
Distribution-Free Testing Lower Bounds for Basic
Boolean Functions

Dana Glasner1? and Rocco A. Servedio1??

Department of Computer Science
Columbia University

New York, NY 10027, USA
{dglasner,rocco}@cs.columbia.edu

Abstract. In the distribution-free property testing model, the distance between
functions is measured with respect to an arbitrary and unknown probability dis-
tribution D over the input domain. We consider distribution-free testing of sev-
eral basic Boolean function classes over {0, 1}n, namely monotone conjunctions,
general conjunctions, decision lists, and linear threshold functions. We prove that
for each of these function classes, Ω((n/ log n)1/5) oracle calls are required for
any distribution-free testing algorithm. Since each of these function classes is
known to be distribution-free properly learnable (and hence testable) using Θ(n)
oracle calls, our lower bounds are within a polynomial factor of the best possible.

1 Introduction

The field of property testing deals with algorithms that decide whether an input object
has a certain property or is far from having the property after reading only a small frac-
tion of the object. Property testing was introduced in [21] and has evolved into a rich
field of study (see [3, 7, 10, 19, 20] for some surveys). A standard approach in property
testing is to view the input to the testing algorithm as a function over some finite domain;
the testing algorithm is required to distinguish functions that have a certain property P
from functions that are ε-far from having property P . In the most commonly considered
property testing scenario, a function f is ε-far from having a property P if f disagrees
with every function g that has property P on at least an ε fraction of the points in the
input domain; equivalently, the distance between functions f and g is measured with
respect to the uniform distribution over the domain. The testing algorithm “reads” f
by adaptively querying a black-box oracle for f at points x of the algorithm’s choos-
ing (such oracle calls are often referred to as “membership queries” in computational
learning theory). The main goal in designing property testing algorithms is to use as
few queries as possible to distinguish the two types of functions; ideally the number of
queries should depend only on ε and should be independent of the size of f ’s domain.

One can of course view any property P as a class of functions (the class of those
functions that have property P). In recent years there has been considerable work in
? Supported in part by an FFSEAS Presidential Fellowship.

?? Supported in part by NSF award CCF-0347282, by NSF award CCF-0523664, and by a Sloan
Foundation Fellowship.

2

the standard “uniform distribution” property testing scenario on testing various natu-
ral properties of Boolean functions f : {0, 1}n → {0, 1}, i.e. testing various Boolean
function classes. Some classes for which uniform distribution testing results have been
obtained are monotone functions [6, 9, 12]; Boolean literals, monotone conjunctions,
general conjunctions and s-term monotone DNFs [18]; J-juntas [8]; parity functions
(which are equivalent to degree-1 polynomials) [4]; degree-d polynomials [2]; deci-
sion lists, s-term DNFs, size-s decision trees and s-sparse polynomials [5]; and linear
threshold functions [17].

Distribution-free property testing. A natural generalization of property testing is
to consider a broader notion of the distance between functions. Given a probability
distribution D over the domain, we may define the distance between f and g as the
probability that an input x drawn from D has f(x) 6= g(x); the “standard” notion of
property testing described above corresponds to the case where D is the uniform dis-
tribution. Distribution-free property testing is the study of property testers in a setting
where distance is measured with respect to a fixed but unknown and arbitrary proba-
bility distribution D. Since the distribution D is unknown, in this scenario the testing
algorithm is allowed to draw random samples from D in addition to querying a black-
box oracle for the value of the function.

Distribution-free property testing is well-motivated by very similar models in com-
putational learning theory (namely the model of distribution-free PAC learning with
membership queries, which is closely related to the well-studied model of exact learn-
ing from equivalence and membership queries), and by the fact that in various settings
the uniform distribution may not be the best way to measure distances. Distribution-
free property testing has been considered by several authors [1, 11, 13–15]; we briefly
describe some of the most relevant prior work below.

Goldreich et al. [11] introduced the model of distribution-free property testing, and
observed that any proper distribution-free PAC learning algorithm (such a learning al-
gorithm for a class of functions always outputs a hypothesis function that itself belongs
to the class) can be used as a distribution-free property testing algorithm. They also
showed that several graph properties that have testing algorithms with query complex-
ity independent of input size in the uniform-distribution model (such as bipartiteness,
k-colorability, ρ-clique, ρ-cut and ρ-bisection) do not have distribution-free testing al-
gorithms with query complexity independent of input size. In contrast, Halevy and
Kushilevitz [14] gave a distribution-free algorithm for testing connectivity in sparse
graphs that has poly(1/ε) query complexity independent of input size.

A range of positive and negative results have been established for distribution-free
testing of Boolean functions over {0, 1}n. [15] showed that any distribution-free mono-
tonicity testing algorithm over {0, 1}n must make 2Ω(n) queries; this is in contrast
with the uniform distribution setting, where monotonicity testing algorithms are known
that have query complexity poly(n, 1/ε) [6, 9, 12]. On the other hand, [13] showed that
for several important function classes over {0, 1}n such as juntas, parities, low-degree
polynomials and Boolean literals, there exist distribution-free testing algorithms with
query complexity poly(1/ε) independent of n; these distribution-free results match the
query bounds of uniform distribution testing algorithms for these classes.

3

To sum up, the current landscape of distribution-free property testing is intriguingly
varied. For some testing problems (juntas, parities, Boolean literals, low-degree poly-
nomials, connectivity in sparse graphs) the complexity of distribution-free testing is
known to be essentially the same as the complexity of uniform-distribution testing; but
for other natural testing problems (monotonicity, bipartiteness, k-colorability, ρ-clique,
ρ-cut, ρ-bisection), distribution-free testing provably requires many more queries than
uniform-distribution testing.

This work. Our work is motivated by the fact that for many Boolean function
classes over {0, 1}n that are of fundamental interest, a very large gap exists between
the query complexities of the best known distribution-free property testing algorithms
(which typically follow trivially from learning algorithms and have query complexity
Ω(n)) and the best known uniform distribution property testing algorithms (which typ-
ically have query complexity poly(1/ε) independent of n). A natural goal is to try to
close this gap, either by developing efficient distribution-free testing algorithms or by
proving lower bounds for distribution-free testing for these classes.

We study distribution-free testability of several fundamental classes of Boolean
functions that have been previously considered in the uniform distribution testing frame-
work, and have been extensively studied in various distribution-free learning models.
More precisely, we consider the following classes (in order of increasing generality):
monotone conjunctions, arbitrary conjunctions, decision lists, and linear threshold func-
tions. Each of these four classes is known to be testable in the uniform distribution
setting using poly(1/ε) many queries, independent of n (see [18] for monotone and
general conjunctions, [5] for decision lists, and [17] for linear threshold functions). On
the other hand, for each of these classes the most efficient known distribution-free test-
ing algorithm is simply to use a proper learning algorithm. Using the fact that each
of these classes has Vapnik-Chervonenkis dimension Θ(n), standard results in learning
theory yield well-known algorithms that use O(n/ε) random examples and no member-
ship queries (see e.g. Chapter 3 of [16]), and known results also imply that any learning
algorithm must make Ω(n) oracle calls (see [22]).

Our main results are strong distribution-free lower bounds for testing each of these
four function classes:

Theorem 1. Let T be any algorithm which, given oracle access to an unknown f :
{0, 1}n → {0, 1} and (sampling) oracle access to an unknown distribution D over
{0, 1}n, tests whether f is a monotone conjunction versus Θ(1)-far from every mono-
tone conjunction with respect to D. Then T must make Ω((n/ log n)1/5) oracle calls
in total. The same lower bound holds for testing general conjunctions, testing decision
lists, and testing linear threshold functions.

These results show that for these function classes, distribution-free testing is nearly
as difficult (from a query perspective) as distribution-free learning, and is much more
difficult than uniform-distribution testing.

Organization. After giving preliminaries in Section 2, in Section 3 we present our
construction of “yes” and “no” (function, distribution) pairs that are used in the lower
bound for monotone conjunctions. The actual lower bound proof is given in Section 4.
In Section 5 we give a simple argument that extends the result to a lower bound for

4

arbitrary conjunctions and for decision lists. In Appendix B we describe a variant of the
construction for linear threshold functions, and in Appendix C we use it to prove the
lower bound for linear threshold functions.

2 Preliminaries

Throughout the paper we deal with Boolean functions over n input variables.

