
International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

11

High Availability for SIP: Solutions and Real-Time Measurement
Performance Evaluation

Georgios Kambourakis1, Dimitris Geneiatakis1, Stefanos Gritzalis1,
Costas Lambrinoudakis1, Tasos Dagiuklas2, Sven Ehlert3, and Jens Fiedler3

1Department of Information and Communication Systems Engineering

University of the Aegean, Karlovassi, GR-83200 Samos, Greece
{gkamb, dgen, sgritz, clam}@aegean.gr

2Dept. of Telecommunication Systems & Networks

Technological Educational Institute (TEI) of Mesolonghi, Nafpactos 30300, Greece

3Fraunhaufer FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
{sven.ehlert, jens.fiedler}@fokus.fraunhaufer.de

Abstract

SIP is rapidly becoming a standard for service integration within a variety of wireless and
wireline networks. In this regard high availability, reliability and redundancy are key factors
for any SIP based infrastructure. In an adverse environment, especially the Internet and
foreseeable 3GPP IMS, high availability solutions are of major importance for SIP network
components to smoothly mitigate call increments, device failures, misconfigurations, physical
disasters and throttle active attacks. This paper proposes a practical and transparent failover
solution for SIP and RTP-Proxy servers. We demonstrate that both methods work properly
and increase stability and availability of such systems. Furthermore, high availability
solutions are enhanced through the employment of easy to implement load balancing
schemes. All the proposed solutions are technically analyzed and evaluated via properly
designed test-beds, showing fine performance in terms of service times.

Keywords: Session Initiation Protocol (SIP); SIP architectures; SIP Redundancy and Failover Architectures;

SIP Load Balancing.

1. Introduction

Session Initiation Protocol (SIP) [33] is an open signaling protocol for establishing any
type of real-time communication session. A SIP session can consist of voice, video, or instant
messaging, and can be employed in any device that people use for communicating e.g., IP
phone, laptop computer, Personal Digital Assistant (PDA), cell phone, or Instant Messaging
client. SIP realizes a communication environment where central servers do not only know
how to reach an individual’s cell phone, work phone etc, but also his instant messaging
application, e-mail, and PDA. Moreover, servers are aware of the communication preferences
and capabilities of communicating parties as well, and can smartly alert a called party when
someone is trying to reach him. Finally, phone calls to a busy person can be intelligently
rerouted to another person depending on a number of correlated factors such as time of day,
whether the called person is planned to be away on vacation, or whether one or more of his

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

12

modes of communication is inaccessible. Without doubt, these capabilities make SIP a basic
component of foreseeable ubiquitous realms. In a nutshell SIP really provides the intelligence
that makes these advanced communications capabilities possible. This is why SIP has been
adopted by various standardization organizations as the de-facto protocol for both wireline
and wireless world in the Next Generation Networks (NGN) era. For instance, 3GPP’s IP
Multimedia Subsystem (IMS) [1] employs SIP for call control to support thousands or even
millions of users.

But while the standards and products for providing Internet Telephony communications in
general and SIP services in particular have reached a mature state, experience in deploying
concepts and technologies for securing and ensuring the reliability of VoIP infrastructures and
the provision of their services is still in its infancy [17, 39]. It should be also remembered that
VoIP technologies are very similar in their nature to Web and email services. This is due to
the fact that VoIP services are based on standardized and open technologies like SIP using
software servers reachable through the Internet, and often provided over general purpose
computing hardware. Therefore, at minimum, such services are exposed to the same security
threats as Web services. These include Denial of Service (DoS) attacks and spam on one side,
and unavailability of the services due to network, hardware or software failures, planned
downtime for maintenance, and catastrophic failure on the other. Nevertheless SIP-based
VoIP services are of a nature that requires them to be available at a possible maximum. This
is particularly true as today’s networks are fast evolving towards IP Convergence (4G).
Certainly, VoIP services face a direct comparison to existing Public Switched Telephone
Network (PSTN) services, which feature a very high availability; known also as the five nines
- 99.999%. Under these circumstances high availability of SIP components becomes a key
issue for both today’s networks and forthcoming wired and wireless ubiquitous realms.

In this paper, two aspects of high availability are presented. The first regards redundancy
meaning that more than several SIP servers are able to provide a specific service. In case of
failure of the main system, the backup system takes over the service, ideally seamless and
transparent to the service user. The other aspect of high availability focuses on Load
Balancing (LB) strategies. Within the context of this paper a novel solution is proposed to
provide redundancy, failover and LB functionalities among the different subsystems of a SIP-
based VoIP service. The proposed solution is evaluated through experimentation and the
results show that it is effective, robust and potentially scalable. On top of that, our scheme is
lightweight, practical and easy to implement requiring minimal changes to existing SIP
software or hardware components. We should mention that the proposed modules are an
integral part of our secure high availability SIP-based infrastructure. A complete description
and documentation of the security infrastructure is provided in [15].

The rest of the paper is organized as follows: The next section analyzes and evaluates our
redundancy and failover schemes for different subsystems of the VoIP architecture. The
proposed SIP load balancing scheme is discussed and evaluated in Section 3. Section 4
addresses previous work in the topic, while the last section concludes the paper and provides
pointers to future work.

2. Redundancy and Failover

VoIP services are required to be highly available to minimize occurring service outage
times. Research has revealed several reasons for failure in telephony systems, which also

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

13

affect VoIP services [31]. Compared to classical systems, VoIP still suffers from a higher
outage probability [24]. One of the main aspects of high availability is redundancy [36], for
creating highly available services. A typical approach to achieve higher reliability is to deploy
backup systems, which are capable of providing the service in case of failure of a master
system. Figure 1 depicts a typical server architecture for high availability by adding redundant
components i.e., a redundant RTP media relay, SIP server and the database system. The SIP
server and RTP relay tandems use the technology of IP address takeover to realize service
takeover as proposed in [19]. Here, each system is attached with its primary network device
to the same network, but only the master “owns” the publicly known (shared) IP and MAC
address. In case of failure, the backup server assigns both addresses to its own interface and
the existing traffic is redirected to it.

