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Finitely representing large sets

Let (X, p) be a metric space.

» le., p: X Xx X — Ry is symmetric, non-negative (with
p(x,y) = 0iff x = y), and satisfies triangle inequality.

Goal: given aset S C X, find a set C C X (“centers”) that

» has small cardinality, and
> “represents” the set S well (as measured by a cost function).




Covering / net formulations

k-center clustering

v

Fix the cardinality k € N allowed for C.
Cost function:

v

too 7C = 7C ’
costo(S, €) == maxp(x, C)

where p(x, C) := minycc p(x,y).
Determines ¢ in e-net criterion.
NP-hard optimization problem.
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Farthest-first traversal (Gonzalez, 1985)

v

Input: set S C X.
Let y; be any point in S.
Fort=2,3,....

» Let y, be a point in S farthest from all previous y;:

\ A 4

y: € arg n;axp(x, {yi, ¥, ¥e1}) -
xE

> Theorem. For any k, cost of C := {¥1,¥2,---, Y} is at most
twice the cost of every C with |C| < k.

Approximation analysis of farthest-first

> Let ri == p(yi+1a{y17y27"'7yi})' SO

e = p(¥ii1s €) = maxp(x, C) = cost(S, C).

> Pairwise distances among {y;,¥>,..., Y1} are at least r;.

» Sornn>rn>- >

v

Consider any set of at most k representatives C.
At least two points in {y,¥5,...,¥,y1} have same closest
representative in C.

v

» Say they are y; and y;, and they are represented by z € C.
» By triangle inequality,

2-costo(S,C) > plyi,2) +oly;,2) = pyiny;) = ri.

> S0 costoo(S, C) = r < 2 - costoo(S, C). O




e-nets

» Suppose we run farthest-first traversal to pick y;,y,,..., and
stop as soon as

e = COSt(57 {y17y27"'7yk}) < €.
> Then C :={y1,¥s,..., ¥} satisfies
size of smallest e-net < |C| < size of smallest &/2-net.

» Size of smallest e-net is called covering number of S (at scale
g, with respect to p metric).

Set cover

> Goal: given set S, family of subsets F := {S; : i € T} C 2°,
pick S, Siy, ..., S, with k as small as possible, that cover S:

> (Can assume (J;c7 Si=S.)
» Example:

» S C X for some metric space (X, p).
» F={B(c,e)NS:ceS}, where
B(c,r) :=={x € X : p(x,c) < r} is ball of radius r around c.




Greedy algorithm

» Assume S has cardinality n < oco.
» Having already selected S;;, Si,, ..., Si,, we next select

t
it11 € argmax|S;N 5\ U S,J
(Halt when S is covered.)
» Theorem. If there is a cover of size k, then greedy finds a
cover of size k(1 + In(n/k)).

Analysis of greedy algorithm (Johnson, 1974)

» Suppose 5,-;, 5/'2*’ e S;k* covers S.
> After t steps of greedy, we have picked S;;, S;,, ..., Si,.
» Let n, :=|S\ U;::L Si;| be the number of points in S not
covered after t steps.
> We know Six, Si, ..., Si» would cover all n; points.
» So there is one of them covers at least n;/k of the n; points.
» Greedy does at least well with its choice i;1.

» Starting with ng = n, we have

1
Ne+1 < (1 - E) ng .

» So ny < k for t > klin(n/k).
» After this, just need k more sets to cover remaining points.
» Total of k(1 + In(n/k)) sets. O




Average cost formulations

k-medians and k-means cost functions

» Instead of requiring representatives close to every point in S,
just require representatives close to random point in S.
» Some common cost functions:

> k-medians: cost(S,C) = > s p(x, C).
> k-means: cost(S,C) => ¢ p(x, C)>.




k-means

> X =R7, p(x,y) = [|x — yll2.
> COSt(S, C) = ZXES minyec ||X — y||%

» NP-hard to approximate within some constant factor ¢ > 1
(Awasthi et al, 2015).
» Easy cases:

» d = 1: dynamic programming in time O(n?k).
» k = 1: bias-variance decomposition

Y lx—=yl3 = [S]-lly —mean(S)[3+ ) lx — mean(S)]3

xe$s xeS

implies solution is mean(S).
» Approximation schemes available when d = O(1) or kK = O(1).

General case

» Notation: for C = {y1,¥5,---, ¥}
> C(x) :=argmin ¢ ||x — yl|3, ties broken using some fixed rule.
» SC =S, ={xc€S:C(x)=y,} foreachi=1,2,... k.