Definition 1. Let D be a probability distribution over {0, 1}n. Given Boolean functions
f, g : {0, 1}n → {0, 1}, the distance between f and g with respect to D is defined by

distD(f, g)
def
= Prx∼D[f(x) 6= g(x)].

If C is a class of Boolean functions over {0, 1}n, we define the distance between f

and C with respect to D to be distD(f, C)
def
= ming∈C distD(f, g).

We say that f is ε-far from C with respect to D if distD(f, C) ≥ ε.

Now we can define the notion of a distribution-free tester for a class of functions C:

Definition 2. A distribution-free tester for class C is a probabilistic oracle machine T
which takes as input a distance parameter ε > 0, is given access to

– a black-box oracle to a fixed (but unknown and arbitrary) function h : {0, 1}n →
{0, 1} (when invoked with input x, the oracle returns the value h(x)); and

– a sampling oracle for a fixed (but unknown and arbitrary) distribution D over
{0, 1}n (each time it is invoked this oracle returns a pair (x, h(x)) where x is
independently drawn from D),

and satisfies the following two conditions: for any h : {0, 1}n → {0, 1} and any distri-
bution D,

– If h belongs to C, then Pr[T h,D = Accept] ≥ 2
3 ; and

– If h is ε-far from C w.r.t. D, then Pr[T h,D = Accept] ≤ 1
3 .

This definition allows the tester to be adaptive and to have two-sided error; this is of
course the strongest version for proving lower bounds.

The classes we consider. For completeness we define here all the classes of func-
tions that we will consider: these are (in order of increasing generality) monotone con-
junctions, general conjunctions, decision lists, and linear threshold functions. We note
that each of these function classes is quite basic and natural and has been studied inten-
sively in fields such as computational learning theory.

The class MCONJ consists of all monotone conjunctions of any set of Boolean
variables from x1, . . . , xn, i.e. all ANDs of (unnegated) Boolean variables.

The class CONJ consists of all conjunctions of any set of Boolean literals over
{0, 1}n (a literal is a Boolean variable or the negation of a variable).

A decision list L of length k over the Boolean variables x1, . . . , xn is defined by a
list of k pairs and a bit (`1, β1), (`2, β2), . . . , (`k, βk), βk+1 where each `i is a Boolean
literal and each βi is either 0 or 1. Given any x ∈ {0, 1}n, the value of L(x) is βi if i is

5

the smallest index such that `i is made true by x; if no `i is true then L(x) = βk+1. Let
DL denote the class of all decision lists of arbitrary length k ≥ 0 over {0, 1}n.

A linear threshold function is defined by a list of n + 1 real values w1, . . . , wn, θ.
The value of the function on input x ∈ {0, 1}n is 1 if w1x1 + · · · + wnxn ≥ θ and is
0 if w1x1 + · · · + wnxn < θ. We write LTF to denote the class of all linear threshold
functions over {0, 1}n.

It is well known and easy to see that MCONJ (CONJ (DL (LTF.
Notation. For a string x ∈ {0, 1}n we write xi to denote the i-th bit of x. For

x, y ∈ {0, 1}n we write x ∧ y to denote the n-bit string z which is the bitwise AND of
x and y, i.e. zi = xi ∧ yi for all i. The string x∨ y is defined similarly to be the bitwise
OR of x and y.

Recall that the total variation distance, or statistical distance, between two random
variables X and Y that take values in a finite set S is dTV (X, Y)

def
= 1

2

∑

ζ∈S |Pr[X =
ζ] −Pr[Y = ζ]|.

3 The two distributions for monotone conjunctions

In this section we define two distributions, YES and NO, over pairs (h,D) where
h : {0, 1}n → {0, 1} is a Boolean function and D is a distribution over the domain
{0, 1}n. We will prove that these distributions have the following properties:

1. For every pair (g,Dg) in the support of YES , the function g is a monotone con-
junction (and hence any tester for MCONJ must accept every such pair with
probability at least 2/3).

2. For every pair (f,Df) in the support ofNO, the function f is 1/3-far from MCONJ
with respect to Df (and hence any tester for MCONJ must accept every such pair
with probability at most 1/3).

Our constructions are parameterized by three values `, m and s. As we will see the
optimal setting of these parameters (up to multiplicative constants) for our purposes is

`
def
= n2/5(log n)3/5, m

def
= (n/ log n)2/5, s

def
= log n. (1)

To keep the different roles of these parameters clear in our exposition we will present
our constructions and analyses in terms of “`,” “m” and “s” as much as possible and
only plug in the values from (1) toward the end of our analysis.

3.1 The YES distribution.

A draw from the distribution YES over (g,Dg) pairs is obtained as follows:

– Let R ⊂ [n] be a set of size 2`m selected uniformly at random. Randomly partition
the set R into 2m subsets A1, B1, . . . , Am, Bm, each of size `. Let ai ∈ {0, 1}n

be the string whose j-th bit is 0 iff j ∈ Ai. The string bi is defined similarly. The
string ci is defined to be ai ∧ bi, and similarly we define the set Ci = Ai ∪ Bi. We
sometimes refer to ai, bi, ci as the “points of the i-th block.”

6

PSfrag replacements

11n

xα(i)

s 0’s
xα(i) 1

1

` 0’s
ai

bi
1

10

2` 0’s
ci

0

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

PSfrag replacements

11n

xα(i)

s 0’s

xα(i)

11

` 0’s
ai

bi

1 1

0

2` 0’s
ci

0

Fig. 1. The left figure shows how a yes-function g labels ci and the points above it (including ai

and bi). Bold print indicate the label that g assigns. Note that every point above bi is labeled 1 by
g, and points above ai are labeled according to xα(i). The right figure shows how a no-function
f labels ci and the points above it (including ai and bi). Again, bold print indicates the label that
f assigns. Note that every point above bi is labeled 1 by f , and points above ai with less than s
0’s are labeled according to xα(i). The i-special points for block i are shaded and are labeled 1

by f.

– Let g1 be the conjunction of all variables in [n] \ R.
– For each i = 1, . . . , m let α(i) be an element chosen uniformly at random from the

set Ai; we say that α(i) is a representative of Ai. Let g2 be a conjunction of length
m formed by taking g = xα(1)∧· · ·∧xα(m), i.e. g is an AND of the representatives
from each of A1, . . . , Am.

– The function g is taken to be g = g1 ∧ g2. For each i = 1, . . . , m the distribution
Dg puts weight 2/(3m) on bi and puts weight 1/(3m) on ci.

It is clear that for every (g,Dg) in the support of YES , the function g is a monotone
conjunction that contains exactly n−2m`+m variables, so Property (1) indeed holds.

3.2 The NO distribution.

A draw from the distribution NO of (f,Df) pairs is obtained as follows:

– As in the yes-case, let R ⊂ [n] be a randomly selected set of size 2`m, and ran-
domly partition the set R into 2m subsets A1, B1, . . . , Am, Bm, each of size `. The
points ai, bi, ci and sets Ai, Bi, Ci are defined as in the yes-case. The distribution
Df is uniform over the 3m points a1, . . . , cm.

– Construct the conjunctions g1 and g2 exactly as in the yes-case: g1 is the conjunc-
tion of all variables in [n] \ R and g2 is xα(1) ∧ · · · ∧ xα(m) where each α(i) is a
representative chosen uniformly from Ai.

– Define the function f ′ as follows: f ′(x) = 0 if there exists some i ∈ [m] such that
both the following conditions hold:
• xα(i) = 0 and

7

• (fewer than s of the elements j ∈ Ai have xj = 0) or (xj = 0 for some
j ∈ Bi).

The following terminology will be useful: we say that an input x ∈ {0, 1}n is i-
special if (at least s elements j ∈ Ai have xj = 0) and (xj = 1 for all j ∈ Bi). Thus
an equivalent way to define f ′ is that f ′(x) = g2(x) unless g2(x) = 0 (because
some xα(i) = 0) but x is i-special for each i such that xα(i) = 0; in this case
f ′(x) = 1.

– The final function f is defined as f = g1 ∧ f ′.