Figure 1. General Architecture for High Availability in SIP infrastructures

2.1 Redundant SIP server

Description of SIP Redundancy Architecture: In order to have a redundant SIP server
consisting of two or more different entities, it is necessary that all server instances have the
same knowledge about ongoing SIP transactions. To ensure this, it is either possible to
directly transfer state changes between each other or to simply replicate the request messages
i.e., make all servers get the same messages, but disable all real world communication for the
backup server. To achieve this, we propose a High Availability Daemon (HAD), that acts as
an additional proxy for each redundant SIP proxy. Each redundant proxy machine is
configured with a general purpose SIP proxy and the HAD. The HAD takes care of routing
requests to either the primary SIP proxy or the backup proxy. Depending on the state of the
system (active or backup) the HAD behaves differently. Specifically, when acting as active
instance it will take care of the following: (1) It activates the shared IP address at its primary
interface. (2) It receives all SIP requests from the network, replicates them to the backup
system, then inserts it own VIA header field and forwards the request to the local SIP Server
instance. (3) When receiving a request from the local SIP Server, it routes the request
according to the request URI. (4) When receiving any SIP response, it removes its own VIA
header field and forwards the message to the next in the VIA stack. (5) It periodically sends
heartbeat message to the backup system. (6) It serves as database proxy, forwarding all
database requests to the real database cluster. (7) It monitors local SIP Server process(es) if
they exist, issuing a “take over” message in case of their failure. It also drops the shared IP
address from the primary interface in such a case to avoid the double presence of that address.

On the other hand, when acting as backup instance, it will take care of the following: (1) It
deactivates the shared IP address at its primary interface. (2) It deactivates the local proxy

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

14

interface for database forwarding, thus simulating a down database cluster to the SIP Server.
(3) When it receives a replicated request from the active instance, inserts its own VIA header
field and forwards the request to the local SIP Server instance. (4) Upon receiving a request
from the local SIP Server it drops it. This is not very likely to happen, as the SIP server is
meant to answer requests, not to issue them by itself. (5) Upon receiving a SIP response from
the local SIP Server it drops it. (6) When it receives a heartbeat it resets the failure timer. If
the failure timer hits zero, it changes its role from “backup” to “active”.

The SIP Server e.g., SIP Express Router (SER) [23] is configured to listen only at the local
loop interface. It uses the local HAD as outbound proxy to get messages to the network.
Figure 2 illustrates a proposed SIP replication architecture based on HAD. Additionally,
though not depicted, there exists a kill daemon, which terminates the SIP Server process, in
case the HAD process does not exist. This is necessary as the HAD is also a component
which is subject to failure. When the HAD fails e.g., due to a bus error, this would result in
the heartbeat to fail, which should eventually lead to the backup system becoming active,
although the main system is still active. In this case the failure of the SIP Server must be
enforced.

Figure 2. The proposed SIP Replication architecture

For the introduced scenario, it is not necessary to apply any changes to the current version
of SER. However, it also may result in a common state establishment taking considerable
time if a “naked” server takes over after a failure. To deal with this issue, it would be
necessary to add a “burst state table” function to the transaction management of SER.

Testing and Evaluating the SIP Redundancy System: The SIP-servers are configured to
act as SIP Registrar and SIP Proxy accordingly. The Registrar saves contact SIP-URIs, while
the SIP-Proxy performs contact lookup and forwards INVITE and BYE requests and the
equivalent responses. The test setup consists of two Cisco-7905 SIP-Phones and the HA SIP-
Server. This setup is a test for functionality evaluation. Basically, the SIP calls (sessions)
which are created, need to be present after a service takeover has occurred. This means that
e.g., a SIP call, which is at the establishment phase (INVITE sent, waiting for responses)
needs to be completed successfully. The corresponding message flow is shown in Figure 3A.

Also, stored contacts need to be present after takeover, so that new calls can still reach the
formerly registered users. As an example, a user must be able to initiate a call to another user,
who has registered its contact before the crash/takeover. This message flow is depicted in
Figure 3B. For the tests, both phones register at the HA SIP-Server. Then, the active SIP-
server is halted to enforce a takeover. The outage time, while none of the servers is available,
was between five and seven seconds. This time span is configurable in the HAD in terms of
heartbeat delay (it has been set to 1500ms) and number of allowed missed heartbeats (it has
been set to 4). UACs not receiving responses to their requests during this time re-transmit
these requests until the backup server comes into place. The predefined maximum time for

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

15

SIP re-transmissions according to RFC-3261 is to be 32s [33]. Therefore, the maximum
takeover time must be clearly below this time. Both tests have been performed successfully.
The calls were established exactly as shown in Figure 3. In both cases, call termination was
also successful.

joe jeff
INVITE SIP:joe@...

SIP 1
(active)

SIP 1
(backup)

INVITE SIP:joe@...

200 OK

180 Ringing
100 Trying

Failover

ACK

INVITE SIP:joe@...

200 OK

180 Ringing

100 Trying

joe jeff

INVITE SIP:joe@...

200 OK

REGISTER

REGISTER

SIP 1
(active)

SIP 1
(backup)

INVITE SIP:joe@...

200 OK

180 Ringing

100 Trying

Failover

ACK

INVITE SIP:joe@...

200 OK

180 Ringing

100 Trying

lookup

Figure 3. SIP Failover flows

2.2 Redundant RTP Relay

Description of RTP Redundancy Architecture: The requirements for the RTP proxy are
similar to that of the SIP proxy. More specifically, the standard RTP proxy assigns two
different port numbers for each forwarding relation. Data which is received on one port is
forwarded to the other peer through the other port number. The shared knowledge is related to
the list of mappings. A single RTP relay has a list of the forwarding relations. An example for
a mapping list is depicted in Table 1.

Table 1. A mapping list example

SIP Call ID Local port #1

Peer 1
IP address:port

Local port #2
Peer 2

IP address:port

47ef8ef6ae0f 12000 130.149.17.5: 40092 12002 81.175.135.177:15023

1f0e5cd783a 12004 81.175.135.177:15023 12006 130.149.17.5: 40092

Upon request by the SIP proxy, the RTP proxy opens the ports and virtually connects them
to each other. At that stage it does not know the peer IP addresses and ports, as they are
learned when the peers send their first RTP data packet. It is clear that this mapping table
must be shared when the RTP relay is going towards redundancy. In case of failure of one
relay, the other one must know which peers (i.e., phones) are talking to each other. Thus, the
table must be replicated. The previously introduced HAD is also used for replication with the
RTP proxy i.e., the RTP media relay. As many functions are common, only an addition for
replicating RTP mappings will be introduced. Figure 4 shows the architecture of the
redundant RTP relays with the HAD.

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

16

Figure 4. RTP Relay Replication

The HAD receives the mapping requests from the SIP proxy and forwards them to the
local RTP proxy. It also intercepts the response from the local RTP proxy and forwards the
port it has chosen to the backup system, which is expected to open the same port. The RTP
proxy is equipped with a High Availability (HA) extension, which has the following tasks to
perform (1) Inform the HAD about mapping completion by RTP reception. As mentioned
before, the mappings are completed with peer IP addresses and port numbers when the first
RTP packet is received. This information must be replicated by the RTP proxy itself. (2)
Provide an option to the requestor for a specific port number. This feature is needed in backup
mode to allow port number replication. (3) Inform the HAD about removal of mappings.
Mappings are subject to soft state removal in case no explicit removal is performed by the SIP
proxy e.g., lost BYE. (3) Perform a re-bind, when the shared IP address is activated. This
ensures that the RTP proxy is bound to the correct interface.

