Clustering

Daniel Hsu

COMS 4772

Finitely representing large sets

Let (\mathcal{X}, ρ) be a metric space.

- I.e., $\rho: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{+}$is symmetric, non-negative (with $\rho(x, y)=0$ iff $x=y$), and satisfies triangle inequality.

Goal: given a set $S \subset \mathcal{X}$, find a set $C \subset \mathcal{X}$ ("centers") that

- has small cardinality, and
- "represents" the set S well (as measured by a cost function).

Covering / net formulations

k-center clustering

- Fix the cardinality $k \in \mathbb{N}$ allowed for C.
- Cost function:

$$
\operatorname{cost}_{\infty}(S, C):=\max _{x \in S} \rho(x, C),
$$

where $\rho(\boldsymbol{x}, C):=\min _{\boldsymbol{y} \in C} \rho(\boldsymbol{x}, \boldsymbol{y})$.

- Determines ε in ε-net criterion.
- NP-hard optimization problem.

Farthest-first traversal (Gonzalez, 1985)

- Input: set $S \subset \mathcal{X}$.
- Let \boldsymbol{y}_{1} be any point in S.
- For $t=2,3, \ldots$:
- Let \boldsymbol{y}_{t} be a point in S farthest from all previous \boldsymbol{y}_{i} :

$$
\boldsymbol{y}_{t} \in \underset{\boldsymbol{x} \in S}{\arg \max } \rho\left(\boldsymbol{x},\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{t-1}\right\}\right) .
$$

- Theorem. For any k, cost of $\widehat{C}:=\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{k}\right\}$ is at most twice the cost of every C with $|C| \leq k$.

Approximation analysis of farthest-first

- Let $r_{i}:=\rho\left(\boldsymbol{y}_{i+1},\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{i}\right\}\right)$, so

$$
r_{k}=\rho\left(\boldsymbol{y}_{k+1}, \widehat{C}\right)=\max _{\boldsymbol{x} \in S} \rho(\boldsymbol{x}, \widehat{C})=\operatorname{cost}(S, \widehat{C})
$$

- Pairwise distances among $\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{i+1}\right\}$ are at least r_{i}.
- So $r_{1} \geq r_{2} \geq \cdots \geq r_{k}$.
- Consider any set of at most k representatives C.
- At least two points in $\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{k+1}\right\}$ have same closest representative in C.
- Say they are \boldsymbol{y}_{i} and \boldsymbol{y}_{j}, and they are represented by $\boldsymbol{z} \in C$.
- By triangle inequality,

$$
2 \cdot \operatorname{cost}_{\infty}(S, C) \geq \rho\left(\boldsymbol{y}_{i}, \boldsymbol{z}\right)+\rho\left(\boldsymbol{y}_{j}, \boldsymbol{z}\right) \geq \rho\left(\boldsymbol{y}_{i}, \boldsymbol{y}_{j}\right) \geq r_{k} .
$$

- So $\operatorname{cost}_{\infty}(S, \widehat{C})=r_{k} \leq 2 \cdot \operatorname{cost}_{\infty}(S, C)$.

ε-nets

- Suppose we run farthest-first traversal to pick $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots$, and stop as soon as

$$
r_{k}=\operatorname{cost}\left(S,\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{k}\right\}\right) \leq \varepsilon .
$$

- Then $\widehat{C}:=\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{k}\right\}$ satisfies
size of smallest ε-net $\leq|\widehat{C}| \leq$ size of smallest $\varepsilon / 2$-net.
- Size of smallest ε-net is called covering number of S (at scale ε, with respect to ρ metric).

Set cover

- Goal: given set S, family of subsets $\mathcal{F}:=\left\{S_{i}: i \in \mathcal{I}\right\} \subseteq 2^{S}$, pick $S_{i_{1}}, S_{i_{2}}, \ldots, S_{i_{k}}$, with k as small as possible, that cover S :

$$
\bigcup_{j=1}^{k} S_{i j}=S
$$

- (Can assume $\bigcup_{i \in \mathcal{I}} S_{i}=S$.)

