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The emergence of Voice over IP (VoIP) has offered numerous advantages for end users and providers alike,
but simultaneously has introduced security threats, vulnerabilities and attacks not previously encoun-
tered in networks with a closed architecture like the Public Switch Telephone Network (PSTN). In this
paper we propose a two layer architecture to prevent Denial of Service attacks on VoIP systems based
on the Session Initiation Protocol (SIP). The architecture is designed to handle different types of attacks,
including request flooding, malformed message sending, and attacks on the underlying DNS system. The
effectiveness of the prevention mechanisms have been tested both in the laboratory and on a real live
VoIP provider network.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Security threats are considered minimal in current circuit-
switched networks as it is the case in the current Public Swithced
Telephone Network (PSTN). This is achieved by using a closed net-
working environment dedicated to a single service (Voice). How-
ever, in an open environment such as the Internet, launching an
attack on a telephony server is much simpler. This is due to the fact
that Voice over IP (VoIP) services are based on standardized and
open technologies (i.e., SIP, H.323, MEGACO) using servers reach-
able through the Internet, implemented in software and relied of-
ten on general purpose computing hardware. Therefore, such
services can suffer from similar security threats as any other Inter-
net service.

The Session Initiation Protocol (SIP) [1] has been adopted as the
dominant signaling protocol to handle multimedia sessions at both
the Internet and the 3G Realms [2]. In this paper we present an
architecture to mitigate Denial of Service attacks on a SIP-based
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VoIP infrastructure. The proposed architecture is designed to de-
tect effectively different SIP vulnerabilities (message flooding, mal-
formed message sending, DNS blocking) through specialized
detection modules without requiring modification in the core of
the SIP architecture. Those modules have been implemented and
assessed under various tests in laboratory and in a real-life VoIP
network.

Flooding a server with malicious messages or even high-rate
regular messages can have serious consequences on any service.
The server is busy processing useless messages while lacking the
processing power to reply to authentic user requests. In the worst
case, a malformed message that exploits know security holes in an
implementation might crash the whole system with a single packet
(aka the infamous Ping of Death [3]).

We counter such attacks by providing a double-level security
architecture. A first line Bastion host provides essential security
checks against well-known TCP/IP related attacks and detects
and prevents SIP message flooding against the host. In the second
line of defence, we enhance the SIP proxy with additional security
modules that provide specialized SIP related security features. We
achieve this by providing a signature-based malformed message
detection module that checks incoming messages and a specialized
SIP-based DNS cache that is guaranteed to be non-blocking even
under time-consuming operation requests.
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Fig. 2. A typical well-formed SIP-INVITE message.
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Laboratory and real-life testbed measurements prove the effec-
tiveness of the modules for these kinds of attacks. Furthermore, we
show that these modules introduce only a slight processing over-
head, which does not affect service operation negatively.

The remaining of the paper is structured as follows. The next
section provides some elemental information about SIP in VoIP
environments, necessary for the analysis to follow. Section 3 exhib-
its major security threats concerning SIP in the context of this pa-
per. Section 4 introduces our defence architecture to repel and
thwart attacks discussed in the previous section, while Section 5
presents and analyses the experimental results. The last section
concludes the paper and gives pointers to future work.

1.1. Related works

Several researchers have proposed VoIP security solutions to
detect and prevent VoIP-related attacks. Most of these solution fo-
cus on different detection strategies.

Sengar et al. [4] propose a detection framework based on Hellin-
ger distance calculation. Another flooding detection algorithm
based on Cumulative Sums is presented by Rebahi [5]. Both solu-
tions are able to detect message flooding, but do not provide a mit-
igation solution.

Wu et al. [6] propose a cross-platform detection framework.
Based on the correlation of SIP and RTP traces they detect misbe-
havioural patterns, e.g., malicious session termination.

Chen [7] proposes a concept for detecting DoS Attacks on SIP
systems using a SIP state machine model. The system is outlined
to detect unauthorized invalid message flooding.

Another online detection mechanism based on a Bayesian Mod-
el for SIP is proposed by Nassar et al. [8]. The system is able to de-
tect different kinds of threats towards VoIP applications besides
DoS, including SPIT and password cracking.
2. Background information

2.1. Voice over IP using the Session Initiation Protocol

SIP is an application-layer signaling protocol for creating, mod-
ifying, and terminating multimedia sessions among one or more
participants [1]. It is a text based protocol designed to establish
or terminate a session among two or more partners. The message
format is similar to the HTTP protocol, with message headers and
corresponding values, e.g., ‘‘From: user@sip.org” to denote the sen-
der of a message. The destination of a SIP messages (Request-URI)
is provided in the first line of the message, the request line. Fig. 2
illustrates a sample SIP-INVITE message. Additionally, several
other message headers are dedicated to routing purposes in the
network:
Fig. 1. SIP architecture s
To Denotes the receiver of this SIP message. This is gen-
erally the public available address of the user
(Address of Record).

From Denotes the sender of the message.
Contact The actual location where a user can be reached.

This location can be different from the From URI.
Record-Route Indicates that an intermediate proxy wants to

receive further signalling traffic.
Route Indicates a route that a new request is going to take.

Via A list of all intermediate SIP entities that this
messages has passed so far.

Further, various network entities compose a SIP network (see
Fig. 1), such as User Agents (UAs) that generate or terminate SIP re-
quests, Registrars, where users log in and announce their availabil-
ity in the SIP network and Proxies that forward requests in the
appropriate SIP networks. Several proxies can be deployed in a
SIP infrastructure, e.g., outbound proxies that regulate routing out-
going traffic from one network to a foreign network and incoming
proxies that handle all incoming SIP requests possibly enforcing
additional security checks.

3. SIP security threats

3.1. Resources susceptible to DoS in SIP servers

Denial of Service (DoS) attacks aim at denying or degrading a
legitimate user’s access to a service or network resource, or at
bringing down the servers offering such services. According to a
2004 CSI/FBI survey report 17% of respondents detected DoS
attacks directed against them, with the respondents indicating that
DoS was the most costly cyberattack for them, even before theft of
proprietary information [9]. To make things worse, attackers have
developed tools to coordinate distributed attacks simultaneously
chematic overview.
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from different sources, which is also known as a Distributed Denial
of Service (DDoS) attack.