As in the SIP proxy scenario, a kill daemon exists with the same task. It terminates the
RTP proxy in case of failure of the HAD, causing the heartbeat to fail and the backup system
to take over.

Testing and Evaluating the RTP Redundancy System: For a testing scenario, the master
emits heartbeat messages with the delay (dh), which is configured by the system
administrator. The backup system checks at the same rate, if it has missed heartbeats. The
number of heartbeats (nf), which are allowed to be missed without consequences, can also be
configured. If the backup system has missed at least one or more heartbeats than allowed, it
considers the master to have a failure and initiates the takeover process to become master
itself. Thus, in case of a failure, the time of outage can be estimated to be between dh*(nf-1)
and dh*(nf+1) seconds, depending on the interleave relation between receiving heartbeats and
checking for them. “Early” checking will carry a constant loss of one heartbeat, while “late”
checking might oversee a possible missed next heartbeat, which should appear right after the
checking.

The testing environment consists of the server side scenario from Figure 5 and a client side
employing SIPp [38], which generates calls i.e., acts as SIP UAC and UAS and RTP sender
and receiver. The test scenario is as follows: the Call Generator (CG) uses scripts to register
users at the CG and to initiate and serve calls. When creating a call, an RTP sender process is
spawned to create an 80kbit/s data stream, which corresponds to an 8 KHz PCMU stream. A
sniffer is used to register the outage time i.e., the time between the last packet from the HA-
RTP-Relay and the first packet, coming from the backup machine in case of failure.

Testing and evaluation has been performed by starting N simultaneous calls. When all calls
are established and the RTP proxy serves all N calls, the sniffer is started to record the RTP

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

17

packets, coming in from the RTP-Proxy. Then the master RTP-Proxy server process gets
terminated. The backup server notices the failure, as heartbeats are starting to be missed. It
then takes over and starts to forward the RTP-packets, which now hit the backup server, to the
call generator. There the sniffer notices the incoming traffic, so that the difference between
the last received packet from the master RTP-Proxy and the first received packet from the
backup RTP-Proxy give the time for the takeover.

As discussed earlier, this time should be closely related to the configured values for
heartbeat delay and the number of allowed misses. For the tests, this has been configured to
be 1,500 ms delay and a maximum of 4 missed heartbeats before takeover takes place. This
indicates that the time for a full takeover will be between 4,500 ms and 7,500 ms. The test has
been performed with N = 20, 50, 100 and 150 calls, to check the influence of the network
traffic. Each test has been performed three times. Table 2 illustrates the results from the
testing and evaluation session. All observed takeover times are in the margins of the expected
range between 4,500 ms and 7,500 ms. It is stressed that reducing the heartbeat time to 500
ms and the number of allowed missed heartbeats to 2 the aforementioned times are expected
to span between 500 and 1,500 ms.

The results show that there is no dependency between the number of open calls and the
takeover time. This is based on the takeover process itself, as heartbeats do not utilize the
same network interface as the audio stream. The backup server just has to create the UDP
sockets at takeover time. As there are 4 sockets per call and a standard per process limit of
1024 open file descriptors, the maximum number of calls that the RTP-Proxy can handle is
limited to 256. Taking the above results into consideration, it is foreseeable that even 256
calls will be inside the configured time limit.

Table 2. Results from the testing and evaluation session

Calls First try Second try Third try
20 5447.653 ms 6578.933 ms 7124.007 ms
50 5286.816 ms 5141.165 ms 6605.964 ms
100 5589.715 ms 6520.205 ms 5259.155 ms
150 6826.565 ms 5568.898 ms 5795.816 ms

VoIP Database Redundancy: In order to enhance the overall VoIP SIP Based
availability it requires also employing a redundant database system and not retaining it as a
single point of failure. A variety of solutions for database systems already exist. In the
proposed scheme the MySQL-cluster from mysql.com has been employed [29]. It provides a
network storage engine which offers the possibility to construct redundancy groups, where
the storage engine takes care of any data replication in real time. In our scenario there are two
redundancy groups with two storage nodes per group. Thus, two nodes, one in each group,
may fail without service interruption. Note however, that an exhaustive analysis of this issue
is out of the scope of this paper.

3. SIP load balancing

Any server, regardless of its form factor or application, is limited in the number of
concurrent connections and sessions it can handle at any given time. Load balancers can be
used to achieve redundancy and improve processing of SIP transactions. The aim here is to
increase VoIP service availability, especially when combined with the previously proposed
failover techniques. Generally, in LB schemes, new requests are allocated among available

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

18

servers using a selection algorithm. Large scale corporate VoIP service mandates the
deployment of multiple servers in order to serve transactions requested by several VoIP
clients concurrently. Multiple installed servers or even clusters of servers aim to smoothly
process heavy VoIP traffic so that the service can be sustained unattended without degrading
Quality of Service (QoS).

A common selection algorithm targeting on statistical LB is the well known Round-Robin
(RR) scheme [8]. Another major category of balancing approaches is weighted or adaptive
balancing, which distributes requests proportional to the weight assigned to each available
choice or route. Thus, load balancing can be adaptive or not adaptive, depending on whether
or not run-time load conditions influence LB decisions. Adaptive LB policies consider real-
time system state information based on various metrics e.g., CPU load, available free memory
etc, for LB decisions, whereas non-adaptive or static load balancing like RR does not. In any
case, to be able to distribute effectively and fairly VoIP traffic to the corresponding redundant
servers, the introduction of an appropriate balancing mechanism during the initiation of the
call is required. Generally high availability of SIP services is threefold. It concerns signaling,
real-time media data, and gateway services. In this section we only consider signaling.

3.1 Load balancing schemes

Certainly the problem of load sharing is not new and goes back many years. As it is
discussed in Section 4 a variety of techniques have been considered or applied to cope with
the problem. Some of them are ad-hoc and platform specific while some others employ smart
schemes to reorder DNS resource records. Two well-known categories of solutions which are
mainly utilized for Web server balancing include the following:

Round Robin (RR): Upon a new SIP request, the SIP balancer selects the next IP address
record for the specific SIP server alias name as stored in the DNS. This solution is considered
non adaptive, due to the fact that it does not require the balancer to maintain and update
workload information from the available SIP servers in the domain. For Web balancing this
mechanism is built-in into the DNS system by means of DNS SRV [18] and NAPTR [28]
mechanisms. One might argue that SIP load balancing can be applied directly to the DNS as it
is already supported for other Web services. By doing so however, the DNS will assign one
IP address of the SIP server pool to each address resolving request. As a result, the name-to-
address mapping will be cached in name servers along the path from the DNS all the way
down to the client and consequent address requests reaching the same name servers will be
resolved with the same cached addresses. Only after the name-to-address mapping in the
cache expires, due to Time-to-Live (TTL) field, it is possible to serve new requests with a
new RR decision. This however can be circumvented by setting a low TTL for the A-record
bindings. Also one might argue that DNS solutions are good only for scalability in equal
weighted servers i.e., it is not possible to dynamically adjust the load on-the-fly. However, the
other side of the coin is that DNS may be the preferred way to offer load sharing since it does
not mandate servers to reside on the same network. Also replication is a native DNS
characteristic; in case a name server goes off-line the system is not affected. Security is also
an important parameter here if we assume that DNS transactions are guaranteed by DNS-SEC
[14].

