
On The Centrality of Off-Line E-Cash
to Concrete Partial Information Games

Seung Geol Choi1, Dana Dachman-Soled2, and Moti Yung3

1 University of Maryland sgchoi@cs.umd.edu
2 Microsoft Research New England dadachma@microsoft.com
3 Google Inc. & Columbia University moti@cs.columbia.edu

Abstract. Cryptography has developed numerous protocols for solving
“partial information games” that are seemingly paradoxical. Some pro-
tocols are generic (e.g., secure multi-party computation) and others, due
to the importance of the scenario they represent, are designed to solve
a concrete problem directly. Designing efficient and secure protocols for
(off-line) e-cash, e-voting, and e-auction are some of the most heavily re-
searched concrete problems, representing various settings where privacy
and correctness of the procedure is highly important.
In this work, we initiate the exploration of the relationships among e-
cash, e-voting and e-auction in the universal composability (UC) frame-
work, by considering general variants of the three problems. In particu-
lar, we first define ideal functionalities for e-cash, e-voting, and e-auction,
and then give a construction of a protocol that UC-realizes the e-voting
(resp., e-auction) functionality in the e-cash hybrid model. This (black-
box) reducibility demonstrates the centrality of off-line e-cash and im-
plies that designing a solution to e-cash may bear fruits in other areas.
Constructing a solution to one protocol problem based on a second pro-
tocol problem has been traditional in cryptography, but typically has
concentrated on building complex protocols on simple primitives (e.g.,
secure multi-party computation from Oblivious Transfer, signature from
one-way functions, etc.). The novelty here is reducibility among mature
protocols and using the ideal functionality as a design tool in realiz-
ing other ideal functionalities. We suggest this new approach, and we
only consider the very basic general properties from the various prim-
itives to demonstrate its viability. Namely, we only consider the basic
coin e-cash model, the e-voting that is correct and private and relies
on trusted registration, and e-auction relying on a trusted auctioneer.
Naturally, relationships among protocols with further properties (i.e.,
extended functionalities), using the approach advocated herein, are left
as open questions.

1 Introduction

1.1 Motivation

Research on the security and privacy of cryptographic protocols where parties
share information (i.e., partial information games) is a major area of research in



cryptography. Many scenarios which seem paradoxical and unsolvable have been
shown to be realizable, based on the power of information distribution and/or
that of public-key cryptography.

While a good deal of research has been performed on constructing generic
protocols (i.e., general secure multi-party computation) [Yao86,GMW87], there
still exist important real life procedures that deserve special considerations: e-
cash [Cha83,CFN88], e-voting [Cha81,CF85,BY86] and e-auction [FR96,NPS99].
Due to the great impact on the viability of cyberspace transactions that the suc-
cessful deployment of these protocols brings about, they have attracted numerous
researchers, and for decades, much work has been done on defining security and
constructing secure protocols for these tasks. These specific partial information
games share some basic configuration: Each of these games is structured so that
players are either authorities (i.e., banks, talliers and auctioneers) or users. These
fundamental similarities naturally beg the question:

What are the (black-box) relations among e-cash, e-voting and e-auction
in the UC framework?

This question is firstly of theoretical interest. Although, initiated in [IR89],
a fairly complete picture of the black-box relations among most cryptographic
primitives has been obtained, not much is known about the black-box relation-
ship among fairly complicated concrete protocols. This direction of research may
shed new light on understanding the definitions, security and complexity of these
protocols.

Moreover, it is desirable to explore such relations in the modern UC frame-
work introduced by Canetti [Can01]. Informally speaking, protocols secure in
this framework remain secure even when executed concurrently with other arbi-
trary protocols running in some larger network, and can be used as subroutines
of larger protocols in a modular fashion. The property is important consider-
ing that nowadays many protocols are executed concurrently with others on the
Internet. We note that there are only a few results on the relationship among
cryptographic primitives in the UC framework.

The question is also of practical interest. In practice, the simpler the system
implementation is, the better. That is, if there is a significant black-box compo-
nent that makes the implementation much simpler, there is no reason not to use
it. Building a system from scratch, not employing available software in a black
box manner, but using instead “smaller” black boxes (i.e., lower primitives such
as one-way functions) potentially entails a lot of design and thus creates further
sources for bugs in protocols or the need to embed the new protocol in a secure
trusted systems component, which in turn lead to high costs (involved in resolv-
ing these issues). For example, if it is known that protocol-Y can be constructed
from protocol-X, an optimized secure implementation (suitable for the setting)
of protocol-X may lead to fairly simple deployment of a secure protocol-Y.

1.2 Our Results

Motivated by the above theoretical and practical considerations, we explore the
relations among (off-line) e-cash, e-voting, and e-auction in the UC framework.



Concretely, we explore whether a secure protocol for e-voting (and for e-auction)
can be constructed using a secure protocol for e-cash. This type of an investiga-
tion involves two tasks: defining security and achieving constructions in the UC
framework.

