
Detecting DNS Amplification Attacks

Georgios Kambourakis, Tassos Moschos, Dimitris Geneiatakis, Stefanos Gritzalis

Laboratory of Information and Communication Systems Security
Department of Information and Communication Systems Engineering

University of the Aegean, Karlovassi, GR-83200 Samos, Greece
{gkamb, tmos, dgen, sgritz}@aegean.gr

Abstract. DNS amplification attacks massively exploit open recursive DNS
servers mainly for performing bandwidth consumption DDoS attacks. The
amplification effect lies in the fact that DNS response messages may be
substantially larger than DNS query messages. In this paper, we present and
evaluate a novel and practical method that is able to distinguish between
authentic and bogus DNS replies. The proposed scheme can effectively protect
local DNS servers acting both proactively and reactively. Our analysis and the
corresponding real-usage experimental results demonstrate that the proposed
scheme offers a flexible, robust and effective solution.

Keywords: DNS Security; Denial of Service; DNS Amplification Attacks;
Detection and repelling mechanisms.

1 Introduction

Beyond doubt, the Internet is the ultimate terrain for attackers who seek to exploit its
infrastructure components in order to achieve an unauthorised access or to cause a
Denial of Service (DoS). DoS attacks can be classified into two major categories. In
the first one, the adversary featly crafts packets trying to exploit vulnerabilities in the
implemented software (service or protocol) at the target side. This class of attacks
includes outbreaks like the ping of death [1]. In the second one, the aggressor
attempts to overwhelm critical system’s resources, i.e. memory, CPU, network
bandwidth by creating numerous of well-formed but bogus requests. This type of
attack is also well known as flooding. Several incidents in the Internet have been
already reported in the literature [2]-[5] as flooding attacks, affecting either the
provided service or the underlying network infrastructure. The most severe among
them is presented in [2] and is known as Reflection Distributed DoS (RDDoS). Such
attacks can cost both money and productivity by rapidly paralyzing services in the
target network.

Recent attack incidents verify the catastrophic outcomes of this class of attacks
when triggered against key Internet components like Domain Name System (DNS)
servers. For example, as reported in [2], in October 2002 eight out of the thirteen root
DNS servers were suffered a massive DoS attack. Many other similar attacks were
triggered against DNS in 2003 and 2004 [13], [14]. In a recent study, the Distributed

Denial of Service (DDoS) activity in the Internet was analyzed employing a method
called “backscatter” [15]. The results of this study showed that nearly 4,000 DDoS
attacks are released each week. In February 2006, name servers hosting Top Level
Domain (TLD) zones were the frequent victims of enormous heavy traffic loads.

Contrariwise to normal DDoS attacks, where an arsenal of bots mounts an assault
on a single targeted server, the new attacks unfold by sending queries to DNS servers
with the return address aiming at the victim. In all cases the primary victim may be
the local DNS server(s) itself. Bandwidth exhaustion caused affects normal network
operation very quickly and incapacitates the target machine. For example, very
recently, in May, 2007, US-CERT has received a report that Estonia was experiencing
a national DDoS attack. According to the source, the attacks consisted of DNS
flooding of Estonia's root level servers. By this time 2,521 unique IP's have been
identified as part of the attacking botnets. This situation is far more difficult to
prevent because in this case the DNS server performs the direct attack. For instance,
in an ordinary DDoS attack, one can potentially block a bot instructed to launch a
DDoS attack by blocking the bot’s IP address. Contrariwise, it is not so simple to
block a DNS server without affecting and damaging the operation of a corporate
network. The amplification factor in such recursive DNS attacks stems from the fact
that tiny DNS queries can generate much larger UDP responses. Thus, while a DNS
query message is approximately 24 bytes (excluding UDP header) a response message
could easily triple that size. Generally, this outbreak takes advantage the fact that the
DNS is needed by any service (http, ftp etc) requires name resolution.