Adaptive or Dynamic Weighting: This results in the selection of the server which currently
handles the lowest number of SIP transactions or has the minimum overall workload. This

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

19

category of solutions for Web servers includes Asynchronous Alarms (AAlarm) [12],
Ibnamed [34] and TENBIN [35] algorithms for DNS.

In the context of this paper, we employ the following DNS-based balancing approach
which has been initially discussed in our previous work [25]: The Load Balancer (LB)
module (process or daemon) requests at fixed time intervals the current number of SIP servers
(SRV records) available within the DNS server and resolves their Fully Qualified Domain
Names (FQDNs). Clearly, this means that for each SIP domain, the DNS server has multiple
SRV records corresponding to (redundant) SIP proxies attached to it. In the following
example the first four records share a priority of 10, so the weight field's value will be used by
clients to determine which server to contact. The big.test.com will be used 60% of the time
while next three hosts i.e., medium and small2 will be used for 20% of requests each, with
half of the requests that are sent to small2 directed to port 5060 and the remaining half to port
5066. If big.test.com becomes unavailable, these two machines will share the load equally,
since they will each be selected 50% of the time. If all four servers with priority 10 are
unavailable, backup.example.com having priority 20 will be chosen. The clients, i.e., LB in
our case, can use weighted randomization to attain this distribution. After that, the LB assigns
the next incoming SIP transaction to the next available SIP proxy according to the
aforementioned procedure. Thus, the selection of a certain SIP proxy to serve any initial
request is completely transparent to the client.

The testing proxy SER itself does incorporate a dispatcher module that can be used to
implement load balancing. However, this method requires all the alternative destination
proxies to be included into a text file (loaded at startup), not in DNS as our solution mandates.

3.2 Implementation details

The LB is an add-on entity which is responsible to query DNS and maintain SRV records
of all the available SIP proxies in the corresponding domain. For each SIP request issued by a
client the LB is responsible for forwarding it to the next SIP proxy available in order to serve
it. This is done according to fetched DNS SRV records. SIP clients firstly communicate with
the LB entity to discover the next available SIP proxy. If the LB is not responding, the SIP
client can communicate directly with the DNS to retrieve all the available SRV records that
correspond to SIP servers in the domain. Hereupon, it will select one of them randomly.
However until now most SIP clients do not support DNS direct transactions. Thus, another
solution for the client is to communicate directly with another available SIP proxy in the same
domain. The IP addresses of the LB and the backup SIP proxies can be pre-configured into
the SIP client device. As a result, the IP address of the most appropriate SIP proxy is selected
by the LB and while the first message (e.g., INVITE) goes through the LB the subsequent
messages, for the same session, go directly to the selected by the LB SIP proxy. More
specifically, the only SIP message types that need to pass through the LB entity are
REGISTER, INVITE, SUBSCRIBE and OPTIONS.

Normally, the LB will be implemented as another standard SIP proxy. Hence, according to
the SIP standard, it will usually insert its own VIA header in the incoming SIP message, prior

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

20

to forwarding it to the corresponding SIP proxy. This procedure has undesired implications as
all the subsequent SIP messages referred to the same session will pass again through the LB.
To circumvent this problem we propose the following solutions: (1) The first solution enables
through proper configuration the home SIP proxies to add a "Record-Route" header field [18].
By doing so, clients would then send follow-up requests within the same session to the home
SIP proxy assigned by the LB in the first place. This will then not forwards them to the
request-URI (the LB) but process them by itself. In addition, this solution even has the
advantage that new calls are load balanced because the route set is valid only for one session.
(2) Another alternative is to force the LB not to add a VIA header, hence all subsequent
messages go directly to the home SIP proxy in charge. For example, this can be done by
utilizing the internal routing engine of the corresponding proxy. In the case of SER, it would
be possible to use the SEND command or the Forward function as described in SER’s
developers’ guide [23]. (3) A third alternative is to modify the proxy core source code to
force it to ignore the VIA-received header added by the LB. However, this solution is proxy
dependent or implementation specific and of course not portable. (3) The final option is to
“spoof” the source addresses (IP address and port) of packets (e.g., INVITE messages) which
are forwarded by the LB so that proper routing takes place. According to this scenario one
can set the IP address and port to the address and port from which the packet arrived to the
LB. By employing this solution the LB is more transparent and no changes in the proxy’s
source code are needed.

Note that for testing and evaluating the LB (see section 3.3) the second one from the
previously discussed methods was finally adopted. In our opinion this is the preferred way to
cope with the problem since it does not require any modifications to standard SIP proxies, but
only to LB. Summarizing, the proposed load balancing solution requires neither modification
to existing DNS infrastructure nor to the core of the employed SIP proxy, which acts as a LB.
The only actual requirements are: (1) The introduction of the LB independent machine which
is being implemented as another typical SER SIP proxy. This server is only required to
support DNS-SRV records but this functionality is already mandatory by the SIP standard
[33]. Moreover, the employment of a standard SIP server to serve as the LB means that there
is no need to develop new software from scratch. Only the “decision-and-forward” engine as
a SER module has to be implemented. In case of large corporate SIP networks, including
many SIP proxies, we can realize a LB solution consisting of several geographically
distributed SIP proxy clusters controlled by equal number of LBs. (2) All SIP home network
proxies use either one shared or more (mirrored) databases.

Last but not least, to increase LB availability it is also possible to have one or more backup
mirrored LBs to defend against possible DoS or DDoS attacks, physical or human disasters,
etc. The most practical solution to this issue enables the backup LB to take over the IP
address of the master LB in the case of failure, similarly to failover techniques suggested
previously in Section 2.

