

Abstract—This paper presents a novel mechanism to
protect Session Initiation Protocol (SIP)-based
infrastructure against malformed message attacks. The
basic characteristics of this mechanism are the following:
lightweight and easy to adapt to various SIP
implementations. The proposed mechanism has been
evaluated in terms of overhead processing. It is
demonstrated that the employment of appropriate IDS
against malformed messages impose minimum overhead in
terms of events’ processing

Index Terms—SIP attacks, SIP Security

I. INTRODUCTION

It is known that the Internet is susceptible to a plethora
of attacks and must be considered as a hostile
environment for critical real time application like Internet
Telephony. This means that attackers will try to discover
and potentially exploit special vulnerabilities found either
in signaling or voice transport. Until now, various
researches [1], [2] have made significant efforts in
identifying such security vulnerabilities that directly
affect VoIP based infrastructures.

Both protocol implementations and network
applications are often not fully conformant with the
underlying standards or they contain development errors
in the source implementation code [3], [4]. Standard
protocol implementations focus on well formed messages
and usually they do not consider any defense tactics
against malformed messages. Once an attacker floods a
SIP proxy with a number of malformed messages the
victim is unable to process and may discard them.

The term “malformed message” is referred to any kind
of invalid or non-standard message in order to exploit
and eventually either takes advantage of any
implementation gap or dysfunction might exist in the
target system. Malformed messages are characterized as
a high-level type of attacks associated with illegally
formatted input. There are various types of malformed
message [5], [6]. There is much interest on how these
attacks can be extended to new and different types of
Internet applications and services.

This paper proposes a novel mechanism to protect SIP-
based subsystems (e.g. SIP proxy) from malformed
message attacks. The first part of the paper describes
different variations of the malformed message attack

within SIP subsystems and proposes a protection
mechanism, consisting of prototyped attacks signatures.
The second part of the paper presents the evaluation of
this mechanism in terms of overhead processing. The
remainder of the paper is organized as follows: Section II
introduces the SIP malformed message attack. Section III
provides our identification and prevention mechanism to
protect SIP based networks against this class of attacks.
Section IV evaluates the proposed solution. Finally,
Section V concludes the paper providing some pointers
to future work.

II. MALFORMED MESSAGES IN SIP

A. SIP Overview
SIP is an application-layer signaling protocol for

creating, modifying, and terminating multimedia sessions
between one or more participants [9]. SIP messages can
be either a request or an acknowledgment to a
corresponding request, consisting of the header fields and
optionally a message body. The overall structure of a
typical well formed SIP message based on RFC 3261 [9]
is depicted in Figure 1.
 INVITE sip:dgen@aegean.gr SIP/2.0

To: Geneiataki Dimitri <dgen@aegean.gr>

From: Karopoulos Georgios

<sip:gkar@aegean.gr>;tag=76341

CSeq: 2 INVITE

Authorization: Digest username="gkar",

realm="195.251.164.23", algorithm="md5",

uri="SIP:195.251.164.23",

nonce="41352a56632c7b3d382b39e0179ca5f98b9fa03b",

response="a6466dce70e7b098d127880584cd57"

Contact: <SIP:195.251.166.73:9384>;>

Content-Type: application/sdp

v=0

o=Tesla 2890844526 IN IP4 lab.high-voltage.org

c=IN IP4 100.101.102.103

t=0 0

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

SIP

headers

Session

Description

(body)

First Line

Figure 1: A well formed SIP-INVITE message

A SIP-based multimedia connection between two users
is established whenever the caller (e.g. User A) sends a
SIP INVITE message to the corresponding proxy, which
in turn forwards it towards the User B (callee).

Consequently, whenever a SIP request has been
received from the corresponding SIP proxy and
independently from the implementation will try to parse
the incoming message. The parsing procedure is essential
in order to represent the incoming request into an
appropriate form. This form will be utilized in a later

Dimitris Geneiatakis, Tasos Dagiuklas,
Costas Lambrinoudakis, Georgios Kambourakis and Stefanos Gritzalis

 Dept. of Inform. & Comm. Syst. Eng., University of Aegean
83200, Karlovassi, GREECE

Email:{dgen,ntan, gkamb,clam,sgritz}@aegean.gr

Novel Protecting Mechanism for SIP-Based Infrastructure against
Malformed Message Attacks:
Performance Evaluation Study

phase to construct the reply.
Figure 2 depicts the (initial) processing procedure

which is executed by standard SIP proxies whenever they
receive a request or response. Although some SIP
proxies’ implementations may slightly vary the
aforementioned procedure, the sequence described in
steps 1 to 3 covers the general idea of the processing
mechanism of SIP messages.