Definition of Security. We first present ideal functionalities capturing the secu-
rity of e-cash, e-voting, and e-auction; we concentrate in this work only on basic
models with the most important security properties (generalizations to include
further properties require extended functionalities and are left for future inves-
tigations). Intuitively, the e-cash functionality provides two important features
of protection against double-spending and anonymity of honest spenders (we
do not deal with extensions such as “fair cash” and “divisible cash”). The e-
voting functionality provides protection against double-voting and unlinkability
between voters and votes, i.e., correctness of voting and voter privacy. Again,
it doesn’t provide advanced properties like incoercibility [BT94,JCJ05].4 The e-
auction functionality provides secrecy of the bidding information until the end
of the bidding procedure (once again, ignoring various added more advanced
concerns like totally untrusted auctioneer, etc.).

E-Voting from E-Cash. We show a construction of a protocol that UC realizes
the e-voting functionality in the e-cash hybrid model, under a certain restric-
tion on the corruption pattern of the adversary. Due to the UC composition
theorem [Can01], this implies that there exists a protocol πvote UC-realizing
the e-voting functionality with black-box access to πcash UC-realizing the e-cash
functionality.

We first notice similar security features between e-cash and e-voting. That
is, if a voter casts a ballot more than once, his vote is rejected and possibly
the identity of the double-voter is compromised (similarly to protection against
double-spending in e-cash); on the other hand, voters and votes should be un-
linkable (similarly to unlinkability between spenders and coins in e-cash). By
utilizing these similarities (which are certainly known in the folklore) and by
exploring more carefully the relationships and the needs of each problem, we
were able to construct an e-voting protocol in the e-cash hybrid.

E-Auction from E-Cash. We also give a construction for e-auction (with a bound
on the maximum bidding amount) in the e-cash hybrid. In the construction,
there are two authorized agents, and it is assumed that at most one of them
is semi-honestly corrupted. In the bidding stage, each bidder spends coins with
the two authorities so that the bidding amount may be equal to the number of
coins doubly-spent. Note that secrecy of the bidding amount is guaranteed since
neither authority alone can determine the number of doubly-spent coins. Then,
after the bidding stage ends, both authorities deposit their coins and count the
number of doubly-spent coins for each bidder.

4 In an e-voting scheme with incoercibility, it is infeasible for the adversary to deter-
mine if a coerced voter complies with the demands. We leave as an interesting open
problem achieving incoercibile e-voting from e-cash.



1.3 Related Work

There have been a few results that provide an ideal functionality for e-cash
[Tro05,Lin09] or e-voting [Gro04,dMPQ07]. The e-cash functionality in [Tro05]
is not general enough in that the functionality contains a hash function and
a tree structure inside. The e-cash functionality in [Lin09] does not deal with
anonymous coins or detection of double-spending. The e-voting functionality in
[Gro04] is different from ours in that it allows the adversary to prevent a voter
from casting a vote while our functionality does not. The e-voting functionality
in [dMPQ07] is parameterized with a post-processing function on the gathered
ballots and can consider more general types of voting, e.g., outputting three
most-favored candidates.

Maji, Prabhakaran, and Rosulek considered relations between cryptographic
primitives in the UC framework [PR08,MPR09,MPR10a,MPR10b]. However,
they have a different focus, and they rather retained more of a complexity the-
oretic perspectives (general feasibility) and explored which ideal functionality is
complete.

1.4 Organization

In Section 2 we define ideal functionalities for e-cash, e-voting, and e-auction.
Constructions of e-voting and e-auction in the e-cash hybrid are described in
Section 3 and Section 4 respectively. We conclude in Section 5.

2 Ideal Functionalities

We present below the ideal functionalities for e-cash, e-voting and e-auction. We
note that, although not explicitly stated in the description of the functionalities,
the ideal adversary initially corrupts a subset of parties by sending a corrupt
message for each party in the subset to the ideal functionality. Thus, the ideal
functionality is always aware of the set of corrupted parties.

2.1 Ideal Functionality for E-Cash

We start with defining the ideal functionality Fcash for e-cash in Fig. 1. In the
functionality, a user may open an account with his identity or a pseudonym
Nym under the permission of the bank. Each coin is associated with a randomly
generated serial number; when withdrawing w coins, a user is given w serial
numbers, with which he can spend coins on other parties.

The functionality achieves anonymity of honest spenders in executing the
command spend by directly notifying the serial number, but with no information
about the corresponding spender, to the merchant. Note that the functionality
stipulates that neither the bank nor the merchant should have any knowledge of
who the spender is. We believe this modeling is reasonable; if merchants know
the information about the spenders they may be able to sell it to the banks



Functionality Fcash

– Upon receiving (setup, sid) from the prospective bank B:
If there is already a party registered as the bank, ignore this message. Oth-
erwise, record B as the bank. If there is no registered bank for this session
sid, all the messages below are ignored.

– Upon receiving (open account, sid,Nym, k) from Ui:
If there is already an account for Ui, ignore the request. Otherwise, send
(open account, sid,Nym, k, type) to the bank, where type is identity if Ui =
Nym, or anonymous otherwise. Let (opened account, sid,Nym, rep) be the
reply from the bank. If rep 6= ⊥, initialize an account for Ui tagged with
Nym with initial balance k. Send (opened account, sid, rep) to Ui.