In this paper we focus on DNS amplification attack suggesting a novel, practical
and effective solution to mitigate its consequences. Our repelling mechanism can
protect local DNS servers both proactively and reactively. Specifically, it can
proactively alert administrators before the attack affects DNS server operation, and
reactively by automatically blocking bots’ IP addresses at the firewall or the edge
router(s). This means that every local network host is well protected too, in case that it
is the actual target of the attack taking place. Actually, some bogus DNS replies will
reach the target host at the first stages of the attack, but as soon as an alert is
generated all subsequent falsified DNS replies will be dropped at the perimeter. We
also evaluate our mechanism considering real-usage scenarios, false positives and
false negatives. The rest of the paper is organized as follows. Next section focuses on
DNS DoS flooding attacks, while Section 3 presents the existing countermeasures and
remedies proposed so far. Section 4 introduces and evaluates the proposed
mechanism, in terms of response time, false negatives and false positives. Section 4
draws a conclusion giving also some pointers for future work.

2 Flooding Attacks and the Domain Name System

2.1 General description and Problem statement

The main goal of any flooding attack is the expeditious consumption of critical
system resources in order to paralyse the provided services and make them

unavailable to its legitimate users. Assuming that such an attack takes place against or
exploits a critical component like the DNS it is very likely that would quickly
incapacitate the overall network’s services making it unavailable to any legitimate
user. Several researchers have pointed out the threat of flooding attacks using
recursive DNS name servers open to the world. For instance, according to a recent
study [17], which is based on case studies of several attacked ISPs reported to have on
a volume of 2.8 Gbps, one event indicated attacks reaching as high as 10 Gbps and
used as many as 140,000 exploited name servers.

Flooding attacks against DNS are similar to other well documented Internet
services flooding attacks and could be launched in two distinct ways. In the first case
the attacker sends a large number of bogus DNS requests either from a single or
multiple sources, depending on the flooding architecture utilized [4], [5]. An example
of multiple sources flooding architecture attack against a DNS is depicted in Figure 1.
According to this scenario, the attacker orchestrates usually innocent hosts, called
bots, to simultaneously generate fake DNS requests aiming at disrupting the normal
DNS operation by consuming its resources; mainly memory and CPU.

com
m

and

DNS Req

D
N

S
 R

eq DNS R
eq

Fig. 1 Multiple sources flooding attack architecture

On the other hand, the most sophisticated and “modern” attacks exploit the DNS
components themselves in an attempt to magnify flooding attack consequences.
Putting it another way, in a DNS amplification attack scenario, the attacker exploits
the fact that small size requests could generate larger responses. Especially, new RFC
specifications supporting IPv6, DNS Secure, Naming Authority Pointer (NAPTR) and
other extensions to the DNS system, require name servers to return much bigger
responses to queries. The relation between a request and the corresponding response
is known as the amplification factor and is computed using the following formula:

Amplification Factor = size of (response) / size of (request)

The bigger the amplification factor is, the quicker the bandwidth and resource

consumption at the victim is induced. Consequently, in the case of DNS amplification

attack the aggressor is based on the fact that a single DNS request (small data length)
could generate very larger responses (bigger data length). For example, in the initial
DNS specification [8] the DNS response was restricted up to 512 bytes length, while
in [9] even bigger. The attack unfolds as follows: The attacker falsifies the source
address field in the UDP datagram to be that of a host on the victims’ network. Using
the spoofed address, a DNS query for a valid resource record is crafted and sent to an
intermediate name server. The latter entity is usually an open recursive DNS server,
which forwards the final response towards the target machine as illustrated in Figure
2. The attacker will repeatedly send the query to the intermediate name server but
with all the responses going to the victim network. Potentially, the adversary could
consume the entire bandwidth of a T1 line by generating a few thousand responses.