Besides launching for example flooding attacks by generating a
large number of useless and costless VoIP calls, attackers can ex-
ploit certain features of the employed underlying VoIP protocols
to incur higher loads at the servers. This might involve issuing re-
quests that must be authenticated, require database lookups by the
VoIP servers or cause an overhead at the servers in terms of saved
state information or incurred calculations.

Further, the VoIP infrastructure can be corrupted either by
launching any kind of DoS attacks on a supplementary component
or exploiting a known vulnerability in protocols, layers and ser-
vices on top of which the VoIP infrastructure is based, including
routing protocols or TCP. Nevertheless, the majority of DoS attacks
is based on exhausting some of a server’s resources and causing the
server not to operate due to lack of resources. With SIP
servers, there are three resources susceptible to a Denial of Service
attack:

� Memory. A SIP server needs to copy each incoming request into
its internal buffers to be able to process the message. The
amount of buffered data and the time period the server is sup-
posed to keep the buffered data varies depending on whether
the server is working in a stateful or stateless mode. In any case,
the server will at least need to maintain the buffered data while
contacting another entity such as an AAA, DNS server or a data-
base for example. Depending on the message type, the number
of Via headers and the body of the message, the size of a SIP
message might range from a few hundreds of bytes up to a
few thousands. Further memory requirements depend on the
operation mode.
– Stateless servers. Stateless servers need only to maintain a

copy of the received message while processing it. As soon
as the destination to which a message is to be sent to is
determined and the message sent out, the server can delete
the buffered data.

– Stateful servers. In general we can distinguish between two
types of state in SIP:

* Transaction state. This is the state that a server maintains
between the start of a transaction, i.e., receiving a request
and the end of the transaction, i.e., receiving a final reply
for the request. A transaction stateful server needs to keep
a copy of the received request as well as the forwarded
request. Typically, transaction context consumes about 3
kilobytes (depending on message size, forking and memory
management overhead) lasting about one to tens of seconds
if user interaction is involved.

* Session state. In some scenarios servers may need to main-
tain some information about the session throughout the life-
time of the session. This is especially the case for
communication involving firewall or Network Address
Translation (NAT) or for special accounting and security rea-
sons as is the case for the 3GPP architecture.
� CPU. After receiving a SIP message, the SIP server needs to
parse the message, do some processing and forward it.
Depending on the content and type of the message and ser-
ver policies the actual amount of CPU resources might vary.
Whereas the CPU capacity of a well engineered and config-
ured proxy should be able to process SIP messages up to link
capacity, there are many server operations which make serv-
ers block. Such operations may be misused to quickly para-
lyze a server’s operation.
� Bandwidth. This involves overloading the access links connect-

ing a SIP server to the Internet to such a level as to cause con-
gestion losses. By overloading the server’s access links one
could cause the loss of SIP messages which causes longer
session setup times or even the failure of session setups.
Protection of bandwidth is a general transport-layer issue
unspecific to SIP, and affects other types of communication,
too.

3.2. Denial of Service attacks in SIP

Despite the well-known attacks that the SIP architecture inher-
its due to the utilization of Internet technologies [3], there are also
specialized attacks on the SIP protocol itself. Until now various
researchers [10,6,11–13] have put great efforts in order to identify
threats, vulnerabilities and possible attacks in VoIP subsystems. In
this work we focus on the detection and prevention of the follow-
ing major categories of attacks:

(1) Flooding attacks
(2) Malformed messages
(3) Irresolvable DNS attacks

In the following subsections these attacks are analyzed and
evaluated. Later on we illustrate our solution to mitigate these de-
scribed attacks.

3.3. SIP High bandwidth message flooding

Overwhelming a victim’s capacities by flooding it with
malicious traffic is the most basic and probably also the most
difficult to handle DoS attack. The potential attacker can
generate flooding attacks with SIP compliant messages (e.g.,
INVITE, REGISTER) to quickly exhaust the victim’s resources.
Different SIP proxy implementations vary in the processing
speed of crucial tasks, including message parsing, verifying
values of MD5 hashes in the authentication procedure, and
additional communications with other servers like application,
AAA, and DNS servers. Thus, a SIP proxy with slower request
processing capabilities is naturally more predisposed for brute
force attacks.

All SIP flooding attacks can be done from one source or can be
distributed, similar to flooding attacks in TCP. In the case of a dis-
tributed flooding attack, the attacker employs a large number of
(usually unaware) computers with different IP addresses to gener-
ate a higher-bandwidth stream of messages than it would possible
from one single machine. Furthermore, attacks where source IP
addresses in packets are spoofed to escape detection can be consid-
ered as a kind of distributed attack.

By using a fast stream of INVITE messages with different session
identifiers such as To, From or Call-Id there is a possibility to ex-
haust the memory of the attacked proxy. In the case of a nonexis-
tent recipient (invalid To header) the proxy will reply with a 404
Not Found message. This is done immediately after the attempt
to locate the user, in which case the state of the current transaction
is maintained only for a short time. Hence, for memory exhaustion
the attacking stream must be very high.

The memory can be blocked for a longer time by using an
existing cooperative recipient. In this case the recipient can ignore
INVITE messages and thus this messages are re-sent within a
period of 32 s. The cooperative receiver can also reply with a
provisional reply (like 180 Ringing or 182 Queued) and in this case
the transaction state must be kept at the targeted proxy for at least
3 min.

Exhaustion of resources of SIP proxy can be also similarly
caused by flooding it with a high count of REGISTER messages. This
is especially possible in cases where the SIP proxy, Registrar server
and Location server are located on a single machine and thus
increasing processing load on the server.



Fig. 4. An example of an SQL-injected SIP message.
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3.4. Attacks using malformed messages

Generally, SIP parsers are developed to receive and process
well-formed messages, as defined in RFC 3261 [1]. However, an at-
tacker or even a poorly-implemented SIP client is able to send
(either intentionally or unintentionally) various types of mal-
formed messages [14] in order to induce undesired situations such
as DoS, unstable operations and unauthorized access. In this con-
text, it is highly likely that the attacker will try various malformed
message combinations to discover a security problem/flaw within
the victim subsystem. For example, the INVITE message illustrated
in Fig. 3 is invalid and cannot be generated using standard SIP pro-
tocol syntax, due to the lack of a Request-URI, which is mandatory
in an INVITE request.

