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Abstract. DNS amplification attacks massively exploit open recursive DNS 
servers mainly for performing bandwidth consumption DDoS attacks. The 
amplification effect lies in the fact that DNS response messages may be 
substantially larger than DNS query messages. In this paper, we present and 
evaluate a novel and practical method that is able to distinguish between 
authentic and bogus DNS replies. The proposed scheme can effectively protect 
local DNS servers acting both proactively and reactively. Our analysis and the 
corresponding real-usage experimental results demonstrate that the proposed 
scheme offers a flexible, robust and effective solution. 
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1   Introduction 

Beyond doubt, the Internet is the ultimate terrain for attackers who seek to exploit its 
infrastructure components in order to achieve an unauthorised access or to cause a 
Denial of Service (DoS). DoS attacks can be classified into two major categories. In 
the first one, the adversary featly crafts packets trying to exploit vulnerabilities in the 
implemented software (service or protocol) at the target side. This class of attacks 
includes outbreaks like the ping of death [1]. In the second one, the aggressor 
attempts to overwhelm critical system’s resources, i.e. memory, CPU, network 
bandwidth by creating numerous of well-formed but bogus requests. This type of 
attack is also well known as flooding. Several incidents in the Internet have been 
already reported in the literature [2]-[5] as flooding attacks, affecting either the 
provided service or the underlying network infrastructure. The most severe among 
them is presented in [2] and is known as Reflection Distributed DoS (RDDoS). Such 
attacks can cost both money and productivity by rapidly paralyzing services in the 
target network. 

Recent attack incidents verify the catastrophic outcomes of this class of attacks 
when triggered against key Internet components like Domain Name System (DNS) 
servers. For example, as reported in [2], in October 2002 eight out of the thirteen root 
DNS servers were suffered a massive DoS attack. Many other similar attacks were 
triggered against DNS in 2003 and 2004 [13], [14]. In a recent study, the Distributed 



Denial of Service (DDoS) activity in the Internet was analyzed employing a method 
called “backscatter” [15]. The results of this study showed that nearly 4,000 DDoS 
attacks are released each week. In February 2006, name servers hosting Top Level 
Domain (TLD) zones were the frequent victims of enormous heavy traffic loads. 

Contrariwise to normal DDoS attacks, where an arsenal of bots mounts an assault 
on a single targeted server, the new attacks unfold by sending queries to DNS servers 
with the return address aiming at the victim. In all cases the primary victim may be 
the local DNS server(s) itself. Bandwidth exhaustion caused affects normal network 
operation very quickly and incapacitates the target machine. For example, very 
recently, in May, 2007, US-CERT has received a report that Estonia was experiencing 
a national DDoS attack. According to the source, the attacks consisted of DNS 
flooding of Estonia's root level servers. By this time 2,521 unique IP's have been 
identified as part of the attacking botnets. This situation is far more difficult to 
prevent because in this case the DNS server performs the direct attack. For instance, 
in an ordinary DDoS attack, one can potentially block a bot instructed to launch a 
DDoS attack by blocking the bot’s IP address. Contrariwise, it is not so simple to 
block a DNS server without affecting and damaging the operation of a corporate 
network. The amplification factor in such recursive DNS attacks stems from the fact 
that tiny DNS queries can generate much larger UDP responses. Thus, while a DNS 
query message is approximately 24 bytes (excluding UDP header) a response message 
could easily triple that size. Generally, this outbreak takes advantage the fact that the 
DNS is needed by any service (http, ftp etc) requires name resolution.  

In this paper we focus on DNS amplification attack suggesting a novel, practical 
and effective solution to mitigate its consequences. Our repelling mechanism can 
protect local DNS servers both proactively and reactively. Specifically, it can 
proactively alert administrators before the attack affects DNS server operation, and 
reactively by automatically blocking bots’ IP addresses at the firewall or the edge 
router(s). This means that every local network host is well protected too, in case that it 
is the actual target of the attack taking place. Actually, some bogus DNS replies will 
reach the target host at the first stages of the attack, but as soon as an alert is 
generated all subsequent falsified DNS replies will be dropped at the perimeter. We 
also evaluate our mechanism considering real-usage scenarios, false positives and 
false negatives. The rest of the paper is organized as follows. Next section focuses on 
DNS DoS flooding attacks, while Section 3 presents the existing countermeasures and 
remedies proposed so far. Section 4 introduces and evaluates the proposed 
mechanism, in terms of response time, false negatives and false positives. Section 4 
draws a conclusion giving also some pointers for future work. 