Supposing that the attacker employs a distributed architecture similar to that
presented in Figure 2, it is obvious that the bandwidth and resources consumption rate
at the victim increase very rapidly. Furthermore, it should be noted that the attacker
featly spoofs all query requests to include a specific type of DNS resource in order the
authoritative DNS server to generate large responses. This task could be managed
either by discovering which DNS servers store RRs that when requested create large
responses or by compromising a DNS server and deliberately include a specific
record – also known as the amplification record - that will create a large response. An
example of this technique, exploiting large TXT records which is introduced in
Extended DNS (EDNS) [9]. As stated in [17] by combining different response types,
the amplification effect can reach up to a factor higher than 60. After that, the attacker
collects a list of open recursive name servers that will recursively query for, and then
return the amplification record he/she created. Even a list of known name servers may
be more than adequate. As stated in [17] there is a 75% chance that any known name
server is an open resolver too, thus a copy of a TLD zone file may be sufficient. A
detailed description of DNS amplification attacks is presented in [6].

Fig. 2 General Architecture of a DNS amplification attack

2.2 Protection Mechanisms

In this section we present known countermeasures to defend against amplification
attacks. Generally, in order to shield against DNS DDoS attacks different protection
layers must be deployed. Having these mechanisms acting simultaneously, it is very
possible to build a more secure, redundant and robust DNS infrastructure and shield
our network against this category of attacks.

DNS employs UDP to transport requests and responses. As a result, the malicious
user is able to fabricate the appropriate spoofed DNS requests very easily. Thus, as a
first level of protection it should be introduced a spoof detection / prevention
mechanism like the ones proposed in [10]-[13]. In some cases such mechanisms are
implemented as part of a stateful firewall as well. Moreover, to mitigate DNS cache
poisoning and Man-In-The-Middle (MITM) attacks, which usually are launched at the
early stages of a DNS amplification attack, additional security mechanisms should be
employed. These are necessary in order to ensure the integrity and origin
authentication of the DNS data that reside either in RR cache or in the zone file
[10],[14].

Apart from well accepted practices to securely configure DNS servers [19], another
effective remediation, at least against outsiders, is to disable open recursion on name
servers from external sources and only accepting recursive DNS originating from
trusted sources. This tactic substantially diminishes the amplification vector [18].
Available data until now reveal that the majority of DNS servers operate as open
recursive servers. The Measurement Factory [17] reports that more than 75% of
domain name servers of approximately 1.3 million sampled permit recursive name
service to arbitrary querying sources. This leaves abandoned name servers to both
cache poisoning and DoS attacks.

 2.3 Limitations

Although the generic countermeasures and remedies referred in previous subsection
could decrease the chances of potential attackers to launch a flooding attack, are not
able to provide an effective solution against DNS amplification attacks. More
specifically, it is well known that these mechanisms are employed only by a limited
number of DNS servers. As a result many DNS servers are unprotected or
misconfigured, which in turn are exploited by aggressors in order to amplify the
hazardous effects of flooding attacks as described previously. Moreover, solutions
like DNS Secure [10] do not offer an efficient countermeasure against flooding
attacks as already argued in [15]. In addition, these mechanisms do not provide any
security against (malevolent) insiders, who are responsible for many security
incidents. On the top of that, the traffic generated in a DNS amplification attack
seems to be normal, so the prevention of such an attack could not be achieved only
with the employment of the security mechanisms presented in the previous section.
Therefore, the introduction of a specific detection / prevention mechanism against
DNS amplification attacks should be considered mandatory.

To the best of our knowledge until now the only method that specifically addresses
DNS amplification attacks is the DNS-Guard one [20]. This approach involves

several policies that generate some form of cookies for a DNS server to implement
origin authentication; that is to verify whether each incoming request is indeed from
where the request datagram says it is from. However, the main problem with DNS-
Guard is that it introduces large traffic and delay overhead and mandates wide scale
deployment.