- Example:

- $S \subseteq \mathcal{X}$ for some metric space (\mathcal{X}, ρ).
- $\mathcal{F}=\{B(c, \varepsilon) \cap S: c \in S\}$, where $B(c, r):=\{x \in \mathcal{X}: \rho(x, c) \leq r\}$ is ball of radius r around c.

Greedy algorithm

- Assume S has cardinality $n<\infty$.
- Having already selected $S_{i_{1}}, S_{i_{2}}, \ldots, S_{i_{t}}$, we next select

$$
i_{t+1} \in \underset{i \in \mathcal{I}}{\arg \max }\left|S_{i} \cap\left(S \backslash \bigcup_{j=1}^{t} S_{i_{j}}\right)\right| .
$$

(Halt when S is covered.)

- Theorem. If there is a cover of size k, then greedy finds a cover of size $k(1+\ln (n / k))$.

Analysis of greedy algorithm (Johnson, 1974)

- Suppose $S_{i_{1}^{*}}, S_{i_{2}^{\star}}, \ldots, S_{i_{k}^{\star}}$ covers S.
- After t steps of greedy, we have picked $S_{i_{1}}, S_{i_{2}}, \ldots, S_{i_{t}}$.
- Let $n_{t}:=\left|S \backslash \bigcup_{j=1}^{t} S_{i j}\right|$ be the number of points in S not covered after t steps.
- We know $S_{i_{1}^{*}}, S_{i_{2}^{*}}, \ldots, S_{i_{k}^{\star}}$ would cover all n_{t} points.
- So there is one of them covers at least n_{t} / k of the n_{t} points.
- Greedy does at least well with its choice i_{t+1}.
- Starting with $n_{0}=n$, we have

$$
n_{t+1} \leq\left(1-\frac{1}{k}\right) n_{t}
$$

- So $n_{t} \leq k$ for $t \geq k \ln (n / k)$.
- After this, just need k more sets to cover remaining points.
- Total of $k(1+\ln (n / k))$ sets.

Average cost formulations

k-medians and k-means cost functions

- Instead of requiring representatives close to every point in S, just require representatives close to random point in S.
- Some common cost functions:
- k-medians: $\operatorname{cost}(S, C)=\sum_{x \in S} \rho(x, C)$.
- k-means: $\operatorname{cost}(S, C)=\sum_{x \in S} \rho(x, C)^{2}$.

k-means

- $\mathcal{X}=\mathbb{R}^{d}, \rho(\boldsymbol{x}, \boldsymbol{y})=\|\boldsymbol{x}-\boldsymbol{y}\|_{2}$.
- $\operatorname{cost}(S, C)=\sum_{x \in S} \min _{\boldsymbol{y} \in C}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}$.
- NP-hard to approximate within some constant factor $c>1$ (Awasthi et al, 2015).
- Easy cases:
- $d=1$: dynamic programming in time $O\left(n^{2} k\right)$.
- $k=1$: bias-variance decomposition

$$
\sum_{x \in S}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}=|S| \cdot\|\boldsymbol{y}-\operatorname{mean}(S)\|_{2}^{2}+\sum_{\boldsymbol{x} \in S}\|\boldsymbol{x}-\operatorname{mean}(S)\|_{2}^{2}
$$

implies solution is mean (S).

- Approximation schemes available when $d=O(1)$ or $k=O(1)$.