Furthermore, the text based nature of SIP messages offers the
opportunity for message tampering attacks in SIP telephony ser-
vices, similarly to HTTP messages. This kind of attack is not only
targeting at service corruption, but also in the downfall of addi-
tional database services. The attack can be triggered every time a
SIP network entity (e.g., SIP UA, SIP Proxy) is asking for authentica-
tion. When this situation occurs, the User Agent (UA) on behalf of
the authorized user computes the appropriate credentials based on
the HTTP Digest mechanism [15]. The result of this computation
(credentials) is included in the message Authorization header. Then
the message in which the Authorization header is included will be
forwarded to the corresponding proxy server, which has to authen-
ticate the received message. Consequently, after receiving such a
message the proxy recalculates the credentials using the user’s
password which is stored in the corresponding database. To
accomplish this task, it generates an SQL statement according to
the following syntax:

Select password from subscriber where

username = ‘gkar’ and realm = ‘195.251.164.23’;

In case a malicious user attempts to launch an attack in the SIP
architecture, exploiting SQL injection, he tampers the SIP message
and inserts the malicious SQL code at the Authorization header (see
Fig. 4). The candidate for injection message can be any SIP method,
requiring authentication by a SIP server. The malicious code can be
embodied either in the username or in realm fields in the Authori-
zation header.

As soon as the proxy receives a SIP message with an infected
Authorization header, it generates and executes the following SQL
statement:

Select password from subscriber

where username = ‘gkar’;

Update subscribe set first_name = ‘malicious’
where username = ‘gkar’

–

As a result, albeit message authentication fails, due to the fact
that the attacker does not know the legitimate user’s password,
the second SQL command (Update) manages to change gkar’s first-
Fig. 3. Example of a malformed SIP-INVITE message.
name to malicious. It is also possible for a malicious user to attempt
to employ similar SQL commands, aiming to make the database
useless and cause a DoS to the provided VoIP service.

3.5. DNS attacks

A rather simple way to disturb server operation is to include
unresolvable host names into a SIP message [16]. A SIP message
can contain URIs in varying header fields, including Via, Route,
Record-Route, and Request-URI. A SIP server encountering an unre-
solvable address in a header field (e.g., Via: unresolbvable.

domain.org) has to wait for the resolver reply to continue opera-
tion. If the DNS subsystem knows about the domain, a timely an-
swer might even arrive in case of an unresolvable address.
However, often no answer can be provided until a timeout occurs
at the DNS system. Depending on the implementation, the proxy
might be blocked until the answer from the DNS arrives. We have
witnessed through simulation, that in such cases a SIP server can
be blocked for up to 5 s through one simple message (see Fig. 5).

4. The defense architecture

4.1. Architecture overview

We have defined and implemented an architecture to detect,
evaluate and finally protect SIP-based infrastructures and services
against the attacks mentioned in Section 3. Hereunder, we provide
a short description of the proposed security architecture and its
cardinal components (see Fig. 6).

� Infrastructure entry bastion host. This is the point of entry into the
VoIP network. An Intrusion Detection System (Snort IDS) [17]
extended for VoIP awareness is installed that filters clearly mali-
cious messages and updates firewall settings accordingly. The
entry bastion host includes the flooding Denial of Service pre-
vention capabilities.
Fig. 5. DNS blocking attack by sending requests containing unresolvable domain
names.



Fig. 6. Defined and implemented two layer defense architecture.

Fig. 8. General structure of the SIP signature.
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� EnhancedprotectedSIPproxy.Oneofthemaintargetsofadversaries
will be the SIP proxy itself, thus it needs additional protection from
attacks. For this reason, a Deep Packet Inspection (DPI) module is
deployed that scans incoming messages for malicious content.
An enhanced caching daemon stores incoming DNS requests and
prohibits server lockdown by unresolvable DNS requests. In case
an attack is detected, a communication channel towards the bas-
tion hosts allows dynamic updates of firewall settings.

� Administrative console. Every attack indication is logged and for-
warded to the operator terminal where attacks can be further
inspected and analyzed. This gives the opportunity to react
immediately on new threats and allows fine-tuning of detection
parameters to avoid unnecessary false alarms.

� High availability overlay. For reliability reasons an additional
high availability overlay is installed. This consists of replicas of
the important SIP network components (SIP proxy, RTP proxy)
and a SIP specialized Load Balancer. We present details of these
features in [18].

4.2. Flooding defense

For flooding detection we have installed the infrastructure entry
bastion host. This is the entry point into the VoIP network. We have
installed an Intrusion Detection System based on the Snort IDS [17]
which we have extended for VoIP awareness.

The Snort IDS system is configured with a set of newly devel-
oped rules for detection of flooding attacks on SIP infrastructures.
Detection is based mainly on packet payload inspection which is
used to resolve message type (e.g., INVITE, REGISTER) and further
on counting of particular messages arriving from a single source.
If a pre-defined threshold is reached an alert is generated. As an
example of a Snort rule for the detection of INVITE flooding attacks
see Fig. 7. As can be seen in the rule example the content and depth
Fig. 7. An example Snort rule for INV
directives are used for the detection of an ‘‘INVITE” string in the
first six bytes of the packet payload. The directive threshold is used
for the declaration of the threshold rule which in this case means
that an alert is generated when within 60 s more than 100 INVITE
packets directed to the SIP proxy are detected. Similar, additional
flooding detection rules exist for other SIP messages (e.g., REGIS-
TER or OPTIONS).

4.3. Malicious messages defense

Any message that either does not conform to or violate the SIP
specification can cause security problems in any SIP subsystem,
however, it is difficult to distinguish between all possible legal
and illegal messages. Consequently, in order to effectively detect
malicious messages we propose signatures based on the SIP gram-
mar as defined in RFC 3261 [1]. Those signatures are composed of
two different parts. The first part identifies malformed message
that can be applied to any SIP message. Contrary, the second one
specifies some optional rules that must be applied only for specific
SIP methods (e.g., INVITE, CANCEL, etc.) and are defined by a SIP
domain security policy. The general signature structure is illus-
trated in Fig. 8. More details about the signature structure can be
found in [19].
ITE message flooding detection.
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In a nutshell, there is always the possibility of input that might
not have been considered properly when implementing the SIP
stack installed in each SIP product. In order to protect SIP servers
from malformed message attacks (by ‘‘well formed”, we define
all SIP messages conforming to RFC 3261 syntax), a pre-filtering
module is employed for rejecting all non well-formed SIP messages
prior to forwarding them to the SIP parser as illustrated in Fig. 9. If
an incoming message matches any of the specified signatures it is
instantly identified as malformed and discarded. At the same time
the system maintains a record of all rejected messages which is
available at the operator console.