3. The proposed solution

Hereunder we describe and evaluate the proposed solution. It is stressed that our
mechanism is primarily designed to effectively protect local DNS servers. As
mentioned in the introduction local network hosts are also protected but indirectly.
Actually, some bogus DNS replies will reach the host-victim at the first stages of the
attack, but as soon as an alert is generated all subsequent falsified DNS replies will be
dropped at the perimeter. In any case protecting local network hosts is rather a simple
task to accomplish. That is, having the firewall to only accept traffic coming from
trusted DNS servers. However, this solution is not possible to implement in a DNS
server; blocking the 53 port would have undesired implications to the DNS service
itself.

3.1 Description

The proposed mechanism is based on the one-to-one strict mapping of DNS requests
(queries) and responses. Specifically, under DNS normal operation, once a client
requests a name resolution sends a request towards the appropriate DNS, which is
responsible to create the corresponding response. Nevertheless, when a DNS
amplification attack is taking place, the targeted DNS server receives responses
without having previously sent out the corresponding request. As a result, such data,
characterised as orphan pairs, must be immediately classified as suspicious.

Based on the aforementioned simple but fruitful idea, we employ a monitor to
record both DNS requests and responses using the IPtraf tool [16]. At the same time,
our custom-made Hypertext Preprocessor (PHP) based tool, namely DNS
Amplification Attacks Detector (DAAD), process on-the-fly the captured network
data, which are stored in the appropriate MySQL database (see Table 1 & 2).
Thereby, the incoming DNS traffic is classified as suspicious or not and generate the
corresponding alert in the case of an undergoing attack. Note, for example, that the
second line of Table 2 (response) matches with the first line of Table 1 (request). The
architecture employed by the proposed scheme is depicted in Figure 3, while the
overall DAAD’s detection logic is presented in Figure 4. The interface of the DAAD
tool is publicly accessible at: http://f6tmos.samos.aegean.gr/~tmos (username: user &
password: kalimera!). All the corresponding source code is also available by the
authors upon request.

Bl
oc

k
IP

Fig. 3 The proposed DNS Amplification Detection Architecture

Table 1. An Example of the DNS requests Table

Source IP Source
Port

Destination IP Destination
Port

195.251.162.96 32790 195.251.128.5 53
195.251.162.96 32790 194.177.210.210 53
195.251.162.96 32790 194.177.210.210 53
195.251.162.96 32790 195.251.177.9 53
195.251.162.96 32790 192.33.4.12 53
195.251.162.96 32790 192.5.6.32 53
195.251.162.96 32790 192.12.94.32 53

Table 2. An Example of the DNS responses Table

Source IP Source
Port

Destination IP Destination
Port

Status

194.177.210.210 53 195.251.162.96 32790 OK
195.251.128.5 53 195.251.162.96 32790 OK
195.251.177.9 53 195.251.162.96 32790 OK
192.33.4.12 53 195.251.162.96 32790 OK
192.5.6.32 53 195.251.162.96 32790 OK
192.12.94.32 53 195.251.162.96 32790 OK
204.13.161.15 53 195.251.162.96 2481 SUSPICIOUS

In a nutshell, when a DNS message is received the DAAD engine determines

whether the message is a response or a request. For any received request or response
the DAAD tool creates a new entry to the request / response table (see Tables 1 & 2
accordingly). Once a message is identified as a response the DAAD module checks
for the existence of the corresponding request in the queries table by performing an
SQL lookup. If the response does not match with none of the requests logged
previously in a given timeframe then is marked as suspicious (see the last line of
Table 2). Additionally, as soon as the number of suspicious messages exhibits a given
administrator-specified threshold an alert is generated and firewall rules are
automatically updated to block the attacker’s data as depicted in Figure 3. All the
parameters in the aforementioned procedure, i.e. timeframe, threshold, can be

dynamically updated and depend on the administrator’s security policies in the
specific network domain. It should be stated that the proposed solution could be also
introduced as part of a statefull firewall. Currently, as mentioned in Section 2.2,
statefull firewalls are able to protect DNS only against unauthorized request.