It is easy to see that in both the yes-case and the no-case, any black-box query that
sets any variable in [n] \ R to 0 will give a 0 response. To give some intuition for our
construction, let us explain here the role that the large conjunction g1 (over n − 2`m
variables) plays in both the YES and NO constructions. The idea is that because of
g1, a testing algorithm that has obtained strings z1, . . . , zq from the distribution D will
“gain nothing” by querying any string x that has any bit xi set to 0 that was set to 1
in all of z1, . . . , zq. This is because such a variable xi will with very high probability
(over a random choice of (f,Df) from NO or a random choice of (g,Dg) from YES)
be contained in g1, so in both the “yes” and “no” cases the query will yield an answer
of 0 with very high probability. Consequently there is no point in making such a query
in the first place. (We give a rigorous version of this argument in Section 4.2.)

For any (f,Df) drawn from NO, we have f(ai) = f(bi) = 1 and f(ci) = 0
for each i = 1, . . . , m. It is noted in [18] (and is easy to check) that any monotone
conjunction h must satisfy h(x)∧h(y) = h(x∧y) for all x, y ∈ {0, 1}n, and thus must
satisfy h(ci) = h(ai) ∧ h(bi). Thus any monotone conjunction h must disagree with f
on at least one of ai, bi, ci for all i, and consequently f is 1/3-far from any monotone
conjunction with respect to Df .

Thus we have established properties (1) and (2) stated at the beginning of this sec-
tion. These give:

Lemma 1. Any distribution-free tester for MCONJ that is run with distance param-
eter ε = 1/3 must accept a random pair (g,Dg) drawn from YES with probability at
least 2/3, and must accept a random pair (f,Df) drawn from NO with probability at
most 1/3.

4 The lower bound for monotone conjunctions

In this section we will prove the following theorem:

Theorem 2. Let q
def
= 1

20 (n
log n)1/5. Let T be any probabilistic oracle algorithm that,

given a pair (h,D), makes at most q black-box queries to h and samples D at most q
times. Then we have

∣

∣Pr(g,Dg)∼YES [T g,Dg = Accept] −Pr(f,Df)∼NO[T f,Df = Accept]
∣

∣ ≤ 1

4
.

8

Note that in the above theorem each probability is taken over the draw of the (func-
tion,distribution) pair from the appropriate distribution YES or NO, over the random
draws from the distribution Df or Dg , and over any internal randomness of algorithm
T. Lemma 1 and Theorem 2 together immediately imply the first part of Theorem 1,
our lower bound for monotone conjunctions.

4.1 The idea.

Here is some high-level intuition for the proof. If T could find ai, bi and ci for some i
then T would know which case it is in (yes versus no), because h(ai) ∧ h(bi) = h(ci)
if and only if T is in the yes-case. Since T can only make q � √

m draws from
D, the birthday paradox tells us that with high probability the random sample that T
draws contains at most one of ai, bi and ci for each i. The ci-type points (with n − 2`
ones) are labeled negative in both the yes- and no- cases, so these “look the same” to
T in both cases. And since the distributions Dg (in the yes-case) and Df (in the no-
case) put weight only on the positive ai and bi-type points (with n − ` ones), these
points “look the same” to T as well in both cases. So with high probability T cannot
distinguish between yes-pairs and no-pairs on the basis of the first q random draws
alone. (Corollary 1 formalizes this intuition.)

Of course, though, T can also make q queries. Can T perhaps identify a triple
(ai, bi, ci) through these queries, or perhaps T can otherwise determine which case
it is in even without finding a triple? The crux of the proof is to show that in fact queries
actually cannot help T much; we now sketch the idea.

Consider a single fixed block i ∈ [m]. If none of ai, bi or ci are drawn in the initial
sample, then by the argument of Section 3.2 the tester will get no useful information
about which case (s)he is in from this block. By the birthday paradox we can assume
that at most one of ai, bi and ci is drawn in the initial sample; we consider the three
cases in turn.

If bi is drawn, then by the Section 3.2 argument all query points will have all the
bits in Ai set to 1; such queries will “look the same” in both the yes- and no- cases as
far as the i-th block is concerned.

If ai is drawn (so we are in the no-case), then by the Section 3.2 argument all query
points will have all the bits in Bi set to 1. Using the definition of f ′, as far as the i-th
block is concerned with high probability it will “look like” the initial ai point was a
bi-point from the yes-case. This is because the only way the tester can tell that it is in
the no-case is if it manages to query a point which has fewer than s bits from Ai set to
0 but the representative α(i) is one of those bits. Such points are hard to find since α(i)
is randomly selected from Ai. (See the “a-witness” case in the proof of Lemma 6.)

Finally, suppose that ci is drawn. The only way a tester can distinguish between the
yes- and no- cases is by finding an i-special point (or determining that no such point
exists), but to find such a point it must make a query with at least s 0’s in Ci, all of which
lie in Ai. This is hard to do since the tester does not know how the elements of Ci are
divided into the sets Ai and Bi. (See the “c-witness” case in the proof of Lemma 6.)

9

4.2 Proof of Theorem 2.

Fix any probabilistic oracle algorithm T that makes at most q black-box queries to h
and samples D at most q times. Without loss of generality we may assume that T first
makes exactly q draws from distribution D, and then makes exactly q (adaptive) queries
to the black-box oracle for h.

It will be convenient for us to assume that algorithm T is actually given “extra
information” on certain draws from the distribution D. More precisely, we suppose that
each time T calls the oracle for D,

– If a “ci-type” labeled example (ci, h(ci)) is generated by the oracle, algorithm T
receives the triple (ci, h(ci), α(i)) (recall that α(i) is the index of the variable from
Ci that belongs to the conjunction g2);

– If a “non-ci-type” labeled example (x, h(x)) is generated by the oracle where x 6=
ci for all i = 1, . . . , m, algorithm T receives the triple (x, h(x), 0). (Thus there is
no “extra information” given on non-ci points.)

It is clear that proving Theorem 2 for an arbitrary algorithm T that receives this extra
information establishes the original theorem as stated (for algorithms that do not receive
the extra information).

Following [15], we now define a knowledge sequence to precisely capture the notion
of “what an algorithm learns from its queries.” A knowledge sequence is a sequence of
elements corresponding to the interactions that an algorithm has with each of the two or-
acles. The first q elements of a knowledge sequence are triples as described above; each
corresponds to an independent draw from the distribution D. The remaining elements
of the knowledge sequence are input-output pairs corresponding to the algorithm’s calls
to the black-box oracle for h. (Recall that these later oracle calls are adaptive, i.e. each
query point can depend on the answers received from previous oracle calls.)

Notation. For any oracle algorithm ALG, let PALG
yes denote the distribution over

knowledge sequences induced by running ALG on a pair (g,Dg) randomly drawn from
YES . Similarly, let PALG

no denote the distribution over knowledge sequences induced
by running ALG on a pair (f,Df) randomly drawn from NO. For 0 ≤ i ≤ q we write
PALG

yes,i to denote the length-(q + i) prefix of PALG
yes , and similarly for PALG

no,i .
We will prove Theorem 2 by showing that the statistical distance dTV (PT

yes,PT
no)

between distributions PT
yes and PT

no is at most 1/4. Because of space constraints some
proofs are omitted from the following presentation; all omitted proofs can be found in
the appendix.

Most sequences of draws are “clean” in both the yes- and no- cases. The main
result of this subsection is Corollary 1; intuitively, this corollary shows that given only
q draws from the distribution and no black-box queries, it is impossible to distinguish
between the yes- and no- cases with high accuracy. This is achieved via a notion of a
“clean” sequence of draws from the distribution, which we now explain.

Let S = (x1, y1), . . . , (x
q , yq) be a sequence of q labeled examples drawn from

distribution D, where D is either Df for some (f,Df) ∈ NO or Dg for some (g,Dg) ∈
YES . In either case there is a corresponding set of points a1, b1, c1, . . . , am, bm, cm as

10

described in Section 3. We say that S is clean if S does not hit any block 1, . . . , m
twice, i.e. if the number of different blocks from 1, . . . , m for which S contains some
point ai, bi or ci is exactly q. With this definition, we have the following claim and its
easy corollary:

Claim. We have Pr[PT
yes,0 is clean] = Pr[PT

no,0 is clean] ≥ 1 − q2/m. Furthermore,
the conditional random variables (PT

yes,0 | PT
yes,0 is clean) and (PT

no,0 | PT
no,0 is clean)

are identically distributed.

Corollary 1. The statistical distance dTV (PT
yes,0,PT

no,0) is at most q2/m.