4.4. DNS blocking defence

While different countermeasures exist [11] to reduce DNS
dependency in a SIP network, in case of a real DNS attack advanced
DNS caching is mandatory to successfully mitigate the attack. A
DNS cache answers to DNS resolve requests from the SIP proxy.
It saves the results of the latest DNS queries, and if the SIP proxy
tries to resolve the same address a second time, the stored result
in the cache can be returned instead of initiating another time-con-
suming query.

While different operating systems already provide DNS caches,
for optimal usage in SIP they need extended functionality. For
example a SIP entity generally uses additionally DNS records to lo-
cate other proxies, including NAPTR/SRV [20] records. A general
operation system DNS cache does not consider such records for
caching. Furthermore, a dedicated SIP DNS cache needs a special-
ized refresh strategy, as it should keep in its cache table preferably
the addresses of known and frequently used proxies, while general
OS DNS caches follow a most-recently-used (MRU) policy. To be
effective against DNS attacks, a combination of the cache with a
SIP proxy with non-blocking parallel message processing capabili-
ties is suggested.

As an example assume a SIP proxy with x parallel message pro-
cessing queues. Then, allow y message queues, where x� y should
be set reasonably low, e.g., to 2, to concurrently resolve addresses
through the cache. If now more than y message queues need to re-
solve an address concurrently, this is an indication of an DNS attack
underway. In this case the cache only answers requests from its
stored content, and returns an unresolvable message for any
request that cannot be answered directly from the cache, thus
preventing proxy blocking.

Four traditional cache replacement policies exist, First In First
Out (FIFO), Least Recently Used (LRU), and Least Frequently Used
(LFU) are well-known cache replacement strategies for paging
and web scenario [21,22]. Considering that the time cost of look-
ing up different domain name maybe different, we investigate
also a Time Cost (TC) policy. As a rule of thumb, all the cache re-
cords are arranged as a queue. The newest record is inserted into
the head of cache while the oldest one is deleted from the tail of
cache.

� For the FIFO policy, all records except the newest and oldest one
will be moved to the tail by one unit when new records enter
queue.
Fig. 9. Testbed setup for mali
� LRU policy is similar to FIFO, the only difference is that if one
record of LRU cache is accessed, it will be moved to the head
of queue immediately.

� With a LFU policy the DNS frequency usage is measured and
records are ordered by their frequencies. The higher the fre-
quency, the closer it is to the head of the queue.

� TC policy is similar to LFU, but it is ordered by the time cost of
each DNS lookup request. Generally speaking, we do not wish
to always request domain names from the DNS server which will
take more time to look up. The more loop up time the record
costs, the closer it is to the head of the queue.
5. Experiments

While we used different testbed setups for the actual measure-
ments, the defense architecture and testbed share multiple com-
mon components. These include:

� The protected SIP proxy. We have used the SIP Express Router
(ser) [23] for this task. SER is an open source SIP server which
can act as SIP registrar, proxy or redirect server. In our
test bed, all messages to or from a caller have to go through
SER.
� The attacking tool capable of launching various types of attacks,

including the aforementioned ones, to test the SIP infrastructure
and to provide input to and evaluate any developed intrusion
detection tool suitable for SIP. The tool is build on a black-box
approach, so that the tester will not need to know technical
issues with respect to the developed platform creating a secu-
rity test. The tool is able to describe the attack simply by utiliz-
ing the appropriate interface and subsequently executing the
corresponding tests [24].
� Operator Interaction and Countermeasures. Every attack indica-

tion is logged and forwarded to the operator terminal and
stored in a database. There, attacks can be further inspected
and analyzed. This gives the opportunity to react immediately
on new threats and allows fine-tuning of detection parameters
to avoid unnecessary false alarms. Outgoing Status and Detec-
tion messages have been distributed using the Prelude frame-
work [25]. Additionally, when an attack is detected it can be
blocked by the intrusion prevention part of the architecture.
The prevention part is based on usage of the SnortSam tool
[26], which we have enhanced to communicate with prelude.
SnortSam unifies communication with several types of software
and hardware firewalls such as IPtables, Checkpoint, Cisco PIX,
etc., of which we used IPtables with IPset extension [27]. In case
of an attack, the suspicious user will be blocked for a user-
configurable amount of time. See Fig. 10 as an example setup
for the flooding testing.

5.1. Flooding experiments

For flooding experiments, the testbed was prepared using IPta-
bles with IPset extension firewall, Snort IDS, Sip Express Router,
the Prelude framework including Prewikka web frontend and the
cious message detection.



Fig. 10. SIP proxy with enhanced message checking.
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attack generation machine. The structure of the testbed is depicted
in Fig. 10. The Snort bastion system was configured with our de-
fined SIP rules and the general Snort intrusion rules to detect
non-SIP related attacks, thus firewall policies are defined be these
Snort rules. All security tools (Snort, Prelude framework and its
database, SnortSam + IPtables/IPpset firewall) were placed on the
same machine (Bastion Host) during the test. The attack was gen-
erated on another machine and targeting the SIP proxy behind the
firewall. The firewall machine had two interfaces. The measure-
ments were done on both of those interfaces. The default timeout
of IPset for removing blocked address from the firewall is 120 s, but
it was changed to 2 s so every source address was blocked for 2 s
after the occurrence of an alert.