General case

- Notation: for $C=\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{k}\right\}$,
- $C(\boldsymbol{x}):=\arg \min _{\boldsymbol{y} \in C}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}$, ties broken using some fixed rule.
- $S_{i}^{C}=S_{i}:=\left\{\boldsymbol{x} \in S: C(\boldsymbol{x})=\boldsymbol{y}_{i}\right\}$ for each $i=1,2, \ldots, k$.
- Improving C :

$$
\begin{aligned}
\operatorname{cost}(S, C) & =\sum_{i=1}^{k} \operatorname{cost}\left(S_{i}, C\right) \\
& =\sum_{i=1}^{k} \operatorname{cost}\left(S_{i}, \boldsymbol{y}_{i}\right) \\
& \geq \sum_{i=1}^{k} \operatorname{cost}\left(S_{i}, \operatorname{mean}\left(S_{i}\right)\right) \\
& \geq \sum_{i=1}^{k} \operatorname{cost}\left(S_{i},\left\{\operatorname{mean}\left(S_{j}\right): j=1,2, \ldots, k\right\}\right) \\
& =\operatorname{cost}\left(S,\left\{\operatorname{mean}\left(S_{j}\right): j=1,2, \ldots, k\right\}\right)
\end{aligned}
$$

Local search algorithm (Lloyd, 1982)

- Start with $C=\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{k}\right\}$; repeat:
- Partition S into $S_{1}, S_{2}, \ldots, S_{k}$ using C.
- Set $C:=\left\{\operatorname{mean}\left(S_{i}\right): i=1,2, \ldots, k\right\}$.
- Alternative: start with partition of S into $S_{1}, S_{2}, \ldots, S_{k}$.
- Cost is non-increasing.
- Eventually halts, because there are only $O\left(n^{d k^{2}}\right)$ ways to partition n points in \mathbb{R}^{d} with k Voronoi cells.
- Could take $2^{\Omega(n)}$ iterations (when $k=\Theta(n)$), but atypical.
- How good is final solution?
- Depends on initialization.
- Could be arbitrarily worse than optimal.

Bad case for Lloyd's algorithm

Figure 1: Bad case for Lloyd's algorithm

Aside: dimension reduction

Another look at bias-variance

$$
\sum_{x \in S}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}=|S| \cdot\|\boldsymbol{y}-\operatorname{mean}(S)\|_{2}^{2}+\sum_{x \in S}\|\boldsymbol{x}-\operatorname{mean}(S)\|_{2}^{2} .
$$

Now averaging over $\boldsymbol{y} \in S$:

$$
\begin{aligned}
\frac{1}{|S|} \sum_{\boldsymbol{x}, \boldsymbol{y} \in S}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} & =\sum_{\boldsymbol{y} \in S}\|\boldsymbol{y}-\operatorname{mean}(S)\|_{2}^{2}+\sum_{x \in S}\|\boldsymbol{x}-\operatorname{mean}(S)\|_{2}^{2} \\
& =2 \sum_{\boldsymbol{x} \in S}\|\boldsymbol{x}-\operatorname{mean}(S)\|_{2}^{2} .
\end{aligned}
$$

Dimension reduction for k-means
Let S be partitioned into $S_{1}, S_{2}, \ldots, S_{k}$ by $C=\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{k}\right\}$.

- Assume $\boldsymbol{y}_{i}=\operatorname{mean}\left(S_{i}\right)$ (i.e., C is locally optimal).
- Bias-variance implies

$$
\begin{aligned}
\operatorname{cost}(S, C) & =\sum_{i=1}^{k} \sum_{x \in S_{i}}\left\|\boldsymbol{x}-\operatorname{mean}\left(S_{i}\right)\right\|_{2}^{2} \\
& =\sum_{i=1}^{k} \frac{1}{2\left|S_{i}\right|} \sum_{x, x \in S_{i}}\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{2}^{2},
\end{aligned}
$$

so cost only depends on pairwise distances between data.