Eliminating foolhardy queries. Let T ′ denote a modified version of algorithm T
which works as follows: like T , it starts out by making q draws from the distribution.
Let Q be the set of all indices i such that all q draws from the distribution have the i-th
bit set to 1. We say that any query string x ∈ {0, 1}n that has xj = 0 for some j ∈ Q
is foolhardy. After making its q draws from D, algorithm T ′ simulates algorithm T for
q black-box queries, except that for any foolhardy query that T makes, T ′ “fakes” the
query in the following sense: it does not actually make the query but instead proceeds
as T would proceed if it made the query and received the response 0.

Our goal in this subsection is to show that in both the yes- and no- cases, the exe-
cutions of T and T ′ are statistically close. (Intuitively, this means that we can w.l.o.g.
assume that the testing algorithm T does not make any foolhardy queries.) To analyze
algorithm T ′ it will be useful to consider some other algorithms that are intermediate
between T and T ′, which we now describe.

For each value 1 ≤ k ≤ q, let Uk denote the algorithm which works as follows: Uk

first makes q draws from the distribution D, then simulates algorithm T for k queries,
except that for each of the first k − 1 queries that T makes, if the query is foolhardy
then Uk “fakes” the query as described above. Let U ′

k denote the algorithm which works
exactly like Uk, except that if the k-th query made by Uk is foolhardy then U ′

k fakes
that query as well. We have the following:

Lemma 2. For all k ∈ [q], the statistical distance

dTV ((PUk
yes | PUk

yes,0 is clean), (PU ′

k
yes | PU ′

k

yes,0 is clean))

is at most 2`m/n, and similarly dTV ((PUk
no | PUk

no,0 is clean), (PU ′

k
no | PU ′

k

no,0 is clean)) is
also at most 2`m/n.

Now a hybrid argument using Lemma 2 lets us bound the statistical distance be-
tween the executions of T and T ′.

Lemma 3. The statistical distance dTV (PT ′

yes,PT
yes) is at most 2`mq/n + q2/m, and

the same bound holds for dTV (PT ′

no ,PT
no).

11

Bounding the probability of finding a witness. Let T ′′ denote an algorithm that is
a variant of T ′, modified as follows. T ′′ simulates T ′ except that T ′′ does not actu-
ally make queries on non-foolhardy strings; instead T ′′ simulates the answers to those
queries “in the obvious way” that they should be answered if the target function were a
yes-function and hence all of the draws from D that yielded strings with ` zeros were
in fact bi-type points. More precisely, assume that there are r distinct ci-type points in
the initial sequence of q draws from the distribution. Since for each ci-type point the
algorithm is given α(i), the algorithm “knows” r variables xα(i) that are in the conjunc-
tion. To simulate an answer to a non-foolhardy query x ∈ {0, 1}n, T ′′ answers with 0
if any of the r xα(i) variables are set to 0 in x, and answers with 1 otherwise. Note that
consequently T ′′ does not actually make any black-box queries at all.

In this subsection we will show that in both the yes- and no- cases, the executions
of T ′ and T ′′ are statistically close; once we have this it is not difficult to complete the
proof of Theorem 2. In the yes-case these distributions are in fact identical (Lemma 4),
but in the no-case these distributions are not identical; we will argue that they are close
using properties of the function f ′ from Section 3.2.

We first address the easier yes-case:

Lemma 4. The statistical distance dTV (PT ′

yes,PT ′′

yes) is zero.

Proof. We argue that T ′ and T ′′ answer all queries in exactly the same way. Fix any
1 ≤ i ≤ q and let z denote the ith query made by T .

If z is a foolhardy query then both T ′ and T ′′ answer z with 0. So suppose that z is
not a foolhardy query. Then any 0’s that z contains must be in positions from points that
were sampled in the first stage. Consequently the only variables that can be set to 0 that
are in the conjunction g are the xα(i) variables from the Ci sets corresponding to the ci

points in the draws. All the other variables that were “seen” are not in the conjunction
so setting them to 0 or 1 will not affect the value of g(z). Therefore, g(z) (and hence
T ′’s response) is 0 if any of the xσ(i) variables are set to 0 in z, and is 1 otherwise. This
is exactly how T ′′ answers non-foolhardy queries as well. ut

To handle the no-case, we introduce the notion of a “witness” that the black-box
function is a no-function.

Definition 3. We say that a knowledge sequence contains a witness for (f,Df) if ele-
ments q +1, . . . of the sequence (the black-box queries) contain either of the following:

1. A point z ∈ {0, 1}n such that for some 1 ≤ i ≤ m for which ai was sampled in the
first q draws, the bit zα(i) is 0 but fewer than s of the elements j ∈ Ai have zj = 0.
We refer to such a point as an a-witness for block i.

2. A point z ∈ {0, 1}n such that for some 1 ≤ i ≤ m for which ci was sampled in the
first q draws, z is i-special. We refer to such a point as a c-witness for block i.

The following lemma implies that it is enough to bound the probability that PT
no

contains a witness:

Lemma 5. The statistical distance dTV ((PT ′

no | PT ′

no does not contain a witness and
PT ′

no,0 is clean), (PT ′′

no | PT ′′

no does not contain a witness and PT ′′

no,0 is clean)) is zero.

12

Proof. Claim 4.2 implies that (PT ′

no,0 | PT ′

no,0 is clean) and (PT ′′

no,0 | PT ′′

no,0 is clean) are
identically distributed. We show that if there is no witness then T ′ and T ′′ answer all
queries in exactly the same way; this gives the lemma. Fix any 1 ≤ i ≤ q and let z
denote the ith query.

If z is a foolhardy query, then both T ′ and T ′′ answer z with 0. So suppose that
z is not a foolhardy query and not a witness. Then any 0’s that z contains must be in
positions from points that were sampled in the first stage.

First suppose that one of the xα(i) variables from some ci that was sampled is set to
0 in z. Since z is not a witness, either z has fewer than s zeros from Ai or some variable
from Bi is set to zero in z. So in this case we have f(xi) = g2(xi) = 0.

Now suppose that none of the xα(i) variables from the ci’s that were sampled are
set to 0 in z. If no variable xα(i) from any ai that was sampled is set to 0 in z, then
clearly f(z) = g(z) = 1. If any variable xα(i) from an ai that was sampled is set to 0
in z, then since z is not a witness there must be at least s elements of Ai set to 0 and
every element of Bi set to 1 for each such xα(i). Therefore, f(z) = 1.

Thus f(z) evaluates to 0 if any of the xσ(i) variables from the ci’s that were sampled
is set to 0 and evaluates to 1 otherwise. This is exactly how T ′′ answers queries as well.

ut

Let us consider a sequence of algorithms that hybridize between T ′ and T ′′, similar
to the previous section. For each value 1 ≤ k ≤ q, let Vk denote the algorithm which
works as follows: Vk first makes q draws from the distribution D, then simulates algo-
rithm T ′ for k queries, except that each of the first k − 1 queries is faked (foolhardy
queries are faked as described in the previous subsection, and non-foolhardy queries are
faked as described at the start of this subsection). Thus algorithm Vk actually makes at
most one query to the black-box oracle, the k-th one (if this is a foolhardy query then
this one is faked as well). Let V ′

k denote the algorithm which works exactly like Vk,
except that if the k-th query made by Vk is non-foolhardy then V ′

k fakes that query as
well as described at the start of this subsection.

Lemma 6. For each value 1 ≤ k ≤ q, the statistical distance dTV ((PVk
no | PVk

no,0 is

clean), (PV ′

k
no | PV ′

k

no,0 is clean)) is at most max{ qs
` , q

2s } = qs/`.

Proof. By Lemma 5, the executions of Vk and V ′
k are identically distributed unless

the k-th query string (which we denote z) is a witness for (f,Df). Since neither Vk

nor V ′
k makes any black-box query prior to z, the variation distance between PVk

no and
PV ′

k
no is at most Pr[z is a witness] where the probability is taken over a random draw of

(f,Df) from NO conditioned on (f,Df) being consistent with the q draws from the
distribution and with those first q draws being clean. We bound the probability that z is
a witness by considering both possibilities for z (an a-witness or a c-witness) in turn.

– We first bound the probability that z is an a-witness. So fix some i ∈ [m] and let
us suppose that ai was sampled in the first stage of the algorithm. We will bound
the probability that z is an a-witness for block i; once we have done this, a union
bound over the (at most q) blocks such that ai is sampled in the first stage gives a
bound on the overall probability that z is an a-witness.