receive
udp/tcp

receive

incoming packet

(1) parser

(2)

(3)

Figure 2: Processing Steps of SIP message in a SIP Proxy Server

B. SIP Malformed Messages
Generally, SIP parsers are developed to receive and

process well-formed messages. By “well formed” we
mean all SIP messages which conform to the RFC’s 3261
syntax [9]. However, an attacker or even a poorly-
implemented client is able to send various types of
distorted messages [11] in order to induce undesired
situations such as DoS, Unstable operations and
unauthorized access. These problems are caused mainly
because the parser in the SIP proxy is not able to handle
and successfully process (e.g. drop) the received
malformed messages.

For example, during the session establishment phase,
an attacker could send various malformed message
combinations. Instead of sending a well formed SIP
INVITE as expected (see Figure 1), it sends the SIP
INVITE message shown in Figure 3. However, this
message is invalid and can not be generated by the
standard SIP protocol syntax, due to the lack of a
REQUEST-URI, which must always follow the SIP
INVITE method [9]. The target of such a message is
either a SIP proxy or the user’s terminal (callee). The
attacker possibly will not try only the SIP INVITE
method but also the others as described in RFC 3261 [9]
and any additional extension. More details for this kind
of attack can be found in [11].

III. PROPOSED MECHANISM TO PROTECT SIP-BASED
INFRASTRUCTURE

A. Detecting Illegal SIP Messages
The availability of the VoIP subsystems can be

reduced due to the fact that parsers in servers like SIP
proxies do not incorporate mechanisms to detect illegal
SIP messages. The lack of any validation mechanism in
the receiving process could be responsible for various
security flaws. The employment of mechanisms to filter
malicious input at the application level has also been
already investigated by some researchers [13]. Even
state-of-the-art firewall technologies incorporate deep
packet inspection methods [14].

INVITE (null)

To: Geneiataki Dimitri <dgen@aegean.gr>

From: Karopoulos Georgios

<sip:gkar@aegean.gr>;tag=76341

CSeq: 2 INVITE

Authorization: Digest username="gkar",

realm="195.251.164.23", algorithm="md5",

uri="SIP:195.251.164.23",

nonce="41352a56632c7b3d382b39e0179ca5f98b9fa03b",

response="a6466dce70e7b098d127880584cd57"

Contact: <SIP:195.251.166.73:9384>;>

Content-Type: application/sdp

v=0

o=Tesla 2890844526 IN IP4 lab.high-voltage.org

c=IN IP4 100.101.102.103

t=0 0

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

SIP

header

Session

Description

Figure 3: Example of Malformed SIP INVITE message

Moreover, according to RFC 3261 [9] the utilization of
underlying security mechanisms (e.g. SSL, IPsec etc) can
substantially restrict or prevent the origination of
malformed messages. Furthermore, these mechanisms
introduce additional traffic, and processing overhead to
the corresponding SIP server. Nevertheless, these
security schemes require the installation of an end-to-end
or layered PKI beforehand. However, the biggest
obstacle is the fact that the vast majority of vendors do
not provide end-user devices that support security
protocols like SSL [16].

Most importantly, all the aforementioned security
protocols in some cases are proved to be ineffective. For
example, as stated in [11], an attacker might utilize a SIP
proxy from another realm to amplify the hazardous
effects of the malformed messages. Consequently
although the SIP proxy may not crash, it will forward the
malformed message towards other proxies in the path and
finally towards the end-user. In addition, these
mechanisms do not provide any real security against
insiders.

B. Detecting Mechanism for SIP Malformed Messages
The introduction of an appropriate detection and

prevention module for malformed messages in the
existing VoIP infrastructure must be considered as an
important element to assure reliability and prevent DoS.
Malformed message attacks can be described effectively
through some specific static structure known as the
attack’s “signature”. The basic idea to build an
identification mechanism for malformed messages stems
from the SIP syntax as described in the RFC 3261 [9].
Any message which does not comply to the previous
RFC can be characterized as malicious. Consequently,
each of the proposed signatures is composed of two
different parts. The first part identifies malformed
messagethat can be applied to any SIP method. The
second part specifies some optional rules that must be
applied only for specific SIP methods and are defined by
SIP’s domain security policy. An example of this general
signature is depicted in Figure 4.