Fig. 4 DAAD’s engine detection logic

3.2 Evaluation

In order to evaluate the accuracy of the proposed mechanism we employed the
architecture presented in Figure 3. A common desktop machine which incorporates a
Pentium IV 2,8GHz processor with 768 MB RAM and 80 GB IDE hard disk was
configured to serve as the local DNS server. DAAD was installed in the same
machine with the DNS server. Of course, this is the worst case in terms of
performance and it is utilized here deliberately. For peak performance DAAD should
be placed in a separate independent machine in parallel with the DNS server. Two
email servers - which consult 6 black lists of email addresses - and a whole sub-
network of our university was instructed to hit this DNS machine. This means that
under normal operation the specific machine was processing more than 30,000 DNS
queries per hour. It is worth noting that during all experiments no false negative was
generated.

As already mentioned, upon receiving a DNS reply the DAAD tool must decide if
it is legitimate or suspicious. To do so, DAAD must check against a subset of

previously DNS queries logged into the database. However, frequent SQL lookups
substantially affect DAAD’s performance. Thus, every incoming DNS reply must be
checked not against a big subset of queries, but those issued before a carefully tuned
timeframe. DAAD operation showed that the bigger this time-window is, the lesser
false alarms are recorded. On the other hand, as already mentioned, increasing this
timeframe, DAAD’s performance reduces. Moreover, setting this timeframe too high
there is a small - and the only - possibility to generate false negatives. For instance,
consider the following example when timeframe is set to 30 secs: our DNS server
Bob sends a request towards the DNS server Alice at time 00:00. Alice responds to
the request by sending a valid reply at time 00:01. Considering the rare case that Alice
is also a bot it can bombard Bob with bogus replies for the next 29 secs without being
identified by DAAD. Corresponding tests in our network showed that this timeframe
becomes optimum when set at 2 seconds.

Every one minute, which is the minimum allowed value1, DAAD performs a check
if there is an undergoing attack by examining the number of suspicious packets
logged. As presented in Table 3, which consolidates DAAD operation for a 12 hour
time interval (from 08:00 to 20:00), false positives span between 4 and 31 Thus,
depending on the network traffic, false alarms can be safely prevented if the number
of suspicious replies gathered within this 1 min interval is set between 500 and 1,000.
Having this threshold exceeded an alarm is generated.

Table 3. DAAD statistics for a 12 hour interval - no attack occurred
(timeframe = 2 seconds, threshold to activate alarm = 500, check for attack every 1 min,

flush database check every 1 min if it contains more than 5,000 records)

Time Requests Responses
False

Positives

Requests
delay avg

(secs)

Responses
delay avg

(secs)
08-09 32.819 31.303 20 0.5578 0.5723

09-10 31.655 30.254 18 0.5767 0.5908

10-11 31.965 30.650 4 0.6031 0.6276

11-12 39.260 37.136 28 0.5997 0.6269

12-13 42.852 40.777 20 0.6068 0.6314

13-14 33.383 31.875 9 0.6496 0.6630

14-15 35.346 33.580 9 0.5783 0.6056

15-16 36.108 34.528 31 0.5857 0.6121

16-17 34.424 32.976 6 0.5575 0.5838

17-18 31.281 29.884 11 0.5543 0.5726

18-19 34.776 32.664 6 0.5544 0.5860

19-20 30.133 28.421 4 0.5496 0.5707

Our experiments showed that letting the database to constantly grow it will

eventually crash at about 2,500,000 records. Of course, this value is implementation
specific, but without dispute we need a policy for flushing periodically the database,
especially in case of an attack (see Figure 5). Therefore, every one minute DAAD

1 As it was placed into the operating system scheduler - the clock daemon in Unix (Cron)

examines the size of the database. If it contains more than 5,000 requests, then DAAD
removes all requests that their timeframe is greater than 2 secs. More importantly, the
same tactic, i.e. periodically reduce the size of the database, is followed in case of an
attack as well (see Figure 5). This happens since smaller database means better
performance. It is stressed that this arrangement concerns the DNS requests only, not
the replies. In case of an attack the incoming messages (bogus DNS replies) will
increase very rapidly but without affecting the overall DAAD performance, since the
SQL lookups take into account only the requests. Replies are also removed from the
database but far less frequent than requests. Removed data can also be transferred to
another database to serve as logfiles at a later time.