3.3 Performance evaluation

Our internal test-bed setup and all the corresponding machine and network parameters are
illustrated in Figure 5. Alice, who resides in a different sub-network from that of the LB and
the corresponding SIP proxies, sends SIP requests (e.g., INVITEs, OPTIONs etc) toward the
LB. The LB implements the proposed scheme and balances accordingly the incoming
requests to the two available SIP proxies, namely proxy A & B. Requests are always directed
to “dummy” users Bob and Mike who respond to the incoming calls. Three machines called

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

21

“traffic generators” are responsible to generate heavy load SIP traffic in order to stress both
the LB and the SIP proxies according to the scenario. The SIP traffic was generated by our
own developed attack tool. The maximum, minimum, average and Standard Deviation (SD)
ping times between the two sub-networks (actually from user A towards the LB) were 1.140,
0.557, 0.653 and 0.134 ms correspondingly. These times was taken from 70 recorded times
with the ping tool.

Figure 5. Test-bed setup

To evaluate our implementation and determine possible delays introduced by the LB entity
two distinct scenarios were implemented:

Scenario I: Every 5 ms the SIP traffic generator responsible to stress LB generates one
call. Total duration of this scenario was 40 minutes, thus 480,000 calls were generated in
total. All the aforementioned calls pass through the LB. During the 40 minutes time duration
Alice generates a new request every 4 sec. All these 600 calls were served by the LB.

Scenario II: During this 40 minutes test both of the SIP proxies were stressed with
different background traffic generated by the corresponding traffic generators. More
specifically, a new request was sent towards proxy A every 5 ms (a total of 480,000
messages), while for proxy B a new request was sent every 500 ms (a total of 4,800
messages). Simultaneously the LB was accepting a new request by the responsible traffic
generator every 5 ms (a total of 480,000 messages). During this time interval Alice generated
a new request every 4 sec, i.e., 600 requests in total. Here, 300 calls were served by the LB,
while the others went directly to the SIP proxies. This option will show whether or not the LB
entity affects significantly the overall roundtrip time to serve a request.

For both scenarios and for all Alice requests we tracked and logged the following metrics:
(1) Latency introduced by the LB: namely the maximum, minimum, average and standard
deviation (SD) times for the LB to serve an incoming request. This delay time includes the
time for the LB to decide (DC_T) to which proxy the message should go (according to RR
algorithm), and secondly the actual time needed to forward (FWD_T) the message. (2)
 Overall serving time: the roundtrip time (RR_T) for a particular request to complete. This is
the overall time until the client who generates the request, i.e., user A in our case, receives
response from the corresponding proxy (A or B).

The maximum, minimum, average values and standard deviations of the time durations in
milliseconds measured for both scenarios are presented in Tables 3 and 4. As we notice, the
average LB’s total time for dispatching one transaction, that is DC_T + FWD_T, is 0.32 ms

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

22

for scenario I and about 0.29 ms for scenario II. Consequently, this time duration is
negligible, and as expected, almost identical for both scenarios. Also note that this time is
totally irrelevant to the number of the domains the request has to traverse. We can only
estimate that this time will tend to increase depending on the number of the available proxies.
However, considering also the minimal SD value for this metric, the expected overall
increment will be in the order of few microseconds, thus still negligible.

On the other hand, the average RR_T time duration is about 3.3205 ms and 3.9405 ms for
the two scenarios respectively. Specifically for the second scenario it seems that whether the
requests pass through the LB or not, the average RR_T is almost the same (3.9405 vs. 3.9164
ms). Naturally, this observation is confirmed from the insignificant latency that the LB
introduces as explained previously. Nevertheless, the more the numbers of network domains
the request has to travel, the more the RR_T metric is expected to be. Clearly, the RR_T is
affected by the number and the distance of hops existing between the callee and the end-
proxy; not by the distance between the LB and the end-proxy, which resides always to the
same subnet with the LB. In a nutshell, one can say that all measured times for both scenarios
are almost identical. Giving that the latency introduced by the LB is minimal we can argue
that the implemented balancing scheme is simple but effective.

Table 3. Results for Scenario I (times in milliseconds)

Number of Transactions  480,000 600
Time Description (ms)  DC_T FWD_T RR_T
Maximum Time 0.1330 8.9080 51.960
Minimum Time 0.0050 0.2570 0.4150
Average Time 0.0062 0.3138 3.3205
Standard Deviation 0.0018 0.0777 4.5152

Table 4. Results for Scenario II (times in milliseconds)

Number of Transact.  480,000 300 300

Time Description  DC_T FWD_T
RR_T
(through LB)

RR_T
(straight to proxy)

Maximum Time 0.0360 5.0770 38.5940 51.1540
Minimum Time 0.0050 0.2570 1.0520 1.1520
Average Time 0.0061 0.2841 3.9405 3.9164
Standard Deviation 0.0009 0.0300 5.9887 8.5901

4. Related work

Until now various failover and LB methods have been considered and thoroughly tested
mainly for Web servers [3,9,11,13,20,31,42,46]. For example, LB via HTTP session based
redirection [3,11,46], connection dispatchers [20] and Load Share Network Address
Translators (LSNAT) devices [41] are used in Web servers. On the other hand, IP address
failover [26], MAC address takeover [11] and TCP connection migration [40] have been
considered and investigated for high availability. Another type of client-oriented failover is
used by Cisco IP phones [10].

It is to be noted that some of the aforementioned LB and failover schemes can be also
profitable for other Internet services like SIP. For instance, the DNS-based load sharing
discussed in [18], [27]. However this is not entirely true. For example, TCP and UDP can
coexist in SIP proxies, typically call requests and responses do not require extensive

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

23

bandwidth, caching of responses is needless, NAT fails to address native SIP transactions’
characteristics, and so forth [37]. Also, regarding failover, IP anycast will not work in TCP
SIP connections and the primary and backup servers need to be synchronized for
communication with the backend database [30]. Thus, for real-time communication services
like SIP significant research efforts are needed to achieve similar service availability rates we
have today for Web services.

Currently many SIP server implementations do not include SIP-specific balancing or
failover modules and usually rely on add-on hardware, or peripheral solutions e.g., Web-
originated methods. Recently, interests in SIP LB and failover have risen, as some vendors
include such modules into their state-of-the-art products. Unfortunately, to the best of our
knowledge all but one [44, 45] are proprietary, compound and expensive solutions, targeting
to enterprise networks. Moreover, such vendor-dependent LB or failover schemes require
special hardware and software modules in order to operate properly. In the following we
provide a short review of most important currently offered SIP failover and LB solutions.