– Upon receiving (withdraw, sid, w) from Ui:
1. If there is no account for Ui or if the balance of account Ui is less than w,

send (withdrawn, sid,⊥) to Ui and terminate.
2. Decrease the balance of Ui by w, choose w random numbers

(serial1, . . . , serialw), and record the tuples (withdrawn, Ui, serial1, . . . ,
serialw). Then, send (withdrawn, sid, serial1, . . . , serialw) to Ui and
(withdrawn, sid,Nym, w) to the bank B, where Nym is the tag for Ui.

– Upon receiving (spend, sid,Nym, serial) from Ui:
1. If there is no such record as (withdrawn, Ui, serial), send (spent, sid,⊥) to

Ui and terminate.
2. Let Uj be the user whose account is tagged with Nym — if

there no such user, send (spent, sid,⊥) to Ui and terminate. Record
the tuple (spent, Ui, Uj , serial), send (spent, sid,Nym) to Ui, and send
(spent, sid, serial) to Uj .

– Upon receiving (deposit, sid, serial) from Uj :
1. If there is no record of a form (spent, ∗, Uj , serial) or if there is already a

record (deposited, ∗, Uj , serial), then send (deposited, sid,⊥) to Uj and ter-
minate.

2. Let Nym be the tag for Uj . If there is already a record (deposited, Ui, Uk,
serial) for some Ui and Uk 6= Uj , then record (doubly-spent, serial, Uj),
send (deposited, sid, doubly-spent) to Uj , send (deposited, sid, Nym, serial,
doubly-spent) to the bank, and terminate.

3. Record (deposited, Ui, Uj , serial) where Ui is the spender of the coin
(i.e., there is a record (spent, Ui, Uj , serial)). Increment the balance
of Uj ’s account. Then send (deposited, sid, serial) to Uj and send
(deposited, sid,Nym, serial) to the bank.

– Upon receiving (double spender, sid, serial) from the bank B:
If there is no such record as (doubly-spent, serial, ∗), send
(double spender, sid,⊥) to B. Otherwise, find the record (deposited,
Ui, Uj , serial) for some Ui and Uj , and send (double spender, sid,Nymi,
Nymj) to B, where Nymi and Nymj are the tags for Ui and Uj respectively.

– Upon receiving (double spenders, sid) from the bank B:
Perform as above for serial such that there is a record
(doubly-spent, serial, ∗). Let S be the list of the tuples (serial,Nymi,Nymj),
where Nymi is the tag for a double spender, Nymi is the tag on which the
coin serial is deposited. Send (double spender, sid, S) to B.

– Upon receiving (balance, sid) from Ui:
Let b be the balance of Ui. Send (balance, sid, b) to Ui.

– Upon receiving (balance, sid,Nym) from the bank B:
Let b be the balance of the account with a tag Nym. Send (balance, sid, b)
to B.

Fig. 1: Ideal Functionality for E-Cash



and other marketing organizations, which defeats the purpose Chaum [Cha83]
originally tries to achieve. Indeed, this goes in line with a standard method to
achieve a secure e-cash system, that is, executing an e-cash scheme through an
anonymous channel [Cha81,SGR97,RR98,SL00,DMS04].

The functionality also provides detecting the double-spender of a coin in an off-
line manner — detection occurs when the coin is deposited. Note that the power
of the bank is restricted in that it only approves the account-opening requests,
observes withdrawals and deposits, and detects double spenders. Further recall
that we do not model more advanced properties of various e-cash schemes beyond
the simple “basic coin” model.

2.2 Ideal Functionality For Basic E-Voting

Next, we define the ideal functionality Fvote for e-voting. The functionality as-
sumes an authority that manages the voting procedure. Each party registers for
voting, and then casts a vote for his favorite candidate.

At the tallying stage, the functionality allows corrupted candidates, not
knowing the voting information of others, to decrease the number of votes they
have received. Since it only allows them to give up the election, the functionality
regards this case as legitimate. Note also that the voting information is kept
secret even to the authority until the voting stage ends. As mentioned above,
note that the functionality does not consider further advanced properties desired
in various election scenarios, such as incoercibility [BT94,JCJ05].

2.3 Ideal Functionality for Basic E-Auction

Finally, we formulate the ideal functionality Fauc for e-auction in Fig. 3. The
functionality assumes an authority that manages the auction process. Each party
registers for auction, and then casts a bid. The authority does not know the
bidding information until the bidding stage ends.

In our formulation, however, the authority will eventually see all the bidding
information. As mentioned above, this is the basic case we deal with in this work.
Obviously, more private auctions are suitable in many scenarios, yet considering
that in many practical scenarios the authority ultimately sees the bids (e.g.,
Google AD Exchange), we believe our modeling is still a meaningful starting
point.

3 E-Voting from E-Cash

We present an e-voting protocol that UC-realizes Fvote in the Fcash hybrid, with
some restrictions on the corruption pattern of an adversary. In the protocol, we
employ the similar security features between e-cash and e-voting. That is, if a



Functionality Fvote

Let A be the voting authority and C1, . . . , Ck be the candidates.
– Upon receiving (register, sid) from Vi:

If there is a record (registered, Vi), ignore this message. Otherwise, record
the tuple (registered, Vi) and broadcast (registered, sid, Vi).