5.1.1. Scenario: REGISTER flooding
In the first scenario the maximum REGISTER message flood was

generated in order to test the defence architecture’s mitigation
possibilities. The attack originates from a single source IP address.
Fig. 11. Flooding defense arch
Test results are depicted in Fig. 11, showing the flow on the ingress
interface of the firewall host and the packet flow on the egress
interface of the firewall host (which is on the side of SIP proxy).
We can see every 2 s a peak in the outgoing traffic flow, whenever
a blocking rules expired. However, a new alert is generated imme-
diately in case of an ongoing attack, consequently a new blocking
rule on the firewall is activated. We can see that the peaks appear
in approximately 2 s intervals. Because there is a small delay be-
tween attack detection, actual alert occurrence and firewall reac-
tion time, there is a limited flow of high-rate traffic reaching the
proxy.

5.1.2. Scenario: increasing INVITE message flooding
In the second test scenario a continually increasing flow of

INVITE messages was used to test the effectiveness of the archi-
tecture. The flow of INVITE message originates again from the
same source IP address. Testbed parameters within the testbed
are the same as in the previous case. In this case the INVITE
itecture sub-components.



Fig. 12. Defence against REGISTER message flooding.
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flood rule generates an appropriate alert and evokes the blocking
policy on the firewall. The measurements results are visible in
(Fig. 12). Again, we see the firewall rule in effect independently
of the input rate.

5.2. Malicious message identification

Fig. 13 depicts the real testbed topology employed in order to
test the proposed pre-filtering and detection mechanism in a real
environment. Specifically, the attack tool has been utilized to cre-
ate the necessary malicious traffic, while in all scenarios the target
proxy was fed with normal traffic that was copied from a real VoIP
SIP-based network and ‘‘passed” to the testbed environment.

Here, we provide real scenarios results and testimonials showing
that the proposed prevention and detection malformed message
scheme is robust and effective. Whenever a message is identified
as malformed, an alarm is raised. Fig. 9 illustrates the required mod-
ification in the SIP proxy architecture (e.g., SIP Express Router (SER)).

The specified signatures are stored in a protected signature-
database on the SIP proxy. In order to implement the rules we uti-
lized the Perl Compiled Regular Expression (PCRE) syntax [28].
Regular expressions have been employed for the first line of the
message, as all standard SIP parsers process this line, as well as
Fig. 13. Flooding by an increasin
for the most utilized headers (Cseq, From, To, Via, Contact and
Authorization) based on the general structure illustrated in Fig. 8.

The first line representation is depicted in Fig. 14. The proposed
signature embodies the most frequently used methods including
INVITE, SUBSCRIBE, OPTIONS, CANCEL, ACK and REGISTER. Consid-
ering the case where a local administrator requires to insert a new
method the signature can easily be updated with the name(s) of
the desired SIP method(s).

Regarding header inspection, regular expressions for the most
prominent headers have been developed (see Fig. 15). Furthermore
the developed signatures do not only identify non-conformance
messages but also detect attacks embodying malicious code like
the SQL injection example presented in Section 3 (see the Authori-
zation header in Fig. 15).

The local administrator of the SIP network may easily update
the header signature as well as insert a new signature in the header
signature database. Furthermore, in some cases there is a correla-
tion between the method, appearing in the First Line of the mes-
sage, and the corresponding headers, which is used in order to
avoid logical errors. For example in an INVITE request the CSeq
header should have the following form CSeq: INVITE sequence
number. In case that the ‘‘INVITE” substring does not exist in the
CSeq header, this request would be considered as malformed.
g rate of INVITE messages.



Fig. 14. SIP signature for malicious message detection (message first line).
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The employment of the malformed detection/prevention mech-
anism in the real-life network will produce useful conclusions
about its applicability. Therefore, for evaluation purposes we have
developed the scenarios illustrated in Table 1. Particularly, for sce-
narios 1–3 the real-life SIP-based network was attacked with var-
ious malformed messages. On the contrary, in scenario 4 only real
traffic is utilized. Moreover, the average received messages from
the SIP Proxy, for scenarios 1–4 was 21, 114, 34 and 16 messages
per second, respectively. The main goals of the SIP-based real test-
bed are the following:

� Evaluate the robustness and effectiveness of the proposed detec-
tion and prevention mechanism.

� Determine the processing overheads introduced by the pro-
posed mechanism.

As far as the first objective is concerned, real scenarios results
have shown a small number of false alarms, which is absolutely
normal. The false alarms that have been produced are mainly false
positives. The main reason of these alerts is based on SIP client
inconsistency with RFC 3261, which clearly means that existing
SIP clients are not fully conforming to RFC 3261 message syntax
as supposed by the authors in the proposed signature scheme.
However, after a testing period of the malformed detection mech-
anism, the administrator of any specific realm can eliminate these
alarms by modifying the signatures appropriately. The probability
that a well-formed message is falsely declared as a malicious is
very small regardless of the SIP proxy being attacked or not. Table
2 presents the false alarms (false positives) that were produced
during testing.

Regarding performance results, we have demonstrated that the
processing overhead introduced by the malformed detection tool is
not significant. As mentioned in Section 4.3, detection/prevention
consists of two distinct phases: (a) the first line and (b) the header
inspection phase. Thus, in Fig. 16 a sample of the logged measure-
ments, focusing on the processing overheads introduced from the
first line inspection is presented, while in Fig. 17 we illustrate
the probability density function (PDF) of the corresponding delay.
Additionally, Table 3 shows the corresponding standard statistical
metrics like time durations for average, maximum, minimum and
standard deviation.

Observing Table 3 and Fig. 16 one could easily realize that the
introduced delay for the first line inspection under the different sit-
uations is negligible, mainly for normal traffic as illustrated from
the results of Scenario 4. Moreover, it must be noted that this sit-
uation is probably the common case as the system operates under
normal traffic most of the time, while attack incidents are gener-
ally rare. In the case where the SIP proxy is under attack it seems
that additional delay has been introduced due to the fact that the
system is more stressed (which of course is absolutely logical).
Fig. 15. SIP signature for malicious m
On the other hand, the well-formed traffic seems to be unaffected
as the average delay produced is about 15 ls, while in case the sys-
tem is not under attack this additional overhead is insignificant at
near to 7 ls.

Besides, as depicted in Fig. 17, the probability of introduced de-
lay to be between the period of 7 and 18 ls is greater than 0.85, in
the case of attack scenarios (scenario 1–3). On the other hand, in
case the system is not under attack (scenario 4) – which is the most
common one - the probability that the introduced delay is between
5 and 15 ms is greater than 0.95.