- Can thus reduce dimension (using JL) to $O\left(\log (n) / \varepsilon^{2}\right.$) and preserve cost of all locally-optimal solutions up to $1 \pm \varepsilon$ factor.
- Also implies that we cannot expect poly $\left(n, k, 2^{O(d)}\right)$-time exact algorithm for k-means.
D^{2} sampling

D^{2} sampling

Problem. Lloyd's algorithm requires good initialization.
D^{2} sampling / k-means++ (Arthur and Vassilvitskii, 2007)

- Pick \boldsymbol{Y}_{1} u.a.r. from S, and set $C_{1}:=\left\{\boldsymbol{Y}_{1}\right\}$.
- For $t=2,3, \ldots$:
- Pick $\boldsymbol{Y}_{t} \sim p_{t}$, where

$$
p_{t}(\boldsymbol{y})=\frac{\operatorname{cost}\left(\{\boldsymbol{y}\}, C_{t-1}\right)}{\operatorname{cost}\left(S, C_{t-1}\right)} \quad \text { for each } \boldsymbol{y} \in S \text {. }
$$

- Theorem.

$$
\mathbb{E} \operatorname{cost}\left(S, C_{k}\right) \leq O(\log k) \cdot \min _{C \subseteq \mathbb{R}^{d}:|C| \leq k} \operatorname{cost}(S, C)
$$

Analysis of the first center selection

- Let $C^{\star}:=\left\{\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \ldots, \boldsymbol{\mu}_{k}\right\}$ be optimal solution, and let $A_{1}, A_{2}, \ldots, A_{k}$ be partitioning of S with respect to C^{\star}.
- First analyze \boldsymbol{Y}_{1}, which is distributed uniformly at random in S.
- Claim.

$$
\mathbb{E}\left[\operatorname{cost}\left(A_{i}, C_{1}\right) \mid\left\{\boldsymbol{Y}_{1} \in A_{i}\right\}\right]=2 \operatorname{cost}\left(A_{i}, C^{\star}\right)
$$

- Proof. By bias-variance,

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{x \in A_{i}}\left\|\boldsymbol{x}-\boldsymbol{Y}_{1}\right\|_{2}^{2} \mid\left\{\boldsymbol{Y}_{1} \in A_{i}\right\}\right] \\
& =\mathbb{E}\left[\sum_{\boldsymbol{x} \in A_{i}}\left\|\boldsymbol{x}-\boldsymbol{\mu}_{i}\right\|_{2}^{2}+\left|A_{i}\right| \cdot\left\|\boldsymbol{Y}_{1}-\boldsymbol{\mu}_{i}\right\|_{2}^{2} \mid\left\{\boldsymbol{Y}_{1} \in A_{i}\right\}\right] \\
& =2 \sum_{\boldsymbol{x} \in A_{i}}\left\|\boldsymbol{x}-\boldsymbol{\mu}_{i}\right\|_{2}^{2} .
\end{aligned}
$$

- (Lose factor of two by restricting centers to data points.)

Selection of subsequent centers

- Now consider \boldsymbol{Y}_{t} for $t>1$ (conditional on C_{t-1}).
- Distribution of \boldsymbol{Y}_{t} not necessarily uniform in S.
- Points farther from C_{t-1} get higher weight in p_{t}.
- Write, for $\boldsymbol{y} \in A_{i}$,

$$
p_{t}(\boldsymbol{y})=\underbrace{\frac{\operatorname{cost}\left(\{\boldsymbol{y}\}, C_{t-1}\right)}{\operatorname{cost}\left(A_{i}, C_{t-1}\right)}}_{=: p_{t}\left(\boldsymbol{y} \mid A_{i}\right)} \cdot \underbrace{\frac{\operatorname{cost}\left(A_{i}, C_{t-1}\right)}{\operatorname{cost}\left(S, C_{t-1}\right)}}_{=: p_{t}\left(A_{i}\right)} .
$$

- Claim (non-uniformity bound). For $\boldsymbol{y} \in A_{i}$,

$$
p_{t}\left(\boldsymbol{y} \mid A_{i}\right) \leq \frac{2}{\left|A_{i}\right|}\left(1+\frac{\operatorname{cost}\left(A_{i},\{\boldsymbol{y}\}\right)}{\operatorname{cost}\left(A_{i}, C_{t-1}\right)}\right)
$$

- Claim (cost bound).

$$
\mathbb{E}\left[\operatorname{cost}\left(A_{i}, C_{t-1} \cup\left\{\boldsymbol{Y}_{t}\right\}\right) \mid\left\{\boldsymbol{Y}_{t} \in A_{i}\right\}, C_{t-1}\right] \leq 8 \operatorname{cost}\left(A_{i}, C^{\star}\right)
$$

Non-uniformity bound

Proof of non-uniformity bound.