Vovida’s Load Balancer [45] is the sole open source product. This is an application-layer
LB function known as a "stateless load balancing SIP proxy" that can be used in SIP-based
VoIP installations in conjunction with multiple identical proxy servers. All users can send
their INVITE and REGISTER SIP messages to the same SIP URI and the LB will assign a
proxy server dynamically to handle each request. This only works with SIP messages sent
over UDP, not TCP. Each request is forwarded to the next available server that appears on a
predetermined list of associated servers i.e., according to a "Round Robin" schedule. The LB
then receives responses and forwards them back to the requesting party. The Vovida LB adds
its own SIP URI address in a "Via" address field in the header of an incoming SIP request
packet, before transferring the packet to the assigned server, in order to receive a subsequent
response from the server which is then forwarded to the requesting party. However, since the
LB does not store data between transactions, it cannot even ensure that requests within a SIP
dialog are consistently directed toward the same traffic module. Therefore, all traffic modules
must use a shared database for storing the state of any given SIP dialog [32].

All following solutions are proprietary, of high-cost, hardware-oriented and usually
combine failover and LB along with other functionalities thus are targeting enterprise
networks. The BIG-IP SIP Load Balancing Solution [6] provides high scalability, availability,
and reliability to the SIP Proxy, Session Border Controller, media servers and many other SIP
devices. This module provides deep packet inspection, so it can distribute and balance SIP
and Real-time Transport Protocol (RTP) traffic among multiple SIP devices so that service
availability is guaranteed even under high call volumes. In addition, the solution can perform
advanced health checks on the SIP devices, routing SIP clients away from unstable or
unreliable devices and providing increased reliability to existing SIP solutions.

SIP load balancing of SIP proxy servers in the IBM BladeCenter can be achieved using
Nortel Layer 2-7 GbESM switch modules from BLADE Network Technologies [7]. Using
this product SIP LB can function with any SIP server that employs shared or clustered
databases to share signaling data for Registration and Invites. It performs stateful inspection
of SIP messages to scan and hash calls based on a SIP Call-ID header destined for a SIP
server. Stateful inspection means that a packet is inspected not only for its source and
destination information found in the header, but also packet contents found at the application
layer. Once the switch has identified the Call-ID which determines a specific SIP session, it
sends future messages from the same Call-ID to the same SIP server.

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

24

The Vocalscape Load Balancer began as an open source project which was adopted and
improved upon by Vocalscape [43]. It was made compliant with Asterisk Private Branch
eXchange (PBX) [4], and the algorithm was revised to distribute calls more evenly. In its
previous version, the LB would send calls to a primary server and only when the primary
server was overloaded would redirect calls towards additional servers. The updated algorithm
balances the load by evenly distributing the calls between the servers. The LB also provides
failover capabilities. If a server is not responding, the LB will route all calls to servers that are
functional. Some other SIP solutions are provided by IBM [21], A10 Networks [2], and
Interactive Intelligence [22].

Literature also lacks significant contribution on SIP failover and load sharing. We are only
aware of one recent scientific work [37] that deals with the aforementioned issues. The
authors apply existing web server redundancy techniques for high service availability and
scalability to the IP telephony context. The paper compares various failover and load sharing
methods for registration and call routing servers based on SIP. For failover, the authors
choose the DNS-based method, and for load sharing an identifier-based approach. Their
schemes are combined in a two-stage reliable and scalable server architecture. Contrarily, we
use an IP-takeover based method to provide failover and a DNS-based approach, employing
an independent LB machine, to offer load sharing.

5. Conclusions and future work

High-availability solutions for VoIP networks address the need to place and receive calls
either under peak-load call rates or during device maintenance or attack incidents or failure.
Voice-network downtime results not only in revenue losses for providers but also customer
dissatisfaction. This paper has presented redundant and load balancing solutions for critical
components of SIP-oriented VoIP infrastructures. It has been proposed that our redundancy
solution works properly and efficiently and it is easy to implement in order to increase the
overall stability and availability of such systems. It has been demonstrated that even under
heavy network load, takeover times follow the configured time frame.

Nevertheless, some issues discussed hereunder are left for future work. Due to the
complexity of SIP servers, it would be advisable to integrate the failover function. This would
increase efficiency even more, because the SIP server itself could decide, which state
information needs to be replicated to ensure a smooth and transparent takeover. Currently,
most of the available SIP servers do no incorporate failover functions. In these cases, external
state replication is a feasible way to gain high availability. SIP over UDP has a “built-in”
feature to overcome packet loss, called “re-transmission”. Thus, as long as a takeover
procedure causes just a noticeable loss of packets, clients will behave normally and do not
notice a failure. For SIP over TCP this is different, as here the state of the TCP stack needs to
be replicated, which would introduce new interfaces to the network core code of the
underlying operating system. For the RTP-Proxy part of the failover work, it is advisable to
also develop a scalability approach, as the number of simultaneous calls is quite limited. As
mapping information is small (about 40 bytes per call), total replication over a scalable set of
RTP-Proxies would be a feasible way.

On the other hand, redundant solutions must be seconded by effective load balancing
mechanisms, otherwise they are considered only as unilateral. Individual SIP servers have
limited scalability. In order to maximize scalability and availability, application servers
should be load balanced. Contributing to this subject several implementation issues

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

25

concerning load sharing were analyzed including architecture, components, interactions etc,
showing that the anticipated balancing method is practical and above all easy to implement.
Adaptive load balancing is left out for future work. We would also like to expand this study
considering clusters of SIP proxies controlled by different LBs.

References

[1] 3rd Generation Partnership Project (3GPP) Consortium, http://www.3gpp.org.

[2] A10 Networks: AX SERIES: SIP Load Balancing, http://www.a10networks.com/products/axseries-sip.php,
2008.

[3] Akamai Technologies, Inc., http://www.akamai.com/html/solutions/index.html.

[4] Asterisk: The Open Source PBX & Telephony Platform, http://www.asterisk.org/.

[5] Baugher, M., McGrew, D., Naslund, M., Carrara, E., Norrman K., "The Secure Real-time Transport Protocol
(SRTP)", RFC 3711, March 2004.

[6] BIG-IP, “SIP Load Balancing Solution”, http://www.f5.com/news-press-events/press/2007/20070212.html.

[7] “SIP Load Balancing in the IBM BladeCenter”, http://www.bladenetwork.net/media/PDFs/
WP_VOIP_SIPLoadBalancingIBM.pdf, 2007.

[8] Brisco, T.,”DNS Support for Load Balancing”, RFC 1794, April 1995.

[9] Bryhni, H., Klovning, E., Kure, O., “A comparison of load balancing techniques for scalable web servers”,
IEEE Network, Vol. 14, 2000.

[10] Cisco IP phone 7960/7640, Release 2.2, http://www.cisco.com

[11] Cisco Systems, “Failover configuration for LocalDirector”, http://www.cisco.com/warp/public/cc/pd/cxsr/
400/tech/index.shtml.

[12] Colajanni, M. Yu, P.S., Dias, D.M., “Scheduling algorithms for distributed Web servers”, in Proc. of the
ICDCS '97 17th IEEE International Conference on Distributed Computing Systems, 1997.