2007-6-14 4:5:1 - requests=5036 - responses=4855 - suspicious=0 - Empty Database
2007-6-14 4:9:1 - requests=1257 - responses=2557 - suspicious=921 – Attack
2007-6-14 4:10:1 - requests=361 - responses=2322 - suspicious=1223 - Attack
2007-6-14 4:11:1 - requests=235 - responses=952 - suspicious=572 - Attack
2007-06-14 04:29:01 - requests=5007 - responses=4848 - suspicious=1 - Empty Database
2007-06-14 04:46:02 - requests=5288 - responses=4988 - suspicious=3 - Empty Database
2007-06-14 05:00:02 - requests=5233 - responses=4833 - suspicious=5 - Empty Database
2007-06-14 05:15:01 - requests=5360 - responses=5094 - suspicious=1 - Empty Database
2007-06-14 05:28:02 - requests=5223 - responses=4942 - suspicious=8 - Empty Database

Fig. 5 Snapshot of the logfile that becomes updated when the database flushes

Every record in the database, either DNS request or response, is associated with
two distinct times. The first one is the time taken from the iptraf tool. That is the exact
time the packet came in to or left the local network. The other one is the time the
corresponding record was appended to the database. Subtracting these times we get
the overall delay for each MySQL transaction. This time includes processing time and
packet characterization time duration (for responses only) as legitimate or suspicious
as well. As shown in Table 3 the average delay time for both queries and responses
span between 0.5496 and 0.6630 seconds. Naturally, this time greatly depends on the
size of the database and the specified timeframe. These times also attest that in
average, whether under attack or not, DAAD performs nearly the same.

Another valuable remark is that the number of requests is always greater that the
number of responses. Our experiments showed that under normal traffic the total
number of responses is about 95% of the issued requests. Having this relation
disrupted means that something goes wrong. For example, when self-launching an
attack for 5 min duration we recorded 25,606 requests and 68,575 responses. A
snapshot of the logfile that is updated every time the database flushes is depicted
below.

Last but not least, we present further down DAAD results gathered during a 20 min
duration self-attack. According to the attack scenario, the aggressor generates spoofed
DNS requests and sends it towards the local DNS server, trying to cause a DoS. The
relation between the number of DNS queries and replies - including the number of
bogus packets received - is shown in Figure 6. Also, to be able to compare with
values presented previously in Table 3 we report hereunder some comparative key
metrics in Table 4.

Table 4. Comparative key metrics in seconds for the DAAD tool:
Under attack vs. Normal operation

Requests
delay avg

Replies
delay avg Max Min

St. Deviation
requests

St. Deviation
replies

Under
attack 0.6076 0.6504 0.9870 0.3846 0.1900 0.1028

Normal
operation 0.5811 0.6036 0.6630 0.5496 0.0297 0.0292

0

500

1.000

1.500

2.000

2.500

3.000

3.500

0:00

0:01

0:02

0:03

0:04

0:05

0:06

0:07

0:08

0:09

0:10

0:11

0:12

0:13

0:14

0:15

0:16

0:17

0:18

0:19

Time (minutes)

N
um

be
r o

f U
D

P
Pa

ck
et

s

Requests
Responses
Bogus

Fig. 6 Relation of DNS requests and responses (including bogus ones)
during a 20 min duration self-attack