- For any $\boldsymbol{x} \in A_{i}$,

$$
\operatorname{cost}\left(\{\boldsymbol{y}\}, C_{t-1}\right) \leq \operatorname{cost}\left(\{\boldsymbol{y}\},\left\{C_{t-1}(\boldsymbol{x})\right\}\right)=\left\|\boldsymbol{y}-C_{t-1}(\boldsymbol{x})\right\|_{2}^{2}
$$

- By triangle inequality,

$$
\operatorname{cost}\left(\{\boldsymbol{y}\}, C_{t-1}\right) \leq 2\left(\left\|\boldsymbol{x}-C_{t-1}(\boldsymbol{x})\right\|_{2}^{2}+\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}\right)
$$

- Now average with respect to $\boldsymbol{x} \in A_{i}$:

$$
\operatorname{cost}\left(\{\boldsymbol{y}\}, C_{t-1}\right) \leq \frac{2}{\left|A_{i}\right|} \operatorname{cost}\left(A_{i}, C_{t-1}\right)+\frac{2}{\left|A_{i}\right|} \operatorname{cost}\left(A_{i},\{\boldsymbol{y}\}\right)
$$

- So

$$
p_{t}\left(\boldsymbol{y} \mid A_{i}\right)=\frac{\operatorname{cost}\left(\{\boldsymbol{y}\}, C_{t-1}\right)}{\operatorname{cost}\left(A_{i}, C_{t-1}\right)} \leq \frac{2}{\left|A_{i}\right|}\left(1+\frac{\operatorname{cost}\left(A_{i},\{\boldsymbol{y}\}\right)}{\operatorname{cost}\left(A_{i}, C_{t-1}\right)}\right) .
$$

Cost bound

Proof of cost bound.

- Expected cost:

$$
\sum_{\boldsymbol{y} \in A_{i}} p_{t}\left(\boldsymbol{y} \mid A_{i}\right) \cdot \operatorname{cost}\left(A_{i}, C_{t-1} \cup\{\boldsymbol{y}\}\right)
$$

- Using non-uniformity bound on $p_{t}\left(\cdot \mid A_{i}\right)$:

$$
\leq \sum_{\boldsymbol{y} \in A_{i}} \frac{2}{\left|A_{i}\right|}\left(1+\frac{\operatorname{cost}\left(A_{i},\{\boldsymbol{y}\}\right)}{\operatorname{cost}\left(A_{i}, C_{t-1}\right)}\right) \cdot \operatorname{cost}\left(A_{i}, C_{t-1} \cup\{\boldsymbol{y}\}\right)
$$

- Using $\operatorname{cost}\left(A_{i}, C_{t-1} \cup\{\boldsymbol{y}\}\right) \leq \min \left\{\operatorname{cost}\left(A_{i},\{\boldsymbol{y}\}\right), \operatorname{cost}\left(A_{i}, C_{t-1}\right)\right\}:$

$$
\begin{aligned}
\leq \frac{4}{\left|A_{i}\right|} \sum_{\boldsymbol{y} \in A_{i}} \operatorname{cost}\left(A_{i},\{\boldsymbol{y}\}\right) & =8 \operatorname{cost}\left(A_{i}, \text { mean }\left(A_{i}\right)\right) \\
& =8 \operatorname{cost}\left(A_{i}, C^{\star}\right)
\end{aligned}
$$