13

Fix any possible outcome for z. In order for z to be an a-witness for block i, it must
be the case that fewer than s of the ` elements in Ai are set to 0 in z, but the bit
zα(i) is set to 0. For a random choice of (f,Df) as described above, since we are
conditioning on the q draws from the distribution being clean, the only information
that these q draws reveal about the index α(i) is that it is some member of the set
Ai. Consequently for a random (f,Df) as described above, each bit in Ai is equally
likely to be chosen as α(i), so the probability that α(i) is chosen to be one of the at
most s bits in Ai that are set to 0 in z is at most s/`. Consequently the probability
that z is an a-witness for block i is at most s/`, and a union bound gives that the
overall probability that z is an a-witness is at most qs/`.

– Now we bound the probability that z is a c-witness. Fix some i ∈ [m] and let us
suppose that ci was sampled in the first stage of the algorithm. We will bound the
probability that z is a c-witness for block i and then use a union bound as above.
Fix any possible outcome for z; let r denote the number of 0’s that z has in the
bit positions in Ci. In order for z to be a c-witness for block i it must be the case
that z is i-special, i.e. r ≥ s and all r of these 0’s in fact belong to Ai. For a
random choice of (f,Df) conditioned on being consistent with the q samples from
the distribution and with those q samples being clean, the distribution over possible
choices of Ai is uniform over all

(

2`
`

)

possibilities for selecting a size-` subset of
Ci. Consequently the probability that all r 0’s belong to Ai is at most

(

2`−r
`−r

)

(

2l
`

) =
`(` − 1) · · · (` − r + 1)

2`(2`− 1) · · · (2`− r + 1)
<

1

2r
≤ 1

2s
.

So the probability that z is a c-witness for block i is at most 1/2s, and by a union
bound the overall probability that z is a c-witness is at most q/2s.

So the overall probability that z is a witness is at most max{ qs
` , q

2s }. Using (1) we have
that the maximum is qs/`, and the lemma is proved. ut

Now similar to Section 4.2, a hybrid argument using Lemma 6 lets us bound the
statistical distance between the executions of T ′ and T ′′. The proof of the following
lemma is entirely similar to that of Lemma 3 so we omit it.

Lemma 7. The statistical distance dTV (PT ′

no ,PT ′′

no) is at most q2s/` + q2/m.

Putting the pieces together. At this stage, we have that T ′′ is an algorithm that
only makes draws from the distribution and makes no queries. It follows that the sta-
tistical distance dTV (PT ′′

yes,PT ′′

no) is at most dTV (PT
yes,0,PT

no,0). So we can bound
dTV (PT

yes,PT
no) as follows (we write “d” in place of “dTV ” for brevity):

d(PT
yes,PT ′

yes) + d(PT ′

yes,PT ′′

yes) + d(PT ′′

yes,PT ′′

no) + d(PT ′′

no ,PT ′

no) + d(PT ′

no ,PT
no)

≤ d(PT
yes,PT ′

yes) + d(PT ′

yes,PT ′′

yes) + d(PT
yes,0,PT

no,0) + d(PT ′′

no ,PT ′

no) + d(PT ′

no ,PT
no)

≤ 4q2/m + 4q`m/n + q2s/`

14

where the final bound follows by combining Corollary 1, Lemma 3, Lemma 4 and
Lemma 7. Recalling the parameter settings ` = n2/5(log n)3/5, m = (n/ logn)2/5,
and s = log n from (1) and the fact that q = 1

20 (n
log n)1/5, this bound is less than 1/4.

This concludes the proof of Theorem 2. ut

5 Extending the lower bound to conjunctions and decision lists

The construction and analysis from the previous sections easily give a lower bound for
testing decision lists via the following lemma:

Lemma 8. For any pair (f,Df) in the support of NO and any decision list h, the
function f is at least 1/6-far from h w.r.t. Df .

Proof. Fix any (f,Df) in the support of NO and any decision list h = (`1, β1),
(`2, β2), . . . , (`k, βk), βk+1. We will show that at least one of the six points a1, b1,
c1, a2, b2, c2 is labeled differently by h and f . Grouping all m blocks into pairs and
applying the same argument to each pair gives the lemma.

Let `a1 be the first literal in h that is satisfied by a1, so the value h(a1) equals βa1 .
Define `b1 , `c1 , `a2 , `b2 , and `c2 similarly. We will assume that h and f agree on all
six points, i.e. that βa1 = βb1 = βa2 = βb2 = 1 and βc1 = βc2 = 0, and derive a
contradiction.

We may suppose w.l.o.g. that a1 = min{a1, b1, a2, b2}. We now consider two cases
depending on whether or not c1 < a1. (Note that a1 cannot equal c1 since f(a1) = 1
but f(c1) = 0.)

Suppose first that c1 < a1. No matter what literal `c1 is, since c1 satisfies `c1 at least
one of a1, b1 must satisfy it as well. But this means that min{a1, b1} ≤ c1, which is
impossible since c1 < a1 and a1 ≤ min{a1, b1}.

Now suppose that a1 < c1; then it must be the case that `a1 is a literal “xj” for
some j ∈ B1. (The only other possibilities are that `a1 is “xj” for some j ∈ Ai or is
“xj” for some j ∈ ([n] \ C1); in either case, this would imply that f(c1) = 1, which
does not hold.) Since f(c2) = 0 and (c2)j = 1, it must be the case that c2 < a1. But no
matter what literal `c2 is, since c2 satisfies it at least one of a2, b2 must satisfy it as well.
This means that min{a2, b2} ≤ c2 < a1 ≤ min{a2, b2}, which is a contradiction. ut

Since monotone conjunctions are a subclass of decision lists, for every (g,Dg) in
the support of YES we have that g is computed by a decision list. We thus have the
obvious analogue of Lemma 1 for decision lists; together with Theorem 2, this gives
the Ω((n/ log n)1/5) lower bound for decision lists that is claimed in Theorem 1.

Since any conjunction (not necessarily monotone) can be expressed as a decision
list, we immediately have an analogue of Lemma 8 for general conjunctions. The same
line of reasoning described above now gives the Ω((n/ log n)1/5) lower bound for gen-
eral conjunctions that is claimed in Theorem 1.

References

1. N. Ailon and B. Chazelle. Information theory in property testing and monotonicity testing
in higher dimension. Information and Computation, 204:1704–1717, 2006.

15

2. N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing low-degree polynomi-
als over GF(2). In Proceedings of RANDOM-APPROX, pages 188–199, 2003.

3. N. Alon and A. Shapira. Homomorphisms in Graph Property Testing - A Survey. Topics in
Discrete Mathematics (to appear), available at http://www.math.tau.ac.il/ãsafico/nesetril.pdf,
2007.

4. M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. J. Comp. Sys. Sci., 47:549–595, 1993. Earlier version in STOC’90.

5. I. Diakonikolas, H. Lee, K. Matulef, K. Onak, R. Rubinfeld, R. Servedio, and A. Wan. Test-
ing for concise representations. Submitted for publication, 2007.

6. Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky. Im-
proved testing algorithms for monotonocity. In Proceedings of RANDOM, pages 97–108,
1999.

7. E. Fischer. The art of uninformed decisions: A primer to property testing. Computational
Complexity Column of The Bulletin of the European Association for Theoretical Computer
Science, 75:97–126, 2001.

8. E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorodnitsky. Testing juntas. In Proceed-
ings of the 43rd IEEE Symposium on Foundations of Computer Science, pages 103–112,
2002.

9. E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samrodnitsky.
Monotonicity testing over general poset domains. In Proc. 34th Annual ACM Symposium on
the Theory of Computing, pages 474–483, 2002.

10. O. Goldreich. Combinatorial property testing – a survey. In “Randomized Methods in Algo-
rithms Design”, AMS-DIMACS, 45–61, 1998.

11. O. Goldreich, S. Goldwaser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, 45:653–750, 1998.

12. O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samordinsky. Testing monotonic-
ity. Combinatorica, 20(3):301–337, 2000.

13. S. Halevy and E. Kushilevitz. Distribution-Free Property Testing. In Proceedings of the
Seventh International Workshop on Randomization and Computation, pages 302–317, 2003.