SIP_METHOD SIP-URI | SIPS-URI MESSAGE HEADER+

[MESSAGE_BODY]

additionall rules

SIP_METHOD!=NULL

MESSAGE_HEADER!=NULL

size_of(SIP_METHOD)>%constant% e.g 50 bytes

size_of(MESSAGE_BODY)>%constant%
Figure 4: General Detection Signature

Notice, that the fist two lines makes mandatory that
any SIP message must include the following:
• a SIP_METHOD, with a SIP or SIPS URI followed

by the corresponding HEADERS.
• Both SIP_METHOD and the MESSAGE_HEADER

must not be equal to NULL.
• It makes also clear that the MESSAGE_BODY is

optional and its presence depends on the
SIP_METHOD used

However there are certain circumstances of “well”
structured malicious messages that can not be identified
by this generally rule. For these instances special
signatures must be formed for each distinct SIP-method.
For example, according to the SIP standard syntax, SIP
INVITEs must include at least one of some specific
headers like Call-ID or Content-Type. Now, consider the
case in which an incoming INVITE does not include any
of these headers. This message must be characterized as
malicious and must be discarded prior it is handled by the
parser.

C. Enhancing SIP Subsystems Functionality

In order to protect SIP servers and users’ terminals
against malformed message attacks a pre-filtering
module has been designed to discard all non well-formed
SIP messages. Consequently, it is critical that this
module must be inserted and operate prior any message
goes to the parser. It is implied that the proposed solution
can be also integrated into the system’s core
functionality. Then, when an incoming message matches
any of the specified signatures is instantly identified as
malformed and it is discarded. At the same time, as
already noticed, the system appends a record with the
discarded message to the corresponding file. When a
specified threshold is violated (e.g. the system logs four
or more malformed messages in one second) it activates
an alarm to the operator’s console. Figure 5 illustrates the
modification that is required in any SIP proxy or user’s
terminal architecture. Notice, that this module can be also
embedded inside a firewall that is able to “understand”
SIP traffic. However, in this paper we concentrate on
enhancing SIP servers’ behavior without modifying other
VoIP components or the general architecture of the SIP
infrastructure.

receive
check -msg

udp/tcp
receive

incoming packet
(1) parser

(2)pass

(3)

d rop Log

Operator’s console

Trigger alarm

Acti vate IDS

 Figure 5: Enhancing SIP Proxy with Message checking
Hence, in order to avoid false alarms as well as the

expressive overhead to develop a vast number of distinct
signatures to cover all the possible combinations between
methods and headers, rules have been used, based on
regular expressions. The proposed schema is divided in
three distinct inspection phases: First Line inspection,
Header inspection and Specialized inspection

More specifically, general detection signature includes
scanning procedures which relate to all the incoming SIP
messages independently from the corresponding method.
Therefore, all the incoming messages are validated both
for first line correctness and (all) embedded headers
appropriateness. Note, that the most common headers
found in SIP messages are Via, From, To, and Content-
Length.

The first line of any incoming message is examined
against the existing malformed rules. If the first line
conforms to the standard SIP syntax then scanning
continues to the second stage, namely the Header
inspection. When a header is found to be malicious,
further processing of the message is paused, the “Check-
Msg” “module” drops the message and records it into a
“Bad-Transactions” file.

Furthermore, due to the different description syntax of
SIP messages specialized inspection is required based on
the method that has been identified in the first stage. As
an example, INVITE and REGISTER methods do have
some discrepancies. In particular, REGISTER does not
include a message body contrariwise to INVITE that
usually contains one. So a REGISTER which includes a
message body must be characterized as malicious.
However, we have to be very careful when determining
such a restriction due to the relative freedom that exists
of the SIP syntax. For this reason, some of these
specialized controls must be determined from the local
administrator of any different SIP realm.

Moreover, the Specialized inspection phase includes
controls that utilize the combination of the corresponding
method and header information. For example, when an
INVITE message is received the CSEQ header must be
in the following form: CSEQ: identification_number
INVITE. A malevolent user may send an INVITE
message in which the CSEQ header has the following
syntax: CSEQ: identification_number REGISTER. This
message must be ignored since it includes a logical error.

IV. PERFORMANCE EVALUATION AND DISCUSSION
In order to evaluate the proposed SIP-Detection and

Prevention mechanism, a SIP-based network testbed has
been used. It consists of two terminals running SIP client
software using the KPHONE [18] application and an
open-source SIP server-SER [10]. Furthermore, two
attack tools have been employed; the first one was the
SIPBOMBER [19] while the second one was a custom-
made tool to create more sophisticated malformed
messages. The SIPBOMBER tool utilizes tests contained
in PROTOS test suite [8]. We also made the necessary

modifications and additions to the SER [10] to
successfully exploit the signature-database and
consequently identify malformed message attacks.