Concerning the delay introduced in the header inspection
phase, similar to the first line inspection discussion, Fig. 18 pre-
sents the processing overheads, while Fig. 19 illustrates the proba-
bility density function of the overhead, respectively. Table 4
contains time durations for average, maximum, minimum and
standard deviation parameters. Specifically, the average delay
introduced as illustrated in Table 4 varies between 95 and
130 ls. The fact that the plots seem to have similar distribution
is normal since the only differentiation between these scenarios
were the different length either in the first line or the headers
and the variations in the malformed messages that were tested.
The moderately high standard deviation times, especially for sce-
nario 1 can be explained by the fact that in this attack phase we
generated malformed packets of excessive length that exist in PRO-
TOS tests [14]. The same variation has also been spotted in labora-
tory tests [19]. However, the average delay in scenario 1 is about
130 ls and thus is considered insignificant. Furthermore, the intro-
duced average delay (for the headline checking) when the SIP
proxy is under attack is less than 100 ls.

As depicted in Fig. 19, the probability of introduced delay to be
in the range between 90 and 120 ls is greater than 0.9. In addition,
in case the SIP proxy is not under an attack the probability for the
introduced delay to be lesser than 120 ls is more than 0.95).

Summarizing the above results we are able to conclude that the
processing overhead introduced by the malformed detection/pre-
vention mechanism is minimal – less than 100 ls – in the case that
the SIP proxy is not under an attack. Even though in the case of var-
ious malformed attacks launched against the SIP proxy the intro-
duced delay in the well-formed messages is also insignificant. On
the top of that, the malformed detection/prevention mechanism
shows to be robust, scalable, feasible and practical to implement
in a real SIP-based system.

5.3. DNS attacks

5.3.1. Testbed
The DNS testbed consists of different components. The main

component is our protected SIP proxy as described earlier. The
SIP proxy can be configured to have different parallel processing
queues n. The proxy is connected to our deployed DNS caching
solution. We use our developed attack tool generator to launch
messages containing unresolvable domain names. The tool gener-
ates continuously hard-to-resolve SIP messages every i seconds.
Finally, we have deployed regular user agents in form of the SIPp
[29] message generating and processing tool. The full testing setup
can be seen in Fig. 20.
essage detection (header fields).



Table 1
Descriptions of the employed real scenarios

Scenario
number

Scenario-description

Scenario 1 This scenario utilizes the PROTOS test to create malformed
messages

Scenario 2 This scenario utilizes specific malformed messages that contain
errors in the first line only

Scenario 3 This scenario utilizes specific malformed messages that contain
errors in one header

Scenario 4 This scenario utilizes only real-life traffic

Table 2
Malicious message false alarm alerts

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Processed Message 42036 310000 40968 56308
False Positives 246 198 274 209
Probability 0.005852 0.000639 0.00668 0.003712

Table 3
Statistical parameters for first line inspection

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4

Max 291.00 54.00 65.00 57.00
Min 4.00 5.00 5.00 5.00
Average 15.07 10.63 8.09 7.57
St. Dev. 13.65 2.85 4.91 5.47
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5.3.2. Scenario
Within our testbed, we use SIPp to simulate multiple SIP UA

that perform regular SIP background traffic consisting of REGISTER
and INVITE requests with successive OK responses. We registered
20 simulated UAs at 10 external SIP proxies, with two users per
external proxy. One user belongs to the caller group while the other
user belongs to the callee group. The caller group was configured to
use our local SIP proxy as an outbound proxy, while the callee
group directly registered with the external proxies. See Table 5
for the list of contacted external providers.
Fig. 16. First line inspection over

Fig. 17. Probability density function for
We generated 1000 REGISTER messaged plus 1000 INVITE from
the caller group destined to the callee group, which in turn accept
every incoming INVITE request. Within 1 s, the caller group gener-
ates 20 messages. We counted the number of positive replies from
our local proxy to the caller UA group, which should be in the opti-
mal case 2000.

The used attacker was configured to send continuously mes-
sages to the local SIP proxy with hard to resolve DNS names within,
thus blocking it. Under attack, the number of positive replies from
the normal traffic model will be lower than 2000. The effectiveness
of the attack is highly dependent on the configured parallel pro-
cessing queues at the proxy server (n), thus we performed mea-
surements with different values of n.

We created three different scenarios to vary the initial setup:

(1) The caller group calls each other user in the callee group in
sequence. Each callee is called once. After every callee has
been called, the sequence starts again.

(2) The same as above, with one callee called 11 times in a row,
followed by the other users only one time.

(3) Like scenario 2, but destinations are selected randomly with
one callee having a higher probability to be called than the
other ones (55%, the same as in scenario 2).
head time for scenarios 1–4.

introduced delay for scenarios 1–4.



Fig. 18. Header inspection overhead time for scenarios 1–4.

Fig. 19. Probability density function in header inspection for scenarios 1–4.

Table 4
Statistical parameters for header inspection

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4

Max 3395.00 447.00 497.00 196.00
Min 61.00 61.00 64.00 57.00
Average 130.47 97.59 98.37 95.81
St. Dev. 303.70 15.25 9.62 8.94

Table 5
Used providers

Provider name SIP Proxy URL

Iptel iptel.org
Bluesip bluesip.net
Sipphone proxy01.sipphone.com
FWD fwd.pulver.com
Voiptalk voiptalk.org
Nikotel calamar0.nikotel.com
Voipuser sip.voipuser.com
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Fig. 20. DNS blocking testbed scenario.

Sipgate sipgate.co.uk
Irepublics voiz.irepublics.com
Sipnumber sipnumber.net
5.3.3. Results
To prove the attack’s effectiveness, we have run the attack on

our testbed with no DNS cache installed. The results can be seen
in Figs. 21–23, showing the number of processed requests at the
SIP proxy in respect to the number of parallel message queues n
and the attacking interval i in s.

From the figures we can see that independently of the selected
scenario a successful attack can easily be launched to a SIP proxy.
Even with 64 parallel messaging queues it is possible to reduce the
proxy’s performance by around 50%, i.e., from 2000 generated re-
quests only 1000 are successfully processed, while the others are
not processed during the blocking attack. This outcome can be
achieved easily be sending 10 DNS attack messages per second.
From the attacker’s side this even does not require the utilization
of distributed attacking hosts (DDoS), as even a very low perfor-
mance machine can create this amount of traffic.

