

2
|Ai |

(
1 + cost(Ai , {y})

cost(Ai ,Ct−1)

)
· cost(Ai ,Ct−1 ∪ {y})

I Using cost(Ai ,Ct−1 ∪ {y}) ≤ min{cost(Ai , {y}), cost(Ai ,Ct−1)}:

≤ 4
|Ai |

∑

y∈Ai

cost(Ai , {y}) = 8 cost(Ai ,mean(Ai ))

= 8 cost(Ai ,C?) .
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Cost of uncovered clusters
I So for any t,

E
[
cost(Ai ,Ct−1 ∪ {Y t}) | {Y t ∈ Ai},Ct−1

] ≤ 8 cost(Ai ,C?) .

I Problem: some Y t land in already covered Ai .
I Define “good” and “bad” points:

good (covered): Gt :=
⋃

i :Ai∩Ct 6=∅
Ai , gt := |{i : Ai ∩ Ct 6= ∅}| ,

bad (uncovered): Bt :=
⋃

i :Ai∩Ct =∅
Ai , bt := |{i : Ai ∩ Ct = ∅}| .

And define potential function

Φt := t − gt
bt

cost(Bt ,Ct) .

I Since gk + bk = k,

cost(S,Ck) = cost(Gk ,Ck) + Φk .
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Change in uncovered clusters potential
I Claim (proof omitted).

E
[
Φt+1 − Φt | {Y t+1 ∈ Bt}, Ct

] ≤ 0 ,

E
[
Φt+1 − Φt | {Y t+1 ∈ Gt}, Ct

] ≤ cost(Bt ,Ct)
bt

.

I Using this claim, it follows that

E
[
Φt+1 − Φt | Ct

] ≤ P(Y t+1 ∈ Gt | Ct) · cost(Bt ,Ct)
bt

= cost(Gt ,Ct)
cost(S,Ct) ·

cost(Bt ,Ct)
bt

≤ cost(Gt ,Ct)
k − t .

I Conclude that

E[Φk ] ≤ E[cost(Gk ,Ck)] · (1 + 1/2 + 1/3 + · · ·+ 1/k
)
.
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Overall approximation bound

Use fact that E[cost(Gk ,Ck)] ≤ 8 cost(S,C?) to conclude:

E[cost(S,Ck)] = E[cost(Gk ,Ck) + Φk ]
≤ 8 cost(S,C?) · (1 + Hk) ,

where Hk = 1+1/2+1/3+ · · ·+1/k is the k-th harmonic sum.
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Bi-criteria approximation

29

Bi-criteria guarantees for D2 sampling

I Let C? be optimal set of k centers for S.
I Algorithm provides (α, β)-approximation if it returns Ĉ with

|Ĉ | ≤ α · k , cost(S, Ĉ) ≤ β · cost(S,C?) .

I Akin to proper (α = 1) and improper (α > 1) learning.
I D2 sampling provides (proper) (1,O(log k))-approximation.

I Also provides (O(1),O(1))-approximation!
I Tight analysis: (O(1/ε2), 2 + ε)-approximation (Wei, 2016).
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Simple bi-criteria analysis
I Define “good” and “bad” points:

good: Gt :=
⋃

i∈{1,2,...,k}:
cost(Ai ,Ct )≤16 cost(Ai ,{µi})

Ai ,

bad: Bt :=
⋃

i∈{1,2,...,k}:
cost(Ai ,Ct )>16 cost(Ai ,{µi})

Ai .

I Claim. At least one of the following is true:

cost(S,Ct) ≤ 32 cost(S,C?) ,

pt(Bt) ≥ 1
2 .

I Proof. If cost(S,Ct) > 32 cost(S,C?), then

pt(Bt) = 1− cost(Gt ,Ct)
cost(S,Ct) ≥ 1− 16 cost(Gt ,C?)

32 cost(S,C?) ≥
1
2 .
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Simple bi-criteria analysis (continued)
I Say round t is a “success” if

I either cost(S,Ct−1) ≤ 32 cost(S,C?) already,
I or Y t ∈ Ai ⊆ Bt−1 for some cluster i , and

cost(Ai ,Ct) ≤ 16 cost(Ai ,C?) (i.e., Ai ⊆ Gt) .

I Claim. Round t succeeds with probability 1/4 (given Ct−1).
I Proof.

I If first success criterion does not hold, then

pt−1(Bt−1) ≥ 1
2 .

I Furthermore, by Markov’s inequality and cost bound,

P
(
cost(Ai ,Ct) ≤ 16 cost(Ai ,C?) | {Y t ∈ Ai},Ct−1

)
≥ 1

2 .

I k success rounds guarantee cost(S,Ct) ≤ 32 cost(S,C?); this
happens within t ≤ 8k rounds with probability 1− e−Ω(k).
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Final remarks

I Can post-process the 8k centers by solving LP to get proper
O(1)-approximation (Aggarwal, Deshpande, Kannan, 2009).

I Different local search gets proper (9 + ε)-approximation for any
constant ε > 0 (Kanungo et al, 2003).

I But seems to perform worse than D2 sampling in practice.
I Can this be explained?

I Nearly all reasonable methods with theoretical analysis only
pick centers from among data, thereby losing factor two in
approximation. Can this be avoided?
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