14. S. Halevy and E. Kushilevitz. Distribution-Free Connectivity Testing. In Proceedings of the
Eighth International Workshop on Randomization and Computation, pages 393–404, 2004.

15. S. Halevy and E. Kushilevitz. A lower bound for distribution-free monotonicity testing. In
Proceedings of the Ninth International Workshop on Randomization and Computation, pages
330–341, 2005.

16. M. Kearns and U. Vazirani. An introduction to computational learning theory. MIT Press,
Cambridge, MA, 1994.

17. K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Servedio. Testing Halfspaces. Manuscript,
2007.

18. M. Parnas, D. Ron, and A. Samorodnitsky. Testing basic boolean formulae. SIAM J. Disc.
Math., 16:20–46, 2002.

19. D. Ron. Property testing (a tutorial). In “Handbook of Randomized Computing, Volume II”,
S. Rajasekaran and P. M. Pardalos and J. H. Reif and J. D. P. Rolim, editors, Kluwer, 2001.

20. R. Rubinfeld. Sublinear time algorithms. available at
http://theory.csail.mit.edu/˜ronitt/papers/icm.ps, 2006.

21. R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to
program testing. SIAM J. on Comput., 25:252–271, 1996.

22. G. Turán. Lower bounds for PAC learning with queries. In COLT ’93: Proc. 6th Annual
Conference on Computational Learning Theory, pages 384–391, 2002.

16

A Proofs from Section 4.2

A.1 Proof of Claim 4.2:

We first show that Pr[PT
yes,0 is clean] = Pr[PT

no,0 is clean] ≥ 1 − q2/m. Fix any
(g,Dg) in the support of YES , and consider the outcomes of PT

yes,0 corresponding to
this (g,Dg) being drawn from YES . Since each independent draw from Dg hits each
block 1, . . . , m with probability 1/m, the probability that PT

yes,0 is clean is
∏q

i=1

(

1 − i−1
m

)

≥
1−q2/m. The same argument shows that Pr[PT

no,0 is clean] also equals
∏q

i=1

(

1 − i−1
m

)

.

Now we show that the conditional random variables are identically distributed. It is
not difficult to see that for any 0 ≤ j ≤ q − 1, given any particular length-j prefix of
PT

yes,0, conditioned on PT
yes,0 being clean, the (j + 1)-st element of PT

yes,0 has

– a 2/3 chance of being a triple (x, 1, 0) where x ∈ {0, 1}n has ` zeros and the
locations of the ` zeros are selected uniformly at random (without replacement)
from the set of those bit positions that had value 1 in all j of the previous draws;

– a 1/3 chance of being a triple (x, 0, α) where x has 2` zeros, the locations of the 2`
zeros are selected uniformly at random (without replacement) from the same set of
bit positions described above, and α is an index drawn uniformly at random from
the indices of the 2` zeros in x.

It is also not difficult to see that given any particular length-j prefix of PT
no,0, condi-

tioned on PT
no,0 being clean, the (j + 1)-st element of PT

no,0 is distributed in the exact
same way. This proves Claim 4.2. ut

A.2 Proof of Corollary 1:

We can express the statistical distance between PT
yes,0 and PT

no,0 as

1

2

∑

ζ

∣

∣Pr[(PT
yes,0 = ζ) & (PT

yes,0 is clean)] + Pr[(PT
yes,0 = ζ) & (PT

yes,0 not clean)]

− Pr[PT
no,0 = ζ) & (PT

no,0 is clean)] −Pr[(PT
no,0 = ζ) & (PT

no,0 not clean)]
∣

∣ .

By parts (1) and (2) of the claim, we have that Pr[(PT
yes,0 = ζ) & (PT

yes,0 is clean)]

equals Pr[(PT
no,0 = ζ) & (PT

no,0 is clean)] for all ζ. Thus we can reexpress the statisti-
cal distance as

1

2

∑

ζ

∣

∣Pr[(PT
yes,0 = ζ) & (PT

yes,0 not clean)] −Pr[PT
no,0 = ζ) & (PT

no,0 not clean)]
∣

∣ .

This is at most 1
2 (Pr[PT

yes,0 not clean] + Pr[PT
no,0 not clean]) which is at most q2/m

by part (1) of the claim. ut

17

A.3 Proof of Lemma 2:

We consider the yes-case; the no-case follows by an essentially identical argument.
The executions of Uk and U ′

k are identically distributed unless the k-th query string
(which we denote z) is foolhardy and the black-box function g has g(z) = 1. Conse-
quently the variation distance dTV (PUk

yes,P
U ′

k
yes) is at most

Pr[(z is foolhardy) & (g(z) = 1)] ≤ Pr[(g(z) = 1) | (z is foolhardy)],

where the probabilities are taken over a random draw of (g,Dg) from YES conditioned
on (g,Dg) being consistent with the q draws from the distribution and with the first
k − 1 queries, and with the q draws from the distribution being clean.

Since the first k − 1 queries do not involve any variables in Q (because foolhardy
queries are faked for the first k−1 queries) and our analysis will only concern variables
in Q, to analyze this conditional probability it is enough to consider (g,Dg) drawn from
YES conditioned on (g,Dg) being consistent with the q draws from the distribution and
with these q draws being clean. Suppose that these draws from the distribution yield r
ci-type points (each with 2` zeros) and (q − r) bi-type points (each with ` zeros). Then
after these draws, the algorithm “knows” (r+q)` elements of R. Let Z denote the set of
these (r + q)` elements of R. The set R also contains 2`m− (r + q)` other “unknown”
variables from among the |Q| = n − (r + q)` variables in [n] \ Z.

We would like to find the probability, over random (g,Dg) drawn from YES con-
sistent with the draws from the distribution, that g(z) = 1 given that z is foolhardy.
Since z is foolhardy there must be at least one index j ∈ [n] \ Z such that zj = 0. So
the desired probability is at most the probability that j belongs to R, since if j /∈ R the
conjunction g1 will evaluate to 0 on z. For a random (g,Dg) that is consistent with the
draws from the distribution, the remaining 2`m− (r+q)` elements of R\Z are chosen
randomly from the n− (r + q)` elements of [n]−Z. Consequently the probability that
j belongs to R \ Z is 2`m−(r+q)`

n−(r+q)` ≤ 2`m
n , and the lemma is proved. ut

A.4 Proof of Lemma 3:

We prove the yes-case; the no-case follows by an identical argument.
By Claim 4.2, at the cost of q2/m in dTV (PT ′

yes,PT
yes) we may assume that the

draws from the distribution are clean. So we henceforth in the proof always condition
on the draws from the distribution being clean, and we will bound dTV (PT ′

yes,PT
yes) by

2`mq/n under this conditioning on each argument to dTV .
We use induction on i to show that dTV (PT

yes,i,PT ′

yes,i) is at most 2`lmi/n for all
i. Once we have this, taking i = q and recalling that PT

yes,q = PT
yes and PT ′

yes,q = PT ′

yes

gives the desired bound.
The base case i = 0 is clear since in this case no black-box queries are made by

either T or T ′.
For the induction step we assume that dTV (PT

yes,i,PT ′

yes,i) ≤ 2`mi/n, and we will
show that dTV (PT

yes,i+1,PT ′

yes,i+1) ≤ 2`m(i+1)/n. We first note that the random vari-
ables PT ′

yes,i+1 and PU ′

i+1
yes are identically distributed, i.e. they have statistical distance

18

zero. Lemma 2 now implies that dTV (PT ′

yes,i+1,P
Ui+1
yes) is at most 2`m/n. Since

dTV (PT ′

yes,i+1,PT
yes,i+1) ≤ dTV (PT ′

yes,i+1,PUi+1
yes) + dTV (PUi+1

yes ,PT
yes,i+1),

it is enough to bound dTV (PUi+1
yes ,PT

yes,i+1) by 2`mi/n. But since the first q + i ele-
ments of PUi+1

yes are distributed according to PT ′

i (and the last element is obtained by
performing the i-th query of T), the bound dTV (PUi+1

yes ,PT
yes,i+1) ≤ 2`mi/n follows

from the induction hypothesis. This concludes the proof. ut

B The two distributions for linear threshold functions

Now we would like to prove a lower bound for distribution-free testing of the class
LTF. The construction from Section 3 is not suited for a lower bound on LTF (ob-
serve that for any (f,Df) in the support of NO the function f is 0-far from the linear
threshold function x1 + · · · + · · ·xn ≥ n − 3`/2 with respect to Df), so we need a
different approach.