[13] Damani, O., Chung, P., Huang, Y., Kintala, C., Wang, Y., “ONE-IP: techniques for hosting a service on a
cluster of machines”, Computer Networks, Vol. 29, 1019–1027, 1997.

[14] DNSSEC: DNS Security Extensions Securing the Domain Name System, http://www.dnssec.net/.

[15] Ehlert S., Zhang, G., Geneiatakis, D., Kambourakis, G., Dagiuklas, T, Markl, J., Sisalem, D. "Two Layer
Denial of Service Prevention on SIP VoIP Infrastructures", Computer Communications, Vol 31, No. 10, 2008

[16] Fielding R., Gettys J., Mogul J., Frystyk H., Masinter L., Leach P., and Berners-Lee T., Hypertext Transfer
Protocol – HTTP/1.1, RFC 2616, June 1999.

[17] Geneiatakis, D., Dagiuklas, T., Kambourakis, G., Ehlert, S., Lambrinoudakis, C., Sisalem, D. and Gritzalis,
S., “Survey of Security Vulnerabilities in Session Initiation Protocol”, IEEE Communications Surveys and
Tutorials, Vol. 8, No. 3, pp. 68-81, 2006, IEEE Press.

[18] Gulbrandsen, A., Vixie, P. & Esibov, L., “A DNS RR for specifying the location of services (DNS SRV)”,
RFC 2782, Feb. 2000.

[19] Hinden, R., “Virtual Router Redundancy Protocol (VRRP)”, RFC 3768, IETF, April 2004.

[20] Hunt, G., Goldszmidt, G., King, R.P., Mukherjee, R., “Network dispatcher: a connection router for scalable
Internet services”, Computer Networks 30(1998) 347–357.

[21] IBM Workplace Collaboration Services, version 2.5.1, http://publib.boulder.ibm.com/infocenter/iwphelp/
v2r5m1/index.jsp?topic=/com.ibm.wcs.ic.doc_2.5.1/install/i_inst_t_nd_sip_balance.html, 2006.

[22] Interactive Intelligence, “Interaction SIP Proxy”, http://www.inin.com/ ProductSolutions/Documents/SIP-
Proxy-Product-Snapshot.pdf

[23] Janak, J., Kuthan, J., Iancu, B., “SIP Express Router v0.9.x”, Developer’s Guide, http://www.iptel.org.

[24] Jiang, W., Schulzrinne, H., “Assessment of VoIP Service Availability in the current Internet”, Passive &
Active Measurement Workshop, San Diego, CA, April 2003.

[25] Kambourakis, G., Geneiatakis, D., Dagiouklas, T., Lambrinoudakis, C. and Gritzalis, S., “Towards Effective
SIP load balancing”, Proceedings of the 3rd Annual VoIP Security Workshop, June 2006, Berlin, Germany,
ACM press.

[26] The High-Availability Linux Project, http://www.linux-ha.org/.

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

26

[27] Mealling, M., Daniel, R.W., “The naming authority pointer (NAPTR)”, DNS resource record, RFC 2915,
Internet Engineering Task Force 2000.

[28] Mealling, M., Daniel, R.W., “The naming authority pointer (NAPTR) DNS resource record”, RFC 2915,
Internet Engineering Task Force, 2000.

[29] MySQL, Open Source SQL server, http://www.mysql.com/.

[30] Ohlmeier, N., “Design and implementation of a high availability SIP server architecture”, Thesis, Computer
Science Department, Technical University of Berlin, Berlin, Germany, 2003.

[31] Oppenheimer, D., Ganapathi, A., Patterson, D., “Why do Internet services fail, and what can be done about
it?”, Proc. of 4th USENIX Symposium on Internet Technologies and Systems (USITS’03), Seattle, WA, 2003.

[32] Palmeter, M., Danne, A, “A Method and apparatus for Distributing Load on Application Servers”,
WO/2006/107249, http://www.wipo.int/pctdb/en/wo.jsp?IA= SE2006000356&DISPLAY=STATUS, 2006.

[33] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and
Schooler, E., “SIP: Session Initiation Protocol”, RFC 3261, June 2002.

[34] Schemers, R.J., “Ibnamed: A load balancing name server in Perl”, in LISA ’95 conference, Stanford
University, Sept. 1995.

[35] Shimokawa, T., Yoshida, N. & Ushijima, K. “DNS-based Mechanism for Policy-added Server Selection”,
http://www.is.kyusanu.ac.jp/~toshi/publications/ssgrr2000.pdf

[36] Singh K., Schulzrinne, H., "Failover and Load Sharing in SIP Telephony”, Technical Report, Dept. of
Computer Science, Columbia University, March 2004.

[37] Singh, K. Schulzrinne, H., “Failover, load sharing and server architecture in SIP telephony”, Computer
Communications 30 (2007) 927–942, 2007.

[38] SIPp reference documentation, http://sipp.sourceforge.net/doc/reference.html.

[39] Sisalem, D. Kuthan, J. Ehlert, S., “Denial of service attacks targeting a SIP VoIP infrastructure: attack
scenarios and prevention mechanisms”, IEEE Network, vol.20, no.5, pp. 26- 31, Sept.-Oct. 2006.

[40] Snoeren, A.C., Andersen, D., Balakrishnan, H., “Fine-grained failover using connection migration”, in:
USENIX Symposium on Internet Technologies and Systems, San Francisco, 2001.

[41] Srisuresh, P., Gan, D., “Load sharing using IP network address translation (LSNAT)”, RFC 2391, Internet
Engineering Task Force 1998.

[42] Suryanarayanan, K., Christensen, K.J., “Performance evaluation of new methods of automatic redirection for
load balancing of apache servers distributed in the Internet”, Proc. of the IEEE Conference on Local Computer
Networks, Tampa, Florida, USA, 2000.

[43] Vocalscape Load Balancer, http://www.vocalscape.com/products.htm.

[44] Open Source VOIP Software, Voip-Info.org, http://www.voip-info.org/wiki/view/Vovida.org+load+balancer.

[45] Vovida.org, Load Balancer http://www.vovida.org/applications/downloads/loadbalancer/.

[46] Yang, C.-L., Luo, M.-Y., “Efficient support for content-based routing in web server clusters”, Proc. of the 2nd
USENIX Symposium on Internet Technologies and Systems, Boulder, Colorado, USA, 1999.