– Upon receiving (vote, sid, v) from Vi:

If there is no such record as (registered, Vi) or if v 6∈ [k], then ignore this
message. Otherwise, record the tuple (voted, Vi, v).

– Upon receiving (tally, sid) from the authority A:

1. Compute the tally result R = (r1, . . . , rk), where ri is the tally for can-
didate Ci. In computing the tally results, ignore all tuples of the form
(voted, Vj , ∗) such that Vj appears more than once.

2. For 1 ≤ i ≤ k, if candidate Ci is corrupted, send message (tally, sid, ri) to
candidate Ci.

3. Upon receiving a message of the form (tally, sid, r′i) from each corrupted
candidate Ci, compute Rfinal = R− (r′′1 , . . . , r

′′
k ), where r′′i = r′i if 0 ≤ r′i ≤

ri, or r′′i = 0 otherwise, and broadcast (tally, sid, Rfinal).

Fig. 2: Ideal Functionality for E-Voting

voter casts a ballot more than once, his vote is rejected and possibly the iden-
tity of the double-voter is compromised (similarly to protection against double-
spending in e-cash); on the other hand, voters and votes should be unlinkable
(similarly to unlinkability between spenders and coins in e-cash).

We emphasize that the construction does not use any cryptographic tools
or assumptions beyond Fcash. Therefore, given a secure e-cash scheme, we can
construct a secure e-voting scheme against an adversary with the specified cor-
ruption pattern.

Toy Construction. We start with a toy construction illustrating the basic idea
of how to use an e-cash scheme, although with weak security.

Some of the participants are designated as candidates. Each voter with-
draws one coin from his bank account and spends his coin on the can-
didate of his choice. At the end of the election, each candidate deposits
the coins that he receives, and broadcasts his balance as the result of the
election.

In the above scheme, due to the anonymity of honest spenders of e-cash, the
voting authority does not know the tallying information during the voting stage.
However, the scheme is only secure against an adversary that corrupts voters
maliciously and the authority semi-honestly but does not corrupt candidates. In
particular, each candidate knows the exact number of votes in favor of himself.



Functionality Fauc

Let A be the auction authority.
- Upon receiving (register, sid) from party Pi:

If there is a record (registered, Pi), ignore this message. Otherwise, record
the tuple (registered, Pi) and broadcast (registered, sid, Pi).

- Upon receiving (bid, sid, Pi, v) from party Pi:

If there is no such record as (registered, Pi) or if there is a record of a
form (bid, Pi, ∗), then ignore this message. Otherwise, record the tuple
(bid, Pi, v).

- Upon receiving (result, sid, A) from the auctioneer A:

Send all the bidding information to A, that is, (result, sid, {(Pi, vi)}ni=1),
where n is the number of registered bidders and vi is the bidding amount
of Pi. Also, broadcast (result, sid,P), where P is the set of highest bidders.

Fig. 3: Ideal Functionality for E-Auction

3.1 Construction

Our final construction uses the following ideas to remove the trust trust that is
placed in each of the candidates in the toy construction.

Two Authorities: The construction has two authorities: A registration au-
thority B1 and a tallying authority B2.

Use of Detecting Double Spenders in E-Cash: The construction actively
uses the feature of detection of double spenders in the e-cash scheme. In
particular, let k be the number of candidates. Suppose a voter wants to cast
a vote to the j-th candidate. Then, he withdraws k coins from the bank (i.e.,
the tallying authority B2), spends each of the k coins to each candidate,
and then spends the j-th coin to the registration authority. Each candidate
deposits the coins that it received.
At the tallying stage, the registration authority deposits the coins that it
has. Then the doubly spent coins are used to compute the tally result.

Use of Anonymous Spending in E-Cash: One security concern in the above
description is that the identity of the voter is revealed, since the feature of de-
tecting double spenders is used legitimately. To avoid this, each voter uses a
pseudonym in spending coins. In particular, the registration authority plays
a role of another bank, and the serial number of the coin with respect to
the registration authority becomes a pseudonym of a voter. Since the serial
number is generated at random, the pseudonym reveals no information of its
owner’s identity. The coins with respect to the tallying authority can now
be safely used as explained above.



Protocol πvote

There are two distinguished parties — registration authority B1 and tallying
authority B2. Both play the role of a bank in the e-cash scheme. Let C1, . . . , Ck
be the candidates.

– B1 and B2 send (setup, sid1) and (setup, sid2) to Fcash respectively. Each
candidate Ci opens an account with balance 0 with respect to B2.

– When Vi receives a message (register, sid) from the environment Z:
1. Visends (open account, sid1, Vi, 1) to Fcash. Then B1 in turn approve

the open account request via Fcash, if Vi is a fresh, legitimate voter.
Upon receiving (opened account, sid1, rep) from Fcash, if rep = ⊥, Vi
terminates.

2. Vi sends (withdraw, sid1, 1) to Fcash. Let (withdrawn, sid1, s) be the
reply from Fcash. If s = ⊥, Vi terminates; otherwise Vi sets Ni = s.