For less powerful proxies, i.e., proxies with fewer parallel
processing queues this attack is even more effective with les-



Fig. 21. Scenario 1, no cache.

Fig. 22. Scenario 2, no cache.

Fig. 23. Scenario 3, no cache.
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ser messages. E.g., with n ¼ 4, three attack messages per sec-
ond are sufficient to achieve a full Denial of Service and with
n ¼ 16, 10 attack messages per second can reduce the proxy’s
performance by around 90% (only 200 out of 2000 messages
processed).

From the figures we can deduce that even very powerful proxies
can be rendered unoperational with low attacking resources.

In the next step we installed our DNS caching solution and ran
the setup again. Note, as we have proven that an attack can be suc-
cessful independently of the number of parallel processing queues,
we have run this setup exemplarily with i ¼ 4. We have imple-
mented four different caching strategies for the DNS cache, as de-
scribed in Section 3.5. The DNS cache was configured to keep 50%
of the maximum possible number of entries in its internal data-
base. Figs. 24–26 show the performance of a the developed DNS
cache.

From the figures it can be seen that an attack caching strategies
significantly increase the performance of the SIP proxy. However,
there are differences in performance based on the type of caching
strategy.



Fig. 24. Scenario 1, with cache.
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The most successful caching strategies are Least Frequently
Used (LFU) in all scenarios. However, only in sceanrio 1 there we
can see a major difference to the second successful strategy, which
is Least Recently Used (LRU). Both in scenarios 2 and 3 LRU caching
is nearly as effective as LFU. Both First-In-First-Out (FIFO) and Time
Cost (TC) Caching strategies yield lesser performance.
Fig. 25. Scenario 2

Fig. 26. Scenario 3

Table 6
Distribution of cached vs. uncached requests within testruns of about 120,000 requests

Testrun 1 2 3 4 5

# Cached (%) 99.98 99.97 99.99 99.91 99.
# Uncached (%) 0.01 0.02 0.01 0.08 0.
In absolute terms, there’s also a difference in efficiency of the
cache based on the sceanrio. While LFU reaches around 60% effi-
ciency (1200 of 2000 requests are processed) in sceanrio 1, this val-
ues increases to around 70% in scenario 2 and reaches around 80%
in sceanrio 3.
, with cache.

, with cache.

6 7 8 9 10

96 99.89 99.96 99.94 99.98 99.86
03 0.1 0.03 0.05 0.01 0.13
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Additionally, in comparison to the testrun without cache, we
can see that the attacking interval has a considerably lower impact
on efficiency.

The performance drop-down of LRU in scenario one can be ex-
plained by its special setup. As is this setup each callees are called
strictly in order, the cache will not be able to keep the last entry in
its database until it is called again. In the two other scenarios, be-
cause of its emphasis on calling one callee more often than the
other ones, performance of LFU can be increased. This fact also ex-
plains why there is an efficiency increase in the latter two
scenarios.

5.3.4. Real-life testing
We have installed the DNS cache into a real-life testbed archi-

tecture and have run it against user-generated traffic from the plat-
form. While within in this architecture customers have the choice
to call subscribers within the same service as well as customers in
foreign domains (e.g., iptel.org, vortel.net). However, only seldom
users do the latter. Hence, DNS resolving requests are focussed
on a very close range of DNS names. In this scenario, a DNS cache
can have a huge impact on performance, as it will have nearly
every time all necessary domain mappings inside its cache.

We have run 10 different measurements of system performance
at different times over a period of approximately one month. With
each testrun we have run the prototype to answer about 120,000 re-
quests generated from SIP messages. Table 6 shows the distribution
of requests that have been directly answered from the cache with re-
gard to those requests that needed to be resolved from the DNS sys-
tems, as they have been new domain names. As can be seen from the
table, nearly all requests benefit from cache operation.
6. Conclusion

In this work we have presented measurements from our devel-
oped two layer security architecture prototype to provide Denial of
Service attacks protection for VoIP systems.

The Denial of Service prevention mechanisms have been tested
in both laboratory and real-traffic environments. Simulations have
been specifically designed to test attacks based on message flood-
ing, malformed message usage, and crafted DNS requests.

The results of the developed IDS/IPS infrastructure against dif-
ferent kinds of flooding attacks proved to be effective in both lab-
oratory and real-life traffic environments. Even though the
configuration parameters for the real-life environment are still
being tuned, we can say that the addition of the IDS system in
the network has been an informative resource to know more about
the traffic moved, the events that occur in the network, detect mal-
functioning services and devices and of course for detecting attacks
against the network.

In relation to the malformed messages detection tool it has been
demonstrated that the proposed detection and prevention mecha-
nism is very robust and effective, and that the processing over-
heads that are introduced, even for the well-formed messages, to
the system are minimal.

The DNS cache module also presents very good results in both
laboratory and real-life traffic environments. With the tests real-
ized we have been able to see that the proxy was considerably
shorter blocked by DNS requests with the cache than it was with-
out it. That permits the SIP proxy to process more messages in time
and reduce the risk of dropping legitimate messages.

The developed solution gives enhanced SIP security protection
with specialized Denial of Service attacks. Currently, there have
not been noticed a substantial increase in attack traffic within VoIP
provider networks. However, as we have shown that attacks are
both easy to mount while still providing substantial damage to
the system, their usage will increase. In the future we are consid-
ering different DoS attacks as well as investigating a new threat
for VoIP networks: VoIP Spam.

Acknowledgments

This work has been partly financed through the EU project
SNOCER, http://www.snocer.org.

We would like to thank VozTelecom (www.voztelecom.com)
for providing the real-life testbed.

References

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Spark, M.
Handley, E. Schooler, Session Initiation Protocol, 2002, RFC 3261.

[2] M. Garcia-Martin, Input 3rd-Generation Partnership Project (3GPP) Release 5
Requirements on the Session Initiation Protocol (SIP), 2005, RFC 4083.

[3] J. Mirkovic, S. Dietrich, D. Dittrich, P. Reiher, Internet Denial of Service: Attack
and Defense Mechanisms, Prentice Hall, Upper Saddle River, NJ, 2005.