4 Conclusions and Future work

Name servers can be maliciously used as DDoS attack amplifiers. If this is done on an
ongoing basis with a large number of open name servers, it can quickly flood the
victim's IP address with responses from thousands (or tens of thousands) of name
servers, thereby exhausting the victim's available network bandwidth. The actual
target of the attack may be the local DNS server or any host inside the local network.
At any rate, the former entity will suffer the consequences of the attack first of any
other. Likewise to the Smurf attack, the critical factor here is the amplification effect
that is based on the fact that tiny queries can potentially generate much larger UDP
packets in response. In this paper several aspects of these attacks were discussed and
analyzed. On the top of that, we presented a novel, practical and efficient mechanism,
namely DAAD, to defend against them. In its current pilot stage the proposed solution
is practical and easy to implement in any network realm. Moreover, test results
showed that is effective and can be easily parameterized to fit properly into any
network domain. As future work we shall investigate alternative and more efficient
data stores like Bloom Filters [21]. This would not only improve the performance of
the DAAD tool, but make it scalable as well.

References

1 Cert Advisory CA-1996-26, "Denial of Service Attack via ping", http://www.cert.org/
advisories/CA-1996-26.html, Dec. 1997.

2 Gibson, S., “DRDoS Distributed Reflection Denial of Service”,http://grc.com/dos/
drdos.htm, 2002.

3 Glenn C., Kesidis, G., Brooks, R. R. and Suresh Rai, “Denial-of-Service Attack-Detection
Techniques” IEEE Internet computing 2006.

4 Peng, T., Leckie, C. and Kotagiri, R., "Survey of Network-based Defense Mechanisms
Countering the DoS and DDoS Problems", to appear in ACM Computing Surveys.

5 Mirkovic, J. et al., Internet Denial of Service: Attack and Defense Mechanism.
6 Security and Stability Advisory Committee, “DNS Distributed Denial of Service (DDoS)

Attacks”, http://www.icann.org/committees/security/dns-ddos-advisory-31mar06.pdf,
March 2006.

7 Mockapetris P., “Domain Names – Concepts and Facilities”, RFC 1034, November 1987.
8 Mockapetris P., “Domain Names – Implementation and Specification”, RFC 1035, Nov.

1987.
9 Vixie P., “Extension Mechanisms for DNS”, RFC 2671, August 1999.
10 Arends, R., Austein, R., Larson, M., Massey, D., Rose, S., "DNS Security Introduction

and Requirements", RFC 4033, March 2005.
11 Arends, R., Austein, R., Larson, M., Massey, D., Rose, S., “Resource Records for the DNS

Security Extensions”, RFC 4034, March 2005.
12 Arends, R., Austein, R., Larson, M., Massey, D., Rose, S., “Protocol Modifications for the

DNS Security Extensions”, RFC 4035, March 2005.
13 Guo, F., Chen, J., and Chiueh, T., “Spoof Detection for Preventing DoS Attacks against

DNS Servers”, In Proceedings of the 26th IEEE international Conference on Distributed
Computing Systems , July 2006

14 Chandramouli, R. and Rose, S. “An Integrity Verification Scheme for DNS Zone file
based on Security Impact Analysis”, In Proceedings of the 21st Annual Computer Security
Applications Conference, Dec. 2005.

15 Atkins, D., Austein, R., “Threat Analysis of the Domain Name System (DNS)”, RFC
3833, Aug. 2004.

16 IPTraf - An IP Network Monitor, http://iptraf.seul.org/.
17 Vaughn, R. and Evron, G., “DNS Amplification Attacks, A preliminary release”, March

2006.
18 ICANN Report, “DNS Distributed Denial of Service (DDoS) Attacks”, Security and

Stability Advisory Committee (SSAC), March 2006.
19 Vixie, P., SAC004, Securing The Edge, http://www.icann.org/committees/security/

sac004.txt.
20 Guo, F., Chen, J. and Chiueh, T. “Spoof Detection for Preventing DoS Attacks against

DNS Servers,” in Proc. of ICDCS 2006.
21 Bloom, B., “Space/time trade-offs in hash coding with allowable errors” Communications

of ACM, 13(7), pp. 422-426, July 1970.