Cost of uncovered clusters

- So for any t,

$$
\mathbb{E}\left[\operatorname{cost}\left(A_{i}, C_{t-1} \cup\left\{\boldsymbol{Y}_{t}\right\}\right) \mid\left\{\boldsymbol{Y}_{t} \in A_{i}\right\}, C_{t-1}\right] \leq 8 \operatorname{cost}\left(A_{i}, C^{\star}\right)
$$

- Problem: some \boldsymbol{Y}_{t} land in already covered A_{i}.
- Define "good" and "bad" points:

$$
\text { good (covered): } \quad G_{t}:=\bigcup_{i: A_{i} \cap C_{t} \neq \emptyset} A_{i}, \quad g_{t}:=\left|\left\{i: A_{i} \cap C_{t} \neq \emptyset\right\}\right|,
$$

bad (uncovered): $\quad B_{t}:=\bigcup_{i: A_{i} \cap C_{t}=\emptyset} A_{i}, \quad b_{t}:=\left|\left\{i: A_{i} \cap C_{t}=\emptyset\right\}\right|$.
And define potential function

$$
\Phi_{t}:=\frac{t-g_{t}}{b_{t}} \operatorname{cost}\left(B_{t}, C_{t}\right)
$$

- Since $g_{k}+b_{k}=k$,

$$
\operatorname{cost}\left(S, C_{k}\right)=\operatorname{cost}\left(G_{k}, C_{k}\right)+\Phi_{k}
$$

Change in uncovered clusters potential

- Claim (proof omitted).

$$
\begin{aligned}
& \mathbb{E}\left[\Phi_{t+1}-\Phi_{t} \mid\left\{\boldsymbol{Y}_{t+1} \in B_{t}\right\}, C_{t}\right] \leq 0 \\
& \mathbb{E}\left[\Phi_{t+1}-\Phi_{t} \mid\left\{\boldsymbol{Y}_{t+1} \in G_{t}\right\}, C_{t}\right] \leq \frac{\operatorname{cost}\left(B_{t}, C_{t}\right)}{b_{t}}
\end{aligned}
$$

- Using this claim, it follows that

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{t+1}-\Phi_{t} \mid C_{t}\right] & \leq \mathbb{P}\left(\boldsymbol{Y}_{t+1} \in G_{t} \mid C_{t}\right) \cdot \frac{\operatorname{cost}\left(B_{t}, C_{t}\right)}{b_{t}} \\
& =\frac{\operatorname{cost}\left(G_{t}, C_{t}\right)}{\operatorname{cost}\left(S, C_{t}\right)} \cdot \frac{\operatorname{cost}\left(B_{t}, C_{t}\right)}{b_{t}} \\
& \leq \frac{\operatorname{cost}\left(G_{t}, C_{t}\right)}{k-t} .
\end{aligned}
$$

- Conclude that

$$
\mathbb{E}\left[\Phi_{k}\right] \leq \mathbb{E}\left[\operatorname{cost}\left(G_{k}, C_{k}\right)\right] \cdot(1+1 / 2+1 / 3+\cdots+1 / k)
$$

Overall approximation bound

Use fact that $\mathbb{E}\left[\operatorname{cost}\left(G_{k}, C_{k}\right)\right] \leq 8 \operatorname{cost}\left(S, C^{\star}\right)$ to conclude:

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{cost}\left(S, C_{k}\right)\right] & =\mathbb{E}\left[\operatorname{cost}\left(G_{k}, C_{k}\right)+\Phi_{k}\right] \\
& \leq 8 \operatorname{cost}\left(S, C^{\star}\right) \cdot\left(1+H_{k}\right)
\end{aligned}
$$

where $H_{k}=1+1 / 2+1 / 3+\cdots+1 / k$ is the k-th harmonic sum.