2   Flooding Attacks and the Domain Name System 

2.1 General description and Problem statement 

The main goal of any flooding attack is the expeditious consumption of critical 
system resources in order to paralyse the provided services and make them 



 

 

unavailable to its legitimate users. Assuming that such an attack takes place against or 
exploits a critical component like the DNS it is very likely that would quickly 
incapacitate the overall network’s services making it unavailable to any legitimate 
user. Several researchers have pointed out the threat of flooding attacks using 
recursive DNS name servers open to the world. For instance, according to a recent 
study [17], which is based on case studies of several attacked ISPs reported to have on 
a volume of 2.8 Gbps, one event indicated attacks reaching as high as 10 Gbps and 
used as many as 140,000 exploited name servers. 

Flooding attacks against DNS are similar to other well documented Internet 
services flooding attacks and could be launched in two distinct ways. In the first case 
the attacker sends a large number of bogus DNS requests either from a single or 
multiple sources, depending on the flooding architecture utilized [4], [5]. An example 
of multiple sources flooding architecture attack against a DNS is depicted in Figure 1. 
According to this scenario, the attacker orchestrates usually innocent hosts, called 
bots, to simultaneously generate fake DNS requests aiming at disrupting the normal 
DNS operation by consuming its resources; mainly memory and CPU. 
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Fig. 1 Multiple sources flooding attack architecture 

On the other hand, the most sophisticated and “modern” attacks exploit the DNS 
components themselves in an attempt to magnify flooding attack consequences. 
Putting it another way, in a DNS amplification attack scenario, the attacker exploits 
the fact that small size requests could generate larger responses. Especially, new RFC 
specifications supporting IPv6, DNS Secure, Naming Authority Pointer (NAPTR) and 
other extensions to the DNS system, require name servers to return much bigger 
responses to queries. The relation between a request and the corresponding response 
is known as the amplification factor and is computed using the following formula: 

 
Amplification Factor = size of (response) / size of (request) 

 
The bigger the amplification factor is, the quicker the bandwidth and resource 

consumption at the victim is induced. Consequently, in the case of DNS amplification 



attack the aggressor is based on the fact that a single DNS request (small data length) 
could generate very larger responses (bigger data length). For example, in the initial 
DNS specification [8] the DNS response was restricted up to 512 bytes length, while 
in [9] even bigger. The attack unfolds as follows: The attacker falsifies the source 
address field in the UDP datagram to be that of a host on the victims’ network. Using 
the spoofed address, a DNS query for a valid resource record is crafted and sent to an 
intermediate name server. The latter entity is usually an open recursive DNS server, 
which forwards the final response towards the target machine as illustrated in Figure 
2. The attacker will repeatedly send the query to the intermediate name server but 
with all the responses going to the victim network. Potentially, the adversary could 
consume the entire bandwidth of a T1 line by generating a few thousand responses. 

Supposing that the attacker employs a distributed architecture similar to that 
presented in Figure 2, it is obvious that the bandwidth and resources consumption rate 
at the victim increase very rapidly. Furthermore, it should be noted that the attacker 
featly spoofs all query requests to include a specific type of DNS resource in order the 
authoritative DNS server to generate large responses. This task could be managed 
either by discovering which DNS servers store RRs that when requested create large 
responses or by compromising a DNS server and deliberately include a specific 
record – also known as the amplification record - that will create a large response. An 
example of this technique, exploiting large TXT records which is introduced in 
Extended DNS (EDNS) [9]. As stated in [17] by combining different response types, 
the amplification effect can reach up to a factor higher than 60. After that, the attacker 
collects a list of open recursive name servers that will recursively query for, and then 
return the amplification record he/she created. Even a list of known name servers may 
be more than adequate. As stated in [17] there is a 75% chance that any known name 
server is an open resolver too, thus a copy of a TLD zone file may be sufficient. A 
detailed description of DNS amplification attacks is presented in [6]. 