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

27

Authors

Dr. Georgios Kambourakis (www.icsd.aegean.gr/gkamb) received
the Diploma in Applied Informatics from the Athens University of
Economics and Business (AUEB), and the Ph.D. in information and
communication systems engineering from the department of
Information and Communications Systems Engineering of the
University of Aegean (UoA). He also holds a M.Ed. from the
Hellenic Open University. Currently Dr. Kambourakis is a Lecturer
at the Department of Information and Communication Systems

Engineering of the University of the Aegean, Greece. His research interests are in the
fields of Mobile and Wireless networks security, VoIP security, security protocols,
Public Key Infrastructure and mLearning and he has more than 55 publications in the
above areas. He has been involved in several national and EU funded R&D projects in
the areas of Information and Communication Systems Security. He is a reviewer of
several IEEE and other international journals and has served as a technical program
committee member in numerous conferences. Dr. Kambourakis is a member of the
Greek Computer Society.

Dr Dimitris Geneiatakis received a five-year Diploma in
Information and Communication Systems Engineering in 2003, and
a M.Sc. in Security of Information and Communication Systems in
2005, and a Ph.D. in the field of Information and Communication
Systems Security from the Department of Information and
Communications Systems Engineering of the University of Aegean,
Greece. He has participated in various national and international

projects in the area of Information Systems Security. His current research interests are
in the areas of security mechanisms in Internet Telephony, Smart Cards, Intrusion
Detection Systems and Network Security. He is an author of more that twenty refereed
papers in international scientific journals and conference proceedings. Furthermore, he
has served as program and organizing committees on several international conferences
on Informatics and is a reviewer in various well-known scientific journals. Currently,
he is within InCrypto Ltd (www.incrypto.com) as a Security Engineer in Unified
Communications. He is a member of the Technical Chamber of Greece since 2004.

Assistant Professor Costas LAMBRINOUDAKIS (B.Sc, M.Sc,
Ph.D) was born in Greece in 1963. He holds a B.Sc. (Electrical and
Electronic Engineering) degree from the University of Salford
(UK), an M.Sc. (Control Systems) and a Ph.D. (Computer Science)
degree form the University of London (UK). Currently he is an
Assistant Professor at the Department of Digital Systems,
University of Piraeus, Greece. From 1998 until 2009 he has held
teaching position with the University of the Aegean, Department of

Information and Communication Systems Engineering, Greece. He has been involved in
several national and EU funded R&D projects in the areas of Information and

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

28

Communication Systems Security. These research programs include SERENITY, e-
SENSE, SNOCER (FP6 SME-1), e-VOTE (IST), HERMES (Telematics), GESTALT
(ACTS), VSAT Network for Telematics and Health Care (SfS NATO), VITAL-Home
(ISIS), IRIS (IST), etc. His published scientific work includes six books on Information
and Communication Technologies topics, and more than sixty journal and National and
International Conference papers. The focus of these publications is on Information and
Communication Systems Security and Privacy Enhancing Technologies. He has served
on program and organizing committees of National and International conferences on
Informatics and is a reviewer for several scientific journals. He is a member of the
ACM and the IEEE.

Prof. Stefanos Gritzalis holds a BSc in Physics, an MSc in Electronic
Automation, and a PhD in Information and Communications Security
from the Dept. of Informatics and Telecommunications, University of
Athens, Greece. Currently he is the Deputy Head of the Department of
Information and Communication Systems Engineering, University of the
Aegean, Greece and the Director of the Laboratory of Information and
Communication Systems Security (Info-Sec-Lab). He has been involved
in several national and EU funded R&D projects. His published
scientific work includes 30 books or book chapters and more than 190

journal and international refereed conference and workshop papers. The focus of these
publications is on Information and Communications Security and Privacy. His most highly
cited papers have more than 650 citations (h-index=15). He has acted as Guest Editor in 16
journal special issues, and has leaded more than 25 international conferences and workshops
as General Chair or Program Commitee Chair. He has served on more than 170 Program
Committees of international conferences and workshops. He is an Editor-in-Chief or Editor or
Editorial Board member for 12 journals and a Reviewer for more than 35 journals. He has
supervised 8 PhD dissertations. He was an elected Member of the Board (Secretary General,
Treasurer) of the Greek Computer Society. His professional experience includes senior
consulting and researcher positions in a number of private and public institutions. He is a
Member of the ACM, the IEEE, and the IEEE Communications Society "Communications
and Information Security Technical Committee".

Tasos Dagiuklas was born in Patras, Greece. He received the
Engineering Degree from the University of Patras-Greece in 1989, the
M.Sc. from the University of Manchester-UK in 1991 and the Ph.D.
from the University of Essex-UK in 1995, all in Electrical Engineering.
Currently, he is employed as Assistant Professor at the Department. of
Telecommunications Systems and Networks, Technological Educational
Institute (TEI) of Mesolonghi, Greece. He is also Senior Research
Associate within the Wireless Telecommunications Laboratory of the

Electrical and Computer Engineering Department at the University of Patras, Greece. Past
Positions include teaching Staff at the University of Aegean, Department of Information and
Communications Systems Engineering, Greece, senior posts at INTRACOM and OTE,
Greece. He has been involved in several EC R&D Research Projects under FP5, FP6 and FP7
research frameworks, in the fields of All-IP network and next generation services. Currently,
he is the Technical Manager of the FP7-ICT-PEACE project.

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

29

He was the Conference General Chair of the international conference, Mobile Multimedia
2007 (ACM Mobimedia 2007), Technical Co-Chair of MMNS Conference of MANWEEK
2008, IMS Workshop Chair as part of ACM Mobimedia 2008 and Workshop Chair for ACM
Mobimedia 2009. He has served as TPC member to more than 15 international conferences.
His research interests include All-IP Networks, systems beyond 3G and converged
multimedia services over fixed-mobile networks. Dr Dagiuklas ha published more than 80
papers at international journals, conferences and standardisation fora in the above fields. He is
a member of IEEE and Technical Chamber of Greece.

Sven Ehlert is the head of the security reserach staff of the "Next
Generation Network Integration" divison of the Fraunhofer Insitute
FOKUS in Berlin, Germany. He has lead two international research
projects in the field of SIP security and has published several refereed
scientific papers in the security field. Sven Ehlert received his M.Sc in
Computer Science from the Technische Universität Berlin.

Jens Fiedler finished his diploma in computer science in October 2004 at
the Technical University of Berlin (TUB). Since May 2005 he works as a
researcher at the Fraunhofer institute for open communications systems -
FOKUS in the competence center for next generation network
infrastructures - NGNI. His expertise includes knowledge in several
programming languages, e.g. C/C++, Java. His core competences are VoIP
Infrastructures, High Availability, Reliability and Scalability in VoIP

Infrastructures, Peer-to-peer technologies, P2P integration and general network protocols. He
worked in projects like 6net (EU), SNOCER (EU) and VoIP-Defender (FOKUS). His is
currentlyinvolved in developing P2P strategies for IMS in the scope of the FP7-Project
VITAL++..

International Journal of Disaster Recovery and Business Continuity

Vol. 1, No. 1, February, 2010

30