[4] H. Sengar, D. Wijesekera, H. Wang, S. Jajodia, Fast detection of denial of service
attacks on IP telephone, in: Proceedings of IEEE IWQoSG2006, New Haven, CT,
2006.

[5] Y. Rebahi, Change-point detection for voice over IP denial of service attacks, in:
15. ITG/GI – Fachtagung Kommunikation in Verteilten Systemen, February
2007.

[6] Y.-S. Wu, S. Bagchi, S. Garg, N. Singh, T. Tsai, SCIDIVE: a stateful and cross
protocol intrusion detection architecture for Voice-over-IP environments, in:
2004 International Conference on Dependable Systems and Networks, 2004.

[7] E. Chen, Detecting DoS attacks on SIP Systems, in: 1st IEEE Workshop on VoIP
Management and Security, 2006.

[8] M. Nassar, R. State, O. Festor, Intrusion detection mechanisms for VoIP
applications, in: 3rd Annual VoIP Security Workshop, Berlin, Germany, 2006.

[9] 2004 CSI/FBI Computer Crime and Security Survey, Technical Reports, 2004.
[10] S. Vuong, Y. Bai, A survey of VoIP intrusions and intrusion detection systems,

in: 6th International Conference on Advanced Communication Technology,
2004.

[11] D. Sisalem, J. Kuthan, S. Ehlert, Denial of service attacks targeting a SIP VoIP
infrastructure – attack scenarios and prevention mechanisms, in: IEEE
Network, vol. 20, No. 5 (special issue on securing VoIP), 2006.

[12] D. Geneiatakis, A. Dagiouklas, G. Kambourakis, C. Lambrinoudakis, S. Gritzalis,
S. Ehlert, D. Sisalem, Survey of security vulnerabilities in Session Initiation
Protocol, IEEE Communications Surveys and Tutorials (2006).

[13] VoIP Security and Privacy Threat Taxonomy. Available from: <http://
www.voipsa.org>.

[14] C. Wieser, M. Laakso, M. Schulzrinne, PROTOS: security testing of SIP
implementations. Available from: <http://www.compose.labri.fr/
documentation/sip/Documentation/Papers/Security/Pape/462.pdf>.

[15] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, L.
Stewart, HTTP Authentication: Basic and Digest Access Authentication (1999)
(RFC 2617).

[16] G. Zhang, S. Ehlert, T. Magedanz, D. Sisalem, Denial of service attack and
prevention on SIP VoIP infrastructures using DNS flooding, Principles, Systems
and Applications of IP Telecommunications (IPTComm 2007) (July) (2007).

[17] M. Roesch, Snort – lightweight intrusion detection for networks, in: 13th
USENIX LISA Conference, 1999.

[18] G. Kambourakis, J. Fiedler, D. Geneiatakis, S. Ehlert, T. Dagiuklas, High
availability for SIP based infrastructures: solutions and real-time
measurements performance evaluation, Elsevier Computer and Electrical
Engineering Journal, submitted for publication.

[19] D. Geneiatakis, G. Kambourakis, C. Lambrinoudakis, T. Dagiuklas, S. Gritzalis, A
framework for protecting a SIP-based infrastructure against malformed
message attacks, Computer Networks, Elsevier, Amsterdam, 2006.

[20] J. Rosenberg, H. Schulzrinne, Session Initiation Protocol (SIP): Locating SIP
Servers (2002) (RFC 3263).

[21] A. Silberschatz, P. Galvin, Operating System Concepts, seventh ed., Wiley,
Hoboken, NJ, 2005.

[22] C. Aggarwal, J. Wolf, P. Yu, Caching on the world wide web, Transactions on
Knowledge and Data Engineering 11 (1) (1999).

[23] Y. Rebahi, D. Sisalem, J. Kuthan, A. Pelinescu-Oncicul, B. Iancu, J. Janak, D.C.
Mierla, The SIP Express Router - An Open Source SIP Platform, in: Evolute
Workshop, Guildford, UK, 2003. Available from: <http://www.iptel.org/ser>.

[24] D. Sisalem, S. Ehlert, D. Geneiatakis, G. Kambourakis, T. Dagiuklas, J. Markl, M.
Rokos, O. Bontron, J. Rodriguez, J. Liu, Towards a secure and reliable VoIP
infrastructure, Technical Reports, 2005. Available from: <http://
www.snocer.org>.

[25] Prelude IDS Communication System. Available from: <http://www.prelude-
ids.org>.

[26] SnortSam, Firewall Control Plugin for the Snort IDS system. Available from:
<http://www.snortsam.org>.

[27] IPSet Firewall. Available from: <http://www.ipset.netfilter.org/>.
[28] Perl compatible regular expressions. Available from: <http://www.pcre.org>.
[29] SIPp – SIP Traffic Generator. Available from: <http://www.sipp.sourceforge.

net>.

http://www.snocer.org
http://www.voztelecom.com
http://www.voipsa.org
http://www.voipsa.org
http://www.compose.labri.fr/documentation/sip/Documentation/Papers/Security/Pape/462.pdf
http://www.compose.labri.fr/documentation/sip/Documentation/Papers/Security/Pape/462.pdf
http://www.iptel.org/ser
http://www.snocer.org
http://www.snocer.org
http://www.prelude-ids.org
http://www.prelude-ids.org
http://www.snortsam.org
http://www.ipset.netfilter.org/
http://www.pcre.org
http://www.sipp.sourceforge.net
http://www.sipp.sourceforge.net

	Two layer Denial of Service prevention on SIP VoIP infrastructures
	Introduction
	Related works

	Background information
	Voice over IP using the Session Initiation Protocol

	SIP security threats
	Resources susceptible to DoS in SIP servers
	Denial of Service attacks in SIP
	SIP High bandwidth message flooding
	Attacks using malformed messages
	DNS attacks

	The defense architecture
	Architecture overview
	Flooding defense
	Malicious messages defense
	DNS blocking defence

	Experiments
	Flooding experiments
	Scenario: REGISTER flooding
	Scenario: increasing INVITE message flooding

	Malicious message identification
	DNS attacks
	Testbed
	Scenario
	Results
	Real-life testing


	Conclusion
	Acknowledgments
	References