 

 
Fig. 2 General Architecture of a DNS amplification attack 



 

 

2.2   Protection Mechanisms 

In this section we present known countermeasures to defend against amplification 
attacks. Generally, in order to shield against DNS DDoS attacks different protection 
layers must be deployed. Having these mechanisms acting simultaneously, it is very 
possible to build a more secure, redundant and robust DNS infrastructure and shield 
our network against this category of attacks. 

DNS employs UDP to transport requests and responses. As a result, the malicious 
user is able to fabricate the appropriate spoofed DNS requests very easily. Thus, as a 
first level of protection it should be introduced a spoof detection / prevention 
mechanism like the ones proposed in [10]-[13]. In some cases such mechanisms are 
implemented as part of a stateful firewall as well. Moreover, to mitigate DNS cache 
poisoning and Man-In-The-Middle (MITM) attacks, which usually are launched at the 
early stages of a DNS amplification attack, additional security mechanisms should be 
employed. These are necessary in order to ensure the integrity and origin 
authentication of the DNS data that reside either in RR cache or in the zone file 
[10],[14]. 

Apart from well accepted practices to securely configure DNS servers [19], another 
effective remediation, at least against outsiders, is to disable open recursion on name 
servers from external sources and only accepting recursive DNS originating from 
trusted sources. This tactic substantially diminishes the amplification vector [18]. 
Available data until now reveal that the majority of DNS servers operate as open 
recursive servers. The Measurement Factory [17] reports that more than 75% of 
domain name servers of approximately 1.3 million sampled permit recursive name 
service to arbitrary querying sources. This leaves abandoned name servers to both 
cache poisoning and DoS attacks. 

 2.3   Limitations 

Although the generic countermeasures and remedies referred in previous subsection 
could decrease the chances of potential attackers to launch a flooding attack, are not 
able to provide an effective solution against DNS amplification attacks. More 
specifically, it is well known that these mechanisms are employed only by a limited 
number of DNS servers. As a result many DNS servers are unprotected or 
misconfigured, which in turn are exploited by aggressors in order to amplify the 
hazardous effects of flooding attacks as described previously. Moreover, solutions 
like DNS Secure [10] do not offer an efficient countermeasure against flooding 
attacks as already argued in [15]. In addition, these mechanisms do not provide any 
security against (malevolent) insiders, who are responsible for many security 
incidents. On the top of that, the traffic generated in a DNS amplification attack 
seems to be normal, so the prevention of such an attack could not be achieved only 
with the employment of the security mechanisms presented in the previous section. 
Therefore, the introduction of a specific detection / prevention mechanism against 
DNS amplification attacks should be considered mandatory. 

To the best of our knowledge until now the only method that specifically addresses 
DNS amplification attacks is the DNS-Guard one [20]. This approach involves 



several policies that generate some form of cookies for a DNS server to implement 
origin authentication; that is to verify whether each incoming request is indeed from 
where the request datagram says it is from. However, the main problem with DNS-
Guard is that it introduces large traffic and delay overhead and mandates wide scale 
deployment. 

3.   The proposed solution 

Hereunder we describe and evaluate the proposed solution. It is stressed that our 
mechanism is primarily designed to effectively protect local DNS servers. As 
mentioned in the introduction local network hosts are also protected but indirectly. 
Actually, some bogus DNS replies will reach the host-victim at the first stages of the 
attack, but as soon as an alert is generated all subsequent falsified DNS replies will be 
dropped at the perimeter. In any case protecting local network hosts is rather a simple 
task to accomplish. That is, having the firewall to only accept traffic coming from 
trusted DNS servers. However, this solution is not possible to implement in a DNS 
server; blocking the 53 port would have undesired implications to the DNS service 
itself.  