3. Vi sends (spend, sid1, B2, Ni) to Fcash. If the reply from Fcash is
(spent, sid1,⊥), Vi terminates.

4. Vi sends (open account, sid2, Ni, k) to Fcash. Then, B2, upon receiving
the (spent, sid1, Ni) and (opened account, sid2, Ni, k, anonymous) from
Fcash, will send (deposit, sid1, B2, Ni) to Fcash; if the response from
Fcash is (deposited, sid1, Ni), B2 will send (open account, sid2, Ni, ok)
to Fcash; otherwise B2 will send (open account, sid2, Ni,⊥).

– When Vi receives a message (vote, sid, v) from the environment Z:
1. Vi sends (withdraw, sid2, k) to Fcash. If Fcash responds with a mes-

sage (withdrawn, sid2, serial1, . . ., serialk), then Vi records the values
serial1, . . ., serialk; otherwise, Vi terminates.

2. For 1 ≤ ` ≤ k, Vi sends (spend, sid2, C`, serial`) to Fcash. If Fcash

responds with a message (spent, sid2,⊥) for any of the requests, Vi
terminates.

3. Vi sends (spend, sid2, B1, serialv) to Fcash. If Fcash responds with a
message (spent, sid2,⊥), Vi terminates.

4. Now, each candidate C`, upon receiving a message (spent, sid2, s) from
Fcash, sends a message (deposit, sid2, s) to Fcash.

– When B1 receives a message (tally, sid) from Z:
1. B1 sends a message (deposit, sid2, s) to Fcash for each s of the coins

that it has received; while B1 is doing so, B2 records the serial num-
ber s if B2 receives (deposited, sid2, B1, s, doubly-spent) from Fcash. B1

sends (tally, sid) to B2.
2. For each recorded serial number s, B2 sends (double spender, sid2, s)

to Fcash and retrieves the corresponding pseudonym (i.e., the double
spender) and the corresponding candidate. Using this list, B2 com-
putes the tally R = (r1, . . . , rk) and broadcasts (tally, sid, R). If a
pseudonym appears more than once in the list, B2 ignores all the
votes given by the pseudonym.

3. Each party outputs R.

Fig. 4: The Protocol for E-Voting in the Fcash-Hybrid



The description of the overall protocol πvote is given in Figure 4.

3.2 Security

The authorities, once corrupted, are assumed to behave in a semi-honest manner.
Also, we consider the case where at most one of the authorities is corrupted by
the adversary. A more serious restriction is that the adversary is not allowed
to corrupt the registration authority and candidates at the same time. If both
the registration authority and a candidate have received a coin with the same
serial number, it means that someone voted for the candidate. Therefore, such
corruptions reveal to the adversary the number of votes casted for the corrupted
voters before the tallying stage. We believe this restriction on the authorities is
reasonable.

Theorem 1. The protocol πvote UC-realizes Fvote functionality against an ad-
versary that corrupts voters and candidates maliciously and the authorities semi-
honestly, with the restriction that it is not allowed to corrupt the registration
authority and some candidates at the same time.

Proof. We show that for every adversary A, there exists a PPT S such that for
every non-uniform PPT Z it holds that

execFcash

πvote,A,Z ≈ idealFvote,S,Z .

Fix A. Wlog, we assume B2 is semi-honestly corrupted; the proof is only
easier when B2 is not corrupted. We consider two cases according to whether B1

is corrupted or not.
We will refer to the communication of S with Z and Fvote as external commu-

nication, and that with A as internal communication. For clarity, the message
exchanges between the real adversary A (on behalf of a corrupted party P )
and the simulator S (simulating ideal functionality Fcash) are represented as
exchanges between P and S.

Roughly speaking, the simulator S simulates the functionality Fcash inter-
nally and tries to extract votes from corrupted voters.

Throughout the running of S, it S forwards all the messages between A and
Z. Below, we describe how S handles other messages.

Case 1: B1 is not corrupted. Let’s first consider the case where B1 is not
corrupted. Then, the adversary may corrupt some candidates as well.

Handling register. S handles register messages as follows:

– S, as Fcash and B1 in the internal communication, handles the following
messages exactly as Fcash and B1 would do:
• (setup, sid2) from B2.
• (open account, sid1, Vi, bal) from a corrupted Vi.
• (withdraw, sid1, w) from a corrupted Vi.
• (spend, sid1, B2, serial) from a corrupted Vi.
• (deposit, sid1, serial) from B2.



– When S as Fcash receives (open account, sid2, serial, k) from a corrupted Vi:
S does exactly what Fcash would do. In addition, when B2 approves the
request with (opened account, sid2, ok), then S, as the corrupted Vi in
the external communication, sends (register, sid) to Fvote.

– When S receives (registered, sid, Vj) externally from Fvote for an uncorrupted
Vj :
S does exactly what Vj will do in the internal communication. In par-
ticular, S handles virtual register, open account, withdraw, and spend
messages for Vj , as specified in the protocol.

Handling vote. S handles vote messages as follows:

– S as Fcash handles the following messages exactly as Fcash would do:
• (withdraw, sid2, k) from a corrupted Vi.
• (spend, sid2, B1, s) from Vi.
• (spend, sid2, Cj , s) from Vi.