In the rest of this section we define two distributionsYES andNO over pairs (h,D)
and prove that these distributions have the following properties:

1. For every pair (g,Dg) in the support of YES , the function g is a linear threshold
function;

2. For every pair (f,Df) in the support of NO, the function f is 1/4-far from LTF
with respect to Df (and hence any tester for LTF must accept every such pair with
probability at most 1/3).

In Section C we use these distributions to prove a lower bound for LTF.
Before giving the precise construction, here is a very rough first intuition for how

it works. Recall that in the earlier construction, we relied on the fact that no monotone
conjunction h can satisfy h(1, 0) = h(0, 1) = 1 but h(0, 0) = 0. For linear threshold
functions, we will instead rely on the fact that no linear threshold function can satisfy
h(0, 0) = h(1, 1) = 0 but h(1, 0) = h(0, 1) = 1.

B.1 The YES distribution.

As in Sections 3 and 4 our constructions are parameterized by values `, m and s that are
set according to (1). A draw from the distribution YES over (g,Dg) pairs is obtained
as follows:

– As before let R ⊂ [n] be a set of size 2`m selected uniformly at random.
– As before, randomly partition the set R into 2m subsets A1, B1, . . . , Am, Bm, each

of size `. Let Ci = Ai ∪ Bi and let ai, bi, ci be defined as before. As before, for
each i = 1, . . . , m choose α(i) to be a random element of the set Ai.

– The distribution Dg puts 1/4 weight on the point 1n, and puts weight 1/(2m) on
bi and 1/(4m) on ci for all i = 1, . . . , m.

19

– The function g is defined as follows: g(x) equals 1 if u(x) ≥ θ and equals 0 if
u(x) < θ, where

u(x)
def
= 10n2

∑

j∈([n]\R)

xj + 5n
m

∑

i=1

xα(i) −
m

∑

i=1

∑

k∈Ci,k 6=α(i)

xk, (2)

θ
def
= 10n2(n − 2`m) + 5nm− m(2` − 1) + s. (3)

An equivalent way to define g is that g(x) = 1 if and only if all three of the
following conditions hold:
1. xj = 1 for all j ∈ ([n] \ R);
2. xj = 1 for all j = α(1), . . . , α(m); and
3.

∑m
i=1

∑

k 6=α(i) xk ≤ m(2` − 1) − s.

Fix any (g,Dg) in the support of YES . It is clear that g is a linear threshold function.
It is straightforward to check that u(1n) = 10n2(n − 2`m) + 5nm − m(2` − 1),
u(ci) = 10n2(n − 2`m) + 5n(m − 1) − (m − 1)(2` − 1), and u(bi) = 10n2(n −
2`m)+5nm−m(2`−1)+`, and consequently we have g(1n) = g(ci) = 0, g(bi) = 1.

B.2 The NO distribution.

A draw from the distribution NO of (f,Df) pairs is obtained as follows:

– As in the yes-case, let R ⊂ [n] be a randomly selected set of size 2`m, and ran-
domly partition the set R into 2m subsets A1, B1, . . . , Am, Bm, each of size `. The
points ai, bi, ci, sets Ai, Bi, Ci, and indices α(i) are defined as in the yes-case. The
distributionDf puts weight 1/4 on 1n, puts 1/4 weight uniformly over the m points
c1, . . . , cm, and puts 1/2 weight uniformly over the 2m points a1, b1, . . . , am, bm.

– The function f is defined as follows: f(x) equals 1 if v(x) ≥ θ and equals 0 if
v(x) < θ. Here θ is defined as in (3) and v(x) is defined as follows: given input x,
let J(x) ⊆ [m] be the set of those i such that x is i-special as defined in Section 3.2
(i.e. the i-th block of x has no zeros in Bi but has at least s zeros in Ai.) The
function v(x) is

v(x)
def
= 10n2

∑

j∈([n]\R)

xj + 5n

|J(x)| +
∑

i∈([m]\J)

xα(i)

−|J(x)|(` − 1) −
∑

i∈J

∑

k∈Ai

xk −
∑

i∈([m]\J)

∑

k∈Ci,k 6=α(i)

xk . (4)

Here is some intuition for the definition of f . Suppose that testing algorithm T
manages to query an input string x which has xj = 1 for all j ∈ Bi but also has at least
d bits in Ai set to 0. Then as we will see, it must be the case that the algorithm actually
drew the point ai in its sample from Df . So in order for T to be “fooled” into thinking
that the function is a YES function, we want the contribution from the bits of Ai and Bi

for this input to “look like” the function is a YES function for which the point ai that

20

was drawn from Df is actually a point bi drawn from Dg . This is the rationale behind
the definition of f ; instead of computing u(x) and comparing it with θ, we compute
v(x), which reverses the role of Ai and Bi bits on those blocks.

It is easy to see that in both the yes-case and the no-case, any black-box query that
sets any variable in [n] \ R to 0 will give a 0 response. As in the earlier construction,
intuitively this will let us assume that any testing algorithm that has obtained strings
z1, . . . , zq from the distribution D never queries any string x that has any bit xi set to 0
that was set to 1 in all of z1, . . . , zq.

Finally, it is easy to check that for any (f,Df) drawn from NO, we have v(1n) =
10n2(n − 2`m) + 5nm − m(2`− 1), v(ci) = 10n2(n − 2`m) + 5n(m − 1) − (m −
1)(2` − 1), and v(ai) = v(bi) = 10n2(n − 2`m) + 5nm− m(2`− 1) + `. (Note that
these values on 1n, ci and bi are the same that the corresponding functions u(x) would
take in the yes-case.) Thus we have f(1n) = f(ci) = 0 and f(ai) = f(bi) = 1 for
each i = 1, . . . , m. It is easy to see that any linear threshold function must disagree
with f on at least one of the four points 1n, ai, bi, ci for each i. Consequently f is at
least 1/4-far from any linear threshold function with respect to Df .

Thus we have established properties (1) and (2) stated at the beginning of this sec-
tion. These yield:

Lemma 9. Any distribution-free tester for LTF that is run with distance parameter
ε = 1/4 must accept a random pair (g,Dg) drawn from YES with probability at least
2/3, and must accept a random pair (f,Df) drawn from NO with probability at most
1/3.

C A lower bound for linear threshold functions

The basic approach is similar to that of Section 4, and indeed several ingredients from
the earlier proof can be directly reused; we focus our discussion on the points where the
approaches differ. We shall prove the following:

Theorem 3. Let q
def
= 1

20 (n
log n)1/5. Let T be any probabilistic oracle algorithm that,

given a pair (h,D), makes at most q black-box queries to h and samples D at most q
times. Then we have

∣

∣Pr(g,Dg)∼YES [T g,Dg = Accept] −Pr(f,Df)∼NO[T f,Df = Accept]
∣

∣ ≤ 1

4
.

Note that this statement is identical to Theorem 2, but here the YES and NO distribu-
tions refer to the distributions defined in Section B.

As in Section 4.2, let T be any fixed oracle algorithm that makes exactly q draws
from the distribution and then makes exactly q black-box queries. We again assume that
T is given “extra information” as described earlier when it draws ci-type examples from
the distribution. Our definition of a knowledge sequence and of a “clean” sequence of
draws are the same as before.

The following easy claim is an analogue of Claim 4.2:

21

Claim. We have Pr[PT
yes,0 is clean] = Pr[PT

no,0 is clean] ≥ 1 − q2/m. Furthermore,
the conditional random variables (PT

yes,0 | PT
yes,0 is clean) and (PT

no,0 | PT
no,0 is clean)

are identically distributed.

Proof. We first show that Pr[PT
yes,0 is clean] = Pr[PT

no,0 is clean] ≥ 1 − q2/m.
Fix any (g,Dg) in the support of YES , and consider the outcomes of PT

yes,0 corre-
sponding to this (g,Dg) being drawn from YES . Since each independent draw from
Dg hits each block 1, . . . , m with probability 3/4m, the probability that PT

yes,0 is clean
is

∏q
i=1

(

1 − 3(i−1)
4m

)

≥ 1 − 3q2/4m ≥ 1 − q2/m. The same argument shows that

Pr[PT
no,0 is clean] also equals

∏q
i=1

(

1 − 3(i−1)
4m

)

.