3.1   Description 

The proposed mechanism is based on the one-to-one strict mapping of DNS requests 
(queries) and responses. Specifically, under DNS normal operation, once a client 
requests a name resolution sends a request towards the appropriate DNS, which is 
responsible to create the corresponding response. Nevertheless, when a DNS 
amplification attack is taking place, the targeted DNS server receives responses 
without having previously sent out the corresponding request. As a result, such data, 
characterised as orphan pairs, must be immediately classified as suspicious. 

Based on the aforementioned simple but fruitful idea, we employ a monitor to 
record both DNS requests and responses using the IPtraf tool [16]. At the same time, 
our custom-made Hypertext Preprocessor (PHP) based tool, namely DNS 
Amplification Attacks Detector (DAAD), process on-the-fly the captured network 
data, which are stored in the appropriate MySQL database (see Table 1 & 2). 
Thereby, the incoming DNS traffic is classified as suspicious or not and generate the 
corresponding alert in the case of an undergoing attack. Note, for example, that the 
second line of Table 2 (response) matches with the first line of Table 1 (request). The 
architecture employed by the proposed scheme is depicted in Figure 3, while the 
overall DAAD’s detection logic is presented in Figure 4. The interface of the DAAD 
tool is publicly accessible at: http://f6tmos.samos.aegean.gr/~tmos  (username: user & 
password: kalimera!). All the corresponding source code is also available by the 
authors upon request. 
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Fig. 3 The proposed DNS Amplification Detection Architecture 

Table 1. An Example of the DNS requests Table 

Source IP Source 
Port 

Destination IP Destination 
Port 

195.251.162.96 32790 195.251.128.5 53 
195.251.162.96 32790 194.177.210.210 53 
195.251.162.96 32790 194.177.210.210 53 
195.251.162.96 32790 195.251.177.9 53 
195.251.162.96 32790 192.33.4.12 53 
195.251.162.96 32790 192.5.6.32 53 
195.251.162.96 32790 192.12.94.32 53 

Table 2. An Example of the DNS responses Table 

Source IP Source 
Port 

Destination IP Destination 
Port 

Status 

194.177.210.210 53 195.251.162.96 32790 OK 
195.251.128.5 53 195.251.162.96 32790 OK 
195.251.177.9 53 195.251.162.96 32790 OK 
192.33.4.12 53 195.251.162.96 32790 OK 
192.5.6.32 53 195.251.162.96 32790 OK 
192.12.94.32 53 195.251.162.96 32790 OK 
204.13.161.15 53 195.251.162.96 2481 SUSPICIOUS 

 
In a nutshell, when a DNS message is received the DAAD engine determines 

whether the message is a response or a request. For any received request or response 
the DAAD tool creates a new entry to the request / response table (see Tables 1 & 2 
accordingly). Once a message is identified as a response the DAAD module checks 
for the existence of the corresponding request in the queries table by performing an 
SQL lookup. If the response does not match with none of the requests logged 
previously in a given timeframe then is marked as suspicious (see the last line of 
Table 2). Additionally, as soon as the number of suspicious messages exhibits a given 
administrator-specified threshold an alert is generated and firewall rules are 
automatically updated to block the attacker’s data as depicted in Figure 3. All the 
parameters in the aforementioned procedure, i.e. timeframe, threshold, can be 



dynamically updated and depend on the administrator’s security policies in the 
specific network domain. It should be stated that the proposed solution could be also 
introduced as part of a statefull firewall. Currently, as mentioned in Section 2.2, 
statefull firewalls are able to protect DNS only against unauthorized request. 

 

 
Fig. 4 DAAD’s engine detection logic 

3.2    Evaluation 

In order to evaluate the accuracy of the proposed mechanism we employed the 
architecture presented in Figure 3. A common desktop machine which incorporates a 
Pentium IV 2,8GHz processor with 768 MB RAM and 80 GB IDE hard disk was 
configured to serve as the local DNS server. DAAD was installed in the same 
machine with the DNS server. Of course, this is the worst case in terms of 
performance and it is utilized here deliberately. For peak performance DAAD should 
be placed in a separate independent machine in parallel with the DNS server. Two 
email servers - which consult 6 black lists of email addresses - and a whole sub-
network of our university was instructed to hit this DNS machine. This means that 
under normal operation the specific machine was processing more than 30,000 DNS 
queries per hour. It is worth noting that during all experiments no false negative was 
generated. 