Bi-criteria approximation

Bi-criteria guarantees for D^{2} sampling

- Let C^{\star} be optimal set of k centers for S.
- Algorithm provides (α, β)-approximation if it returns \widehat{C} with

$$
|\widehat{C}| \leq \alpha \cdot k, \quad \operatorname{cost}(S, \widehat{C}) \leq \beta \cdot \operatorname{cost}\left(S, C^{\star}\right)
$$

- Akin to proper ($\alpha=1$) and improper $(\alpha>1)$ learning.
- D^{2} sampling provides (proper) $(1, O(\log k))$-approximation.
- Also provides $(O(1), O(1))$-approximation!
- Tight analysis: $\left(O\left(1 / \varepsilon^{2}\right), 2+\varepsilon\right)$-approximation (Wei, 2016).

Simple bi-criteria analysis

- Define "good" and "bad" points:

bad: $\quad B_{t}:=$
 A_{i}. $i \in\{1,2, \ldots, k\}$:
$\operatorname{cost}\left(A_{i}, C_{t}\right)>16 \operatorname{cost}\left(A_{i},\left\{\mu_{i}\right\}\right)$
- Claim. At least one of the following is true:

$$
\begin{aligned}
\operatorname{cost}\left(S, C_{t}\right) & \leq 32 \operatorname{cost}\left(S, C^{\star}\right) \\
p_{t}\left(B_{t}\right) & \geq \frac{1}{2}
\end{aligned}
$$

- Proof. If $\operatorname{cost}\left(S, C_{t}\right)>32 \operatorname{cost}\left(S, C^{\star}\right)$, then

$$
p_{t}\left(B_{t}\right)=1-\frac{\operatorname{cost}\left(G_{t}, C_{t}\right)}{\operatorname{cost}\left(S, C_{t}\right)} \geq 1-\frac{16 \operatorname{cost}\left(G_{t}, C^{\star}\right)}{32 \operatorname{cost}\left(S, C^{\star}\right)} \geq \frac{1}{2}
$$

Simple bi-criteria analysis (continued)

- Say round t is a "success" if
- either $\operatorname{cost}\left(S, C_{t-1}\right) \leq 32 \operatorname{cost}\left(S, C^{\star}\right)$ already,
- or $\boldsymbol{Y}_{t} \in A_{i} \subseteq B_{t-1}$ for some cluster i, and

$$
\left.\operatorname{cost}\left(A_{i}, C_{t}\right) \leq 16 \operatorname{cost}\left(A_{i}, C^{\star}\right) \quad \text { (i.e., } A_{i} \subseteq G_{t}\right)
$$

- Claim. Round t succeeds with probability $1 / 4$ (given C_{t-1}).
- Proof.
- If first success criterion does not hold, then

$$
p_{t-1}\left(B_{t-1}\right) \geq \frac{1}{2} .
$$

- Furthermore, by Markov's inequality and cost bound,

$$
\mathbb{P}\left(\operatorname{cost}\left(A_{i}, C_{t}\right) \leq 16 \operatorname{cost}\left(A_{i}, C^{\star}\right) \mid\left\{\boldsymbol{Y}_{t} \in A_{i}\right\}, C_{t-1}\right) \geq \frac{1}{2}
$$

- k success rounds guarantee $\operatorname{cost}\left(S, C_{t}\right) \leq 32 \operatorname{cost}\left(S, C^{\star}\right)$; this happens within $t \leq 8 k$ rounds with probability $1-e^{-\Omega(k)}$.

Final remarks

- Can post-process the $8 k$ centers by solving LP to get proper O(1)-approximation (Aggarwal, Deshpande, Kannan, 2009).
- Different local search gets proper $(9+\epsilon)$-approximation for any constant $\epsilon>0$ (Kanungo et al, 2003).
- But seems to perform worse than D^{2} sampling in practice.
- Can this be explained?
- Nearly all reasonable methods with theoretical analysis only pick centers from among data, thereby losing factor two in approximation. Can this be avoided?