» Improving C:

k
cost(S,C) = Zcost(S;, C)
i=1

k
= Z cost(S;, y;)
i=1

Y

k
Z cost(S;, mean(S;))
i=1

Vv

k
Zcost(S;, {mean(S;) : j=1,2,...,k})
i=1

= cost(S,{mean(S;):j=1,2,...,k}).




Local search algorithm (Lloyd, 1982)

v

Start with C = {y;,¥s,...,Yx}; repeat:

» Partition S into 51,55, ..., S5 using C.
» Set C:={mean(§;):i=1,2,... k}.

v

Alternative: start with partition of S into 51,5, ..., Sk.
Cost is non-increasing.

> Eventually halts, because there are only O(n”) ways to
partition n points in RY with k Voronoi cells.

v

> Could take 24" iterations (when k = ©(n)), but atypical.
» How good is final solution?

» Depends on initialization.
» Could be arbitrarily worse than optimal.

Bad case for Lloyd's algorithm
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Figure 1: Bad case for Lloyd's algorithm




Aside: dimension reduction

Another look at bias-variance

> llx=yll3 = IS|-ly — mean(S)[z + >_ [Ix — mean(S)]I5.

xe$s xe$s

Now averaging over y € S:

1
G > lIx=ylz = >_lly —mean(S)[I3 + > lx — mean(S)|3

x,yeSs yeS x€S

= 2 Z [x — mean(S)||5.

xeS




Dimension reduction for k-means
Let S be partitioned into S1,5,...,5ck by C ={y1,¥o,---, Yi}-

» Assume y; = mean(S;) (i.e., C is locally optimal).

» Bias-variance implies

k
cost(S,C) = Y > [x — mean(S;)|[3

i=1 XES,‘
1

k
N ; 2|5i]

> lIx=x3,
X,XES;

so cost only depends on pairwise distances between data.

» Can thus reduce dimension (using JL) to O(log(n)/e?) and
preserve cost of all locally-optimal solutions up to 1 + ¢ factor.

> Also implies that we cannot expect poly(n, k, 29(4))-time exact
algorithm for k-means.

D? sampling




D? sampling

Problem. Lloyd’s algorithm requires good initialization.

D? sampling / k-means++ (Arthur and Vassilvitskii, 2007)

» Pick Yj u.a.r. from S, and set C; :=={Y1}.
» Fort =2,3,...:

» Pick Y; ~ p:, where

_cost({y}, CGi—1)
pe(y) = cost(S, Ci—1)

foreachy € S.

» Theorem.

E cost(S, C) < Oflogk) - i t(S, C).
cost(S, Ck) < O(log k) CgRrg:||nC|§kcos(’ )

Analysis of the first center selection

» Let C* := {pq, o, ..., )} be optimal solution, and let

A1, Az, ..., Ak be partitioning of S with respect to C™*.
» First analyze Y1, which is distributed uniformly at random in S.
» Claim.

E[cost(Ai, C1) | {Y1 € Ai}] = 2cost(A;, C¥).

» Proof. By bias-variance,

E

Y lx=Yil51{Y1€ A,-}]

xEA;
= E| D> IIx—mlz +1Al- Y1 —mil3 | {Y1€ A}
XEA;
=23 lx—pl3. O
XEA;

> (Lose factor of two by restricting centers to data points.)




Selection of subsequent centers

v

Now consider Y for t > 1 (conditional on C;_1).
Distribution of Y; not necessarily uniform in S.

v

» Points farther from C;_; get higher weight in p;.
» Write, for y € A;,

cost({y}, Ct—1) cost(A;, Ci—1)
cost(A;, Ct—1) cost(S, Ci1)

= pe(y|A) — pe(A)

pe(y) =

» Claim (non-uniformity bound). For y € A;,

2 cost(Ai, {y})
(1 * cost(A;, Ct_1)> '

A,' <
pt(y‘ ) — ‘A,‘

» Claim (cost bound).

E[cost(Ai, Ct—1 U{Y:}) | {Y: € A}, Ci—1] < 8cost(A;, C¥).

Non-uniformity bound
Proof of non-uniformity bound.

» For any x € A;,

cost({y}, Ce-1) < cost({y}, {Ce-1(x)}) = |y~ Ce-a(x)I3.

» By triangle inequality,

cost({y}, Ce1) < 2(|lx = Cea ()3 + x — y[3)

» Now average with respect to x € A;:

2 2
cost({y}, Ct—1) < Al cost(A;, Ci—1) + Al cost(A;, {y}) -
> So
cost({y}, Ci—1) 2 cost(Ai, {y})
A = < 1 .
p:(y | Ai) cost(A;, G—1) — Al + cost(A;, Ci—1) -




Cost bound
Proof of cost bound.