As already mentioned, upon receiving a DNS reply the DAAD tool must decide if 
it is legitimate or suspicious. To do so, DAAD must check against a subset of 



 

 

previously DNS queries logged into the database. However, frequent SQL lookups 
substantially affect DAAD’s performance. Thus, every incoming DNS reply must be 
checked not against a big subset of queries, but those issued before a carefully tuned 
timeframe. DAAD operation showed that the bigger this time-window is, the lesser 
false alarms are recorded. On the other hand, as already mentioned, increasing this 
timeframe, DAAD’s performance reduces. Moreover, setting this timeframe too high 
there is a small - and the only - possibility to generate false negatives. For instance, 
consider the following example when timeframe is set to 30 secs: our DNS server 
Bob sends a request towards the DNS server Alice at time 00:00. Alice responds to 
the request by sending a valid reply at time 00:01. Considering the rare case that Alice 
is also a bot it can bombard Bob with bogus replies for the next 29 secs without being 
identified by DAAD. Corresponding tests in our network showed that this timeframe 
becomes optimum when set at 2 seconds. 

Every one minute, which is the minimum allowed value1, DAAD performs a check 
if there is an undergoing attack by examining the number of suspicious packets 
logged. As presented in Table 3, which consolidates DAAD operation for a 12 hour 
time interval (from 08:00 to 20:00), false positives span between 4 and 31 Thus, 
depending on the network traffic, false alarms can be safely prevented if the number 
of suspicious replies gathered within this 1 min interval is set between 500 and 1,000. 
Having this threshold exceeded an alarm is generated. 

Table 3. DAAD statistics for a 12 hour interval - no attack occurred 
(timeframe = 2 seconds, threshold to activate alarm = 500, check for attack every 1 min, 

flush database check every 1 min if it contains more than 5,000 records) 

Time Requests Responses 
False 

Positives 

Requests 
delay avg 

(secs) 

Responses 
delay avg 

(secs) 
08-09 32.819 31.303 20 0.5578 0.5723 

09-10 31.655 30.254 18 0.5767 0.5908 

10-11 31.965 30.650 4 0.6031 0.6276 

11-12 39.260 37.136 28 0.5997 0.6269 

12-13 42.852 40.777 20 0.6068 0.6314 

13-14 33.383 31.875 9 0.6496 0.6630 

14-15 35.346 33.580 9 0.5783 0.6056 

15-16 36.108 34.528 31 0.5857 0.6121 

16-17 34.424 32.976 6 0.5575 0.5838 

17-18 31.281 29.884 11 0.5543 0.5726 

18-19 34.776 32.664 6 0.5544 0.5860 

19-20 30.133 28.421 4 0.5496 0.5707 

 
Our experiments showed that letting the database to constantly grow it will 

eventually crash at about 2,500,000 records. Of course, this value is implementation 
specific, but without dispute we need a policy for flushing periodically the database, 
especially in case of an attack (see Figure 5). Therefore, every one minute DAAD 

                                                      
1 As it was placed into the operating system scheduler - the clock daemon in Unix (Cron) 



examines the size of the database. If it contains more than 5,000 requests, then DAAD 
removes all requests that their timeframe is greater than 2 secs. More importantly, the 
same tactic, i.e. periodically reduce the size of the database, is followed in case of an 
attack as well (see Figure 5). This happens since smaller database means better 
performance. It is stressed that this arrangement concerns the DNS requests only, not 
the replies. In case of an attack the incoming messages (bogus DNS replies) will 
increase very rapidly but without affecting the overall DAAD performance, since the 
SQL lookups take into account only the requests. Replies are also removed from the 
database but far less frequent than requests. Removed data can also be transferred to 
another database to serve as logfiles at a later time. 