– When S as Fcash receives (deposit, sid2, s) from a corrupted candidate Cj :
S behaves exactly Fcash would. In addition, if the coin s has been suc-
cessfully deposited and if the coin s has also been spent on B1, find the
spender Vi of the coins s using the recorded data, and S as the cor-
rupted Vi (in the external communication), externally sends a message
(vote, sid, v) to Fvote.

– For each uncorrupted voter Vi, S simulates its behavior as specified in the
protocol. The only exception is that Vi delays spending a coin on B1 until
the tally result comes out. This is because S cannot know which vote to cast
on behalf of the honest party until it receives the final tally from the ideal
voting functionality.

– For each uncorrupted candidate Ci, S simulates its behavior as specified in
the protocol. In addition, if Ci has successfully deposited a coin s and if the
coin s has also been spent on B1, find the spender Vi of the coins s using the
recorded data, and S as the corrupted Vi (in the external communication),
externally sends a message (vote, sid, v) to Fvote.

Handling tally. S handles tally messages as follows:

– When S, as a corrupted candidate Ci (in the external communication), ex-
ternally receives (tally, sid, ri) from Fvote:
1. Let mi be the number of votes given by the corrupted voters to Ci, in

the internal communication. This can be computed from the recorded
data.

2. Let hi = ri − mi; that is, hi is the number of votes from uncorrupted
voters. S arbitrary generate a set Hi (disjoint with Hj for other candi-
date Cj) of uncorrupted voters of size hi. On behalf of each uncorrupted
voter V in Hi, S now handles a virtual message (spend, sid2, B1, s

′) from
V , where s′ is the coin that V has spent on Ci. Note that this simula-
tion is good since Fcash guarantees that identities of spenders and serial
numbers of coins are completely disassociated.



3. Let h′i be the number of coins belonging to Hi that Ci didn’t deposit. S,
as the corrupted Ci (in the external communication), externally sends
(tally, sid, h′i) to Fvote.

– Once S handles the tally messages from Fvote for all the corrupted candidates
in the external communication, S as B1 internally sends (tally, sid) to B2.

– When S as Fcash receives a message (double spender, sid2, s) from B2:

S does exactly what Fcash would do.

Case 2: When B1 is corrupted. In this case, due the restriction on the
corruption pattern of the adversary, the candidates are not to be corrupted.

Handling register. S handles register messages as follows:

– S as Fcash handles the following messages as Fcash would do:

• setup messages from B1 or B2.
• (open account, sid1, Vi, bal) from a corrupted Vi.
• (withdraw, sid1, w) from a corrupted Vi.
• (spend, sid1, B2, serial) from a corrupted Vi.
• (deposit, sid1, serial) from B2.

– When S as Fcash receives (open account, sid2, serial, k) from a corrupted Vi:

S does exactly what Fcash would do. In addition, when B2 approves
the request with (opened account, sid2, ok), S as the corrupted Vi (in the
external communication) externally sends (register, sid) to Fvote.

– When S receives (registered, sid, Vj) from Fvote:

S internally simulates what the uncorrupted Vj would do. In particular,
S handles virtual register, open account, withdraw, and spend messages
for Vj , as specified in the protocol.

Handling vote. S handles vote messages as follows:

– S as Fcash handles the following messages as Fcash would do:

• (withdraw, sid2, k) from a corrupted Vi.
• (spend, sid2, B1, s) from a corrupted Vi.
• (spend, sid2, Cj , s) from a corrupted Vi:

– For each uncorrupted voter Vi, S simulates its behavior as specified in the
protocol, except the following:

Let s1, . . . , sk be the coins that Vi has. Vi spends s1 on B1 and delays
spending coins on candidates until the tally result comes out.

– For each uncorrupted candidate Ci, S simulates its behavior as specified in
the protocol.

– If Ci, whether or not it is corrupted, has successfully deposited a coin s
and if the coin s has also been spent on B1, find the spender Vi of the
coins s using the recorded data, and S as the corrupted Vi (in the external
communication), externally sends a message (vote, sid, v) to Fvote.

Handling tally. S handles tally messages as follows:



– When S, as Fcash, starts to get deposit requests from B1, S, as the corrupted
registration authority (in the external communication) sends (tally, sid) to
Fvote. The deposit requests are handled as Fcash would do.

– Upon receiving (tally, sid, Rfinal) externally from Fvote:

1. Let Rfinal = (r1, . . . , rk). For each candidate Ci, let mi be the number
of votes given by corrupted voters to Ci in the internal communication.
This can be computed from the recorded data. Let hi = ri−mi; that is,
hi is the number of votes from uncorrupted voters. S arbitrary generate a
set Hi (disjoint with Hj for other candidate Cj) of uncorrupted voters of
size hi. Now, each uncorrupted voter V in Hi spends coins on candidates.
Let s1, . . . , sk be the coins that V has. V spends (s1, s2, s3, . . . , sk) on
(Ci, C2, C3, . . . , Ci−1, C1, Ci+1, . . . Ck).

– When S as Fcash receives a message (double spender, sid2, s) from B2:

S does exactly what Fcash would do.