Now we show that the conditional random variables are identically distributed. It is
not difficult to see that for any 0 ≤ j ≤ q − 1, given any particular length-j prefix of
PT

yes,0, conditioned on PT
yes,0 being clean, the (j + 1)-st element of PT

yes,0 has

– a 1/4 chance of being the triple (1n, 0, 0);
– a 1/2 chance of being a triple (x, 1, 0) where x ∈ {0, 1}n has ` zeros and the

locations of the ` zeros are selected uniformly at random (without replacement)
from the set of those bit positions that had value 1 in all j of the previous draws;

– a 1/4 chance of being a triple (x, 0, α) where x has 2` zeros, the locations of the 2`
zeros are selected uniformly at random (without replacement) from the same set of
bit positions described above, and α is an index drawn uniformly at random from
the indices of the 2` zeros in x.

It is also not difficult to see that given any particular length-j prefix of PT
no,0, condi-

tioned on PT
no,0 being clean, the (j + 1)-st element of PT

no,0 is distributed in the exact
same way. This proves the lemma. ut

The proof of the following corollary is identical to the proof of Corollary 1:

Corollary 2. The statistical distance dTV (PT
yes,0,PT

no,0) is at most q2/m.

Foolhardy queries can be handled just as before. Let the algorithms T ′, Uk and U ′
k

be defined precisely as in Section 4.2. The arguments of subsection 4.2 immediately
yield:

Lemma 10. For all k ∈ [q], the statistical distance

dTV ((PUk
yes | PUk

yes,0 is clean), (PU ′

k
yes | PU ′

k

yes,0 is clean))

is at most 2`m/n, and similarly dTV ((PUk
no | PUk

no,0 is clean), (PU ′

k
no | PU ′

k

no,0 is clean)) is
also at most 2`m/n.

Lemma 11. The statistical distance dTV (PT ′

yes,PT
yes) is at most 2`mq/n+ q2/m, and

the same bound holds for dTV (PT ′

no ,PT
no).

22

As we now describe, the details of how non-foolhardy queries are handled are dif-
ferent from Section 4.2.

Let T ′′ denote an algorithm that is a variant of T ′, modified as follows. T ′′ simu-
lates T ′ except that T ′′ does not actually make queries on non-foolhardy strings; instead
T ′′ simulates the answers to those queries “in the obvious way” that they should be an-
swered if the target function were a yes-function and hence all of the draws from D
that yielded strings with ` zeros were in fact bi-type points. More precisely, assume that
there are r distinct ci-type points in the initial sequence of q draws from the distribu-
tion. Since for each ci-type point the algorithm is given α(i), the algorithm “knows”
r variables xα(i) that are in the conjunction. To simulate an answer to a non-foolhardy
query z ∈ {0, 1}n, T ′′ computes

u′(z) = 10n2(n − 2`m) + 5n(m − |I ′|) − m(2` − 1) + |K \ I ′|

where:

– K is the set of all variables xi set to 0 in z, and
– I ′ is the set of “known” xα(i) variables that are set to 0 in z

and answers 1 if u′(z) ≥ θ, and answers 0 otherwise.

Lemma 12. The statistical distance dTV (PT ′

yes,PT ′′

yes) is zero.

Proof. We argue that T ′ and T ′′ answer all queries in exactly the same way. Fix any
1 ≤ i ≤ q and let z denote the ith query made by T .

If z is a foolhardy query then both T ′ and T ′′ answer z with 0. So suppose that z is
not a foolhardy query. By inspection of (2), we can reexpress u(z) as

u(z) = 10n2(n − 2`m) + 5n(m − |I |) − m(2` − 1) + |K \ I |

where:

– K is the set of all variables xi set to 0 in z, and
– I is the set of xα(i) variables that are set to 0 in z

and g(z) equals 1 if u(z) ≥ θ and equals 0 if u(z) < θ.
Since z is not foolhardy, the only zeros in z must be in positions from points that

were sampled in the first stage. Consequently the only xα(i) variables in I are the xα(i)

variables set to 0 in z from the Ci sets corresponding to the ci points in the draws (these
are the “known” xα(i) variables). So I = I ′ and K \ I = K \ I ′.

Therefore, u(z) = u′(z) and hence T ′’s response is 0 if u′(z) < θ, and is 1 other-
wise. This is exactly how T ′′ answers non-foolhardy queries as well. ut

We define witnesses in exactly the same way as before:

Definition 4. We say that a knowledge sequence contains a witness for (f,Df) if ele-
ments q +1, . . . of the sequence (the black-box queries) contain either of the following:

1. A point z ∈ {0, 1}n such that for some 1 ≤ i ≤ m for which ai was sampled in the
first q draws, the bit zα(i) is 0 but fewer than s of the elements j ∈ Ai have zj = 0.
We refer to such a point as an a-witness for block i.

23

2. A point z ∈ {0, 1}n such that for some 1 ≤ i ≤ m for which ci was sampled in the
first q draws, z is i-special. We refer to such a point as a c-witness for block i.

The following lemma is analogous to Lemma 5; it makes essential use of the way
our no-functions f are defined in Section B.2.

Lemma 13. The statistical distance dTV ((PT ′

no | PT ′

no does not contain a witness and
PT ′

no,0 is clean), (PT ′′

no | PT ′′

no does not contain a witness and PT ′′

no,0 is clean)) is zero.

Proof. As in the proof of Lemma 5, we show that if there is no witness then T ′ and T ′′

answer all queries in exactly the same way. Fix any 1 ≤ i ≤ q and let z denote the ith

query.
If z is a foolhardy query then both T ′ and T ′′ answer z with 0. So suppose that z

is not a foolhardy query and not a witness. By inspection of (4), for any non-foolhardy
point z we can express v(z) as

v(z) = 10n2(n − 2`m) + 5n(m − |L|) − m(2` − 1) + |K \ L|

where

– K is the set of all variables xi set to 0 in z and
– L is the set of xα(i) variables set to 0 in z such that i /∈ J(z) (i.e. z is not i-special).

Recall that:

u′(z) = 10n2(n − 2`m) + 5n(m − |I ′|) − m(2` − 1) + |K \ I ′|

where

– K is the set of all variables xi set to 0 in z and
– I ′ is the set of “known” xα(i) variables that are set to 0 in z.

We will show that if z is not a witness and not foolhardy then L = I ′. This implies
that v(z) = u′(z), so T ′ and T ′′ will respond to such queries in exactly the same way.

First we show that I ′ ⊆ L. Fix any xα(i) that belongs to I ′; such a variable is set to
0 in z and is “known,” so ci must have been sampled in the first stage. Since z is not a
witness, z must not be i-special, i.e. i /∈ J(z); so xα(i) must belong to L.

Next we show that L ⊆ I ′. Fix any xα(i) that belongs to L; such a variable is set to 0
in z and i /∈ J(z). This means z is not i-special, so z either has a zero from Bi or fewer
than s zeros from Ai. Since the initial draws from D were clean and z is not foolhardy,
it cannot be the case that ai was drawn in the sample, for if it were drawn then z could
not have a zero from Bi and also could not have fewer than s zeros from Ai (since
if it had fewer than s zeros from Ai then z would be an a-witness for block i, which
contradicts the fact that z is not a witness). Since ai was not drawn in the sample but
the bit α(i) is set to 0 in z and z is not foolhardy, it must be the case that ci was drawn
in the sample. But this means that xα(i) is “known,” and consequently xα(i) belongs to
I .

So we have shown that I ′ = L, and the lemma is proved. ut

24

From this point on the rest of the argument from Section 4.2 can be used without
modification. We define hybrid algorithms Vk, V ′

k exactly as in Section 4.2, and the
exact proof of Lemma 6 now yields:

Lemma 14. For each value 1 ≤ k ≤ q, the statistical distance dTV ((PVk
no | PVk

no,0 is

clean), (PV ′

k
no | PV ′

k

no,0 is clean)) is at most max{ qs
` , q

2s } = qs/`.

Exactly as in Section 4.2, we obtain:

Lemma 15. The statistical distance dTV (PT ′

no ,PT ′′

no) is at most q2s/` + q2/m.

With all the pieces in place, the arguments from Section 4.2 go through unchanged
to complete the proof of Theorem 3, and we are done.