» Expected cost:

> pe(y | Ai) - cost(A;, C—1 U {y})
YEA;

» Using non-uniformity bound on p(- | A;):

< 3 (e e ) ontan e )

> Using cost(A;, C;—1 U{y}) < min{cost(A;,{y}), cost(A;, Ct_1)}:

:. Z cost(Ai,{y}) = 8cost(A;, mean(A;))

| I| YEA;

<

= 8cost(A;, CY).

Cost of uncovered clusters
» So for any t,
E[cost(Ai, Ct—1 U{Y:}) | {Y: € A}, Ci—1] < 8cost(A;, C¥).

» Problem: some Y; land in already covered A;.
» Define “good” and “bad” points:

good (covered): G; = U A, g = it AinCe £ 0},
i:A;ﬁCt#(b

bad (uncovered): B; = U Ai, by = [{i: AinC=0}.
IA,'ﬂCt:(Z)

And define potential function

t —_
o, = - : cost(B;, Ct) .

t

» Since gk + by = k,
cost(S, Cx) = cost(Gk, Cx) + .




Change in uncovered clusters potential

» Claim (proof omitted).

E[¢t+1 — & | {Yi41 € B}, Ct}

IA

0,
t(B
E[¢t+1—¢t | {Y 11 € G}, Ct} < M.
t

» Using this claim, it follows that

]E[q>t+1 — cbt ‘ Ct} S IPD(Yt—i—l € Gt ‘ Ct) )

by
_ cost(Gy, Gt) cost(B:, Ct)
~ cost(S, Ct) by
- cost(Gt, Ct) |
- k—t

» Conclude that

E[®«] < E[cost(Gk, Ck)]- (1+1/2+1/34---4+1/k).

cost(Bs, Ct)

Overall approximation bound

Use fact that E[cost(Gk, Cx)] < 8cost(S, C*) to conclude:

E[cost(S, Ck)] = E[cost(Gk, Cx) + Px]
< 8cost(S, C*) - (1 + Hy),

where Hy =1+1/2+1/3+4---41/k is the k-th harmonic sum.

]




Bi-criteria approximation

Bi-criteria guarantees for D? sampling

v

Let C* be optimal set of k centers for S. R
Algorithm provides («, 8)-approximation if it returns C with

v

IC| < a-k, cost(S,C) < B cost(S, C*).

v

Akin to proper (o« = 1) and improper (o > 1) learning.
D? sampling provides (proper) (1, O(log k))-approximation.

» Also provides (O(1), O(1))-approximation!
» Tight analysis: (O(1/&2),2 + ¢)-approximation (Wei, 2016).

v




Simple bi-criteria analysis

» Define “good” and “bad” points:

gOOdZ Gt = U Ai7
i€{1,2,....,k}:
cost(A;,Cr)<16 cost(A;,{u;})
bad: B, := U A

i€{1,2,...k}:
cost(A;,Ct)>16 cost(A;,{p;})

» Claim. At least one of the following is true:

cost(S, ;) < 32cost(S, C*),

1
Pt(Bt) > 5

» Proof. If cost(S, C;) > 32cost(S, C*), then

cost( Gy, Ct) 16 cost( Gy, C*) 1
By) = 1— 2>\Fh ) o g -
p(Bt) cost(S,C:) — 32cost(S,C*) — 2

]

Simple bi-criteria analysis (continued)
» Say round t is a “success” if
> either cost(S, Ci—1) < 32cost(S, C*) already,
» or Y; € A; C B;_; for some cluster i, and
cost(A;, C;) < 16cost(A;, C*) (i,e., Ai C Gy).
» Claim. Round t succeeds with probability 1/4 (given Ci_1).
» Proof.
» If first success criterion does not hold, then
1
5

» Furthermore, by Markov's inequality and cost bound,

pt—1(Bi-1) >

P(cost(A;, C;) < 16cost(A;, C*) | {Y: € A}, Go1) > O

N+

> k success rounds guarantee cost(S, C;) < 32cost(S, C*); this
happens within t < 8k rounds with probability 1 — e K O




Final remarks

» Can post-process the 8k centers by solving LP to get proper
O(1)-approximation (Aggarwal, Deshpande, Kannan, 2009).

» Different local search gets proper (9 + €)-approximation for any
constant € > 0 (Kanungo et al, 2003).

» But seems to perform worse than D? sampling in practice.
» Can this be explained?

» Nearly all reasonable methods with theoretical analysis only
pick centers from among data, thereby losing factor two in
approximation. Can this be avoided?