4 E-Auction from E-Cash

We construct a protocol πauc for e-auction with a bound on the maximum bid-
ding amount in the Fcash-hybrid that UC-realizes the Fauc functionality in Fig.
5.

Overview of the Protocol. In the protocol, there are two authorized agents
A1 and A2, which will play the role of a bank in the e-cash scheme. We note
that A1 and A2 are assumed to be semi-honest and are trusted not to collude
(i.e., we allow at most one of them to be corrupted).

Let θ be the maximum bidding value. Each player withdraws 2θ coins from
the first authority A1 and spends θ coins on A1 and A2 respectively. The idea is
that each party spends coin, using the feature of detecting the double spenders in
Fcash, so that the bidding amount may be equal to the number of coins doubly-
spent. For example, party P with bidding amount k will spend the k coins (out
of θ) on both A1 and A2. Then, after the bidding stage ends, A1 and A2 will
deposit their coins and count the number of doubly-spent coins for each bidder.

Theorem 2. The protocol πauc UC-realizes Fauc functionality as long as at
most one of A1 and A2 is semi-honestly corrupted.

Proof. We show that for every adversary A, there exists a PPT S such that for
every non-uniform PPT Z it holds that

execFcash

πauc,A,Z ≈ idealFauc,S,Z .

Fix A. At the outset of the protocol, there are some bidders that are cor-
rupted. We consider the case where A1 is semi-honestly corrupted; the case
where A1 is not corrupted is only easier. We will refer to the communication
of S with Z and Fauc as external communication, and that with A as internal
communication.



Protocol πauc

Let θ be the maximum bidding value and A1 and A2 be auction authorities.

– A1 sends (setup, sid) to Fcash. A1 and A2 open their accounts respectively.
– When Pi receives a message (register, sid) from the environment Z:

1. Pi sends (open account, sid, Pi, 2θ) to Fcash. Then A1 in turn will re-
ceive the open account request from Fcash and, if Pi is legitimate,
approve the request.

2. Upon receiving (opened account, sid, rep) from Fcash, if rep = ⊥, Pi
terminates.

3. Pi sends (withdraw, sid1, Pi, A1, 2θ) to Fcash. If Fcash responds with a
message (withdrawn, sid1, serial1, . . ., serial2θ), then Pi records the
values serial1, . . . , serial2θ.

– When Pi receives a message (bid, sid, v) from the environment Z:
1. If Pi does not have a recorded serial1, . . . , serial2θ, it terminates.
2. For 1 ≤ j ≤ θ, Pi sends a message (spend, sid, Pi, A1, serialj) to Fcash.

If Fcash responds with a message (spent, sid,⊥) to any of the requests,
Pi terminates.

3. For θ−v+1 ≤ j ≤ 2θ−v, Pi sends a message (spend, sid, Pi, A2, serialj)
to Fcash. If Fcash responds with a message (spent, sid,⊥) to any of the
requests, Pi terminates.

– When A1 receives a message (result, sid) from Z:
1. A1 tells A2 to deposit its coins. After A2 has finished the de-

posit procedure, A1 deposits all the coins. For each serial num-
ber serialj that has been doubly-spent, A1 sends a message
(double spender, sid, serialj) to Fcash and receives back the identity
of the spender of coin serialj . Now, using this information, A1 deter-
mines the bidding amount of each participant Pk. A1 broadcasts the
message (result, sid,P), where P is the set of parties whose bidding
amount is the largest.

Fig. 5: Protocol for E-Auction in the Fcash-hybrid

Roughly speaking, the simulator S simulates the functionality Fcash inter-
nally and tries to extract bids from corrupted bidders.

For clarity, message exchanges between the real adversary A (on bahalf of a
corrupted party P ) and the simulator S (simulating ideal functionality Fcash)
are represented as exchanges between P and S.

Throughout the running of S, it S forwards all the messages between A and
Z. Below, we describe how S handles other messages.

Handling register.
The simulator S handles the register messages as follows:

– When S as Fcash receives (open account, sid1, Pi, 2θ) from a corrupted bidder
Pi:

S does exactly what Fcash would do.



– When S as Fcash receives (withdraw, sid1, Pi, w) from a corrupted Pi:
S does exactly what Fcash would do. In addition, for a successful with-
drawal, S, as Pi in the external communication, sends (register, sid) ex-
ternally to Fauc.

– When S receives (registered, sid, Pj) externally from Fauc for an uncorrupted
Pj :
S does exactly what Pj will do in the internal communication. In par-
ticular, S as Pj sends (open account, sid1, Pi, 2θ) to Fcash (S itself) and
handles the virtual withdraw message (i.e., sends the message to S itself).

Handling bid.
The simulator S handles the bid messages as follows:

– When S as Fcash receives (spend, sid1, Pi, Aj , serial) where j ∈ {1, 2} from a
corrupted Pi:
S does exactly what Fcash would do:

– S handles virtual spend messages from the uncorrupted parties. That is, for
each uncorrupted Pj , let serial1, . . . , serial2θ be the serial numbers of the

coins belonging to Pj . S as Fcash sends
{

(spent, Pj , A1, seriali)
}θ
i=1

to A1,

and it also sends
{

(spent, Pj , A2, seriali)
}2θ

i=θ+1
to A2.