 
2007-6-14 4:5:1 - requests=5036 - responses=4855 - suspicious=0 - Empty Database 
2007-6-14 4:9:1 - requests=1257 - responses=2557 - suspicious=921 – Attack 
2007-6-14 4:10:1 - requests=361 - responses=2322 - suspicious=1223 - Attack 
2007-6-14 4:11:1 - requests=235 - responses=952 - suspicious=572 - Attack 
2007-06-14 04:29:01 - requests=5007 - responses=4848 - suspicious=1 - Empty Database 
2007-06-14 04:46:02 - requests=5288 - responses=4988 - suspicious=3 - Empty Database 
2007-06-14 05:00:02 - requests=5233 - responses=4833 - suspicious=5 - Empty Database 
2007-06-14 05:15:01 - requests=5360 - responses=5094 - suspicious=1 - Empty Database 
2007-06-14 05:28:02 - requests=5223 - responses=4942 - suspicious=8 - Empty Database 

Fig. 5 Snapshot of the logfile that becomes updated when the database flushes  

Every record in the database, either DNS request or response, is associated with 
two distinct times. The first one is the time taken from the iptraf tool. That is the exact 
time the packet came in to or left the local network. The other one is the time the 
corresponding record was appended to the database. Subtracting these times we get 
the overall delay for each MySQL transaction. This time includes processing time and 
packet characterization time duration (for responses only) as legitimate or suspicious 
as well. As shown in Table 3 the average delay time for both queries and responses 
span between 0.5496 and 0.6630 seconds. Naturally, this time greatly depends on the 
size of the database and the specified timeframe. These times also attest that in 
average, whether under attack or not, DAAD performs nearly the same. 

Another valuable remark is that the number of requests is always greater that the 
number of responses. Our experiments showed that under normal traffic the total 
number of responses is about 95% of the issued requests. Having this relation 
disrupted means that something goes wrong. For example, when self-launching an 
attack for 5 min duration we recorded 25,606 requests and 68,575 responses. A 
snapshot of the logfile that is updated every time the database flushes is depicted 
below. 

Last but not least, we present further down DAAD results gathered during a 20 min 
duration self-attack. According to the attack scenario, the aggressor generates spoofed 
DNS requests and sends it towards the local DNS server, trying to cause a DoS. The 
relation between the number of DNS queries and replies - including the number of 
bogus packets received - is shown in Figure 6. Also, to be able to compare with 
values presented previously in Table 3 we report hereunder some comparative key 
metrics in Table 4. 



 

 

Table 4. Comparative key metrics in seconds for the DAAD tool: 
Under attack vs. Normal operation  

 
Requests 
delay avg 

Replies 
delay avg  Max Min 

St. Deviation 
requests 

St. Deviation 
replies 

Under 
attack 0.6076 0.6504 0.9870 0.3846 0.1900 0.1028 

Normal 
operation 0.5811 0.6036 0.6630 0.5496 0.0297 0.0292 
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Fig. 6 Relation of DNS requests and responses (including bogus ones) 
during a 20 min duration self-attack 

4   Conclusions and Future work 

Name servers can be maliciously used as DDoS attack amplifiers. If this is done on an 
ongoing basis with a large number of open name servers, it can quickly flood the 
victim's IP address with responses from thousands (or tens of thousands) of name 
servers, thereby exhausting the victim's available network bandwidth. The actual 
target of the attack may be the local DNS server or any host inside the local network. 
At any rate, the former entity will suffer the consequences of the attack first of any 
other. Likewise to the Smurf attack, the critical factor here is the amplification effect 
that is based on the fact that tiny queries can potentially generate much larger UDP 
packets in response. In this paper several aspects of these attacks were discussed and 
analyzed. On the top of that, we presented a novel, practical and efficient mechanism, 
namely DAAD, to defend against them. In its current pilot stage the proposed solution 
is practical and easy to implement in any network realm. Moreover, test results 
showed that is effective and can be easily parameterized to fit properly into any 
network domain. As future work we shall investigate alternative and more efficient 
data stores like Bloom Filters [21]. This would not only improve the performance of 
the DAAD tool, but make it scalable as well. 
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