Handling result.
The simulator S handles the result messages as follows:

– When S as A2 receives a message from the corrupted A1 to deposit the coins:
1. For each corrupted bidder Pi, S computes the number b of doubly-spent

coins by Pi, and, as Pi in the external communication, sends (bid, sid, b)
to Fauc externally.

2. S as the corruptedA1 (in the external communication) sends (result, sid, A1)
externally to Fauc and gets the results (result, sid, {(Pi, vi)}ni=1). Now, S
changes the serial numbers spent by uncorrupted parties Pj so that the
number of doubly-spend coins by Pj are vj . Then S handles the virtual
deposit messages — i.e., sends (deposit, sid, A2, serial) messages to itself
— exactly as Fcash would do, using the recorded data.

– When S as Fcash receives deposit and double spender messages from the
corrupted A1, S handles the messages exactly Fcash would do using the
recorded data.

The only modification that S performs lies in the serial numbers of the uncor-
rupted parties spend on A2. However, to the view of the adversary (in particular
to A1), this modification is invisible. Therefore, the simulation is perfect.

The case where A1 is honest and A2 is semi-honestly corrupted can be
simulated in a similar fashion. In particular, the simulator extracts the bid-
ding amount of corrupted bidders while simulating Fcash. Then, upon receiving
(result, sid,P) from Fauc, S, as A1 in the internal communication, internally
broadcasts (result, sid,P).



5 Conclusions

Our work reveals interesting relationships between some basic protocols that
have been so far developed independently. Natural questions remain:

– Is it possible to eliminate the restriction on the corruption pattern of the
adversary that the current constructions have or to show a separation when
an arbitrary number of parties may be corrupt?

– It is also interesting to explore the remaining relationships among e-cash, e-
voting, and e-auction, to consider extended functionalities (with extra prop-
erties) and explore relationships among them.

– Are there other “partial information protocols” that can be used as building
blocks for other protocols or can be built on top of some known protocols?

References

[BT94] Josh Cohen Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elec-
tions (extended abstract). In STOC, pages 544–553, 1994.

[BY86] Josh Cohen Benaloh and Moti Yung. Distributing the power of a government
to enhance the privacy of voters (extended abstract). In PODC, pages 52–62,
1986.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136–145, 2001.

[CF85] Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptograph-
ically secure election scheme (extended abstract). In FOCS, pages 372–382,
1985.

[CFN88] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In
CRYPTO, pages 319–327, 1988.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–88, 1981.

[Cha83] David Chaum. Blind signature system. In CRYPTO, page 153, 1983.
[dMPQ07] Olivier de Marneffe, Olivier Pereira, and Jean-Jacques Quisquater.

Simulation-based analysis of e2e voting systems. In Frontiers of Electronic
Voting, 2007.

[DMS04] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The second-
generation onion router. In Proc. of the 13th. USENIX Security Symposium,
August 2004.

[FR96] Matthew K. Franklin and Michael K. Reiter. The design and implementation
of a secure auction service. IEEE Trans. Software Eng., 22(5):302–312, 1996.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or a completeness theorem for protocols with honest majority. In
STOC, pages 218–229, 1987.

[Gro04] Jens Groth. Evaluating security of voting schemes in the universal compos-
ability framework. In ACNS, pages 46–60, 2004.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In STOC, pages 44–61, 1989.

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant elec-
tronic elections. In WPES, pages 61–70, 2005.

[Lin09] Yehuda Lindell. Legally enforceable fairness in secure two-party communi-
cation. Chicago J. Theor. Comput. Sci., 2009, 2009.



[MPR09] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Complexity of
multi-party computation problems: The case of 2-party symmetric secure
function evaluation. In TCC, pages 256–273, 2009.

[MPR10a] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Cryptographic
complexity classes and computational intractability assumptions. In ICS,
pages 266–289, 2010.

[MPR10b] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. A zero-one law
for cryptographic complexity with respect to computational uc security. In
CRYPTO, pages 595–612, 2010.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions
and mechanism design. In ACM Conference on Electronic Commerce, pages
129–139, 1999.

[PR08] Manoj Prabhakaran and Mike Rosulek. Cryptographic complexity of multi-
party computation problems: Classifications and separations. In CRYPTO,
pages 262–279, 2008.

[RR98] M.K. Reiter and A.D. Rubin. Crowds: Anonymity for Web Transactions.
ACM Transactions on Information and System Security, 1(1):66–92, Novem-
ber 1998.

[SGR97] P. F. Syverson, D. M. Goldschlag, and M. G. Reed. Anonymous connections
and onion routing. In IEEE Symposium on Security and Privacy, pages 44–
54, Oakland, California, 1997.

[SL00] C. Shields and B. Levine. A Protocol for Anonymous Communication over
the Internet. In Proc. 7th ACM Conference on Computer and Communica-
tion Security, November 2000.

[Tro05] Mårten Trolin. A universally composable scheme for electronic cash. In
INDOCRYPT, pages 347–360, 2005.

[Yao86] Andrew Chi-Chih Yao. How to generate an exchange secrets. In FOCS,
pages 162–167, 1986.