The most important comparative parameter in the
processing procedure of any incoming message is the
required time duration to process a well formed (normal)
message. This metric will finally designate whether the
proposed interweaved in the SIP’s server IDS/IPS
scheme has reasonable overheads. We must emphasize
that all the processing times which are presented in this
paper represent “worst cases” as the malicious messages
contain several malformed fields. As a result, the
embedded identification mechanism intentionally does
not drop the message upon detecting the first malformed
field but continues until all inspections have been
completed and then drop the message if required. All the
eight scenarios we developed to test the proposed
mechanism, are described in the Table 1.

Scenario

Number
Scenario Description

S 1 This scenario utilizes the SIPBOMBER tool to create
malformed messages as described in PROTOS suite.

S2
This scenario utilizes our custom-made tool to generate
specific malformed messages that contain errors in one
header only.

S3
This scenario utilizes our custom-made tool to generate
specific malformed messages that contain errors in the
first line only.

S4 This scenario utilizes KPHONE to generate well formed
messages.

 S5 This scenario utilizes our custom-made tool to generate
well formed messages.

S6
This scenario utilizes our custom-made tool to generate
malformed messages that contain errors in the following
headers: From, To, Via, CSEQ.

S7
Same as the previous scenario with the addition of SQL
injection malicious code in the authorization header.

S8 This scenario utilizes our custom-made tool to generate
various well formed messages (without output)

Note, that scenarios 1 to 4 leave out inspection
procedures for authorization header and consequently for
SQL code injection attacks. In addition, header
inspections procedures include not only the normal
header validation but also some specialized scanning,
like CSEQ header syntax, logical controls (see sections
III.C & D), the existence of multiple headers that must be
unique e.g. FROM, TO, etc.

More specifically, Figures 7 & 8 illustrates the
processing times and various statistical parameters for
First line inspection, which remain to the average case
under than 35 microseconds. It is obvious that all the
plots seem to have similar distribution. This fact comes
naturally as the only modifications between these
scenarios were the different length of the first line and
various changes in the form of the malformed messages
we tested, trying to evade the detection mechanism. The
moderately high standard deviation times, especially for

scenario 1 can be explained due to the fact the
SIPBOMBER tool and partially our-custom made
application generate malformed packets of excessive
length. In addition, some other services running on the
SIP server might affect instantly the processing times
producing peaks to the plots.

Figure 6: First Line inspection Time Overheads for Scenarios 1 - 4

Figure 7. First Line inspection Time Overheads for Scenarios 5-8
Finally, deep inspection overheads and major

statistical metrics for headers scanning, SQL injection,
etc, are presented in Table 2. In average, all processing
times remain under 120 microseconds except those for
scenarios 6 & 7. The increased overhead for the later
scenarios is due to the fact that they deliberately contain
more than one error in a single SIP Message. In
particular, malformed messages for scenario 6 included
four header errors, while scenario 7 deployed messages
that had the same number of header errors and
additionally one of them included SQL malicious code.
However, these last two scenarios have been employed
only for “worst case” demonstration and do not have any
practical application since in a real-environment once the
first malformed field is detected scanning will be aborted
and the message will be rejected.

Beyond doubt, the maximum time of 120
microseconds that is being introduced by the proposed
mechanism is insignificant. First and foremost, all
processing times involving malformed messages are
nearly the same with scenarios that employ well-formed
messages (scenarios 4, 5 and 8). Another important
comparative metric is the time that is required to
establish a SIP connection which normally is more than
one second. Moreover, the introduction of a new header
that requires deep inspection like authorization checking

in the SQL injection code case shows an additional time
duration of about 80 microseconds. Further on, a
potentially malformed message has statistically 50%
probability to be discarded if an anomaly is detected in
its first half, thus normalizing the overall processing time
near the average as the time passes and the corresponding
system is under attack (e.g. malformed message
flooding). Whether or not, most of the time, systems are
not under attack [20], so the anticipated scheme is
expected to parse messages with an average time of
under 150 microseconds as in scenarios 4, 5 & 8.

Par. S1 S2 S3 S4 S5 S6 S7 S8

Max 541.0 489.0 101.0 107.0 88.0 657.0 719.0 600.0

Min 20.0 80.0 16.0 31.0 31.0 280.0 255.0 107.0

Ave. 40.1 118.9 28.7 44.2 46.8 324.5 309.2 119.9

Std. 60.3 42.5 17.5 16.3 15.3 64.3 56.3 44.0

Table 2: Statistical parameters for Header and Specialized Inspection

V. CONCLUSIONS AND FUTURE WORK
In this paper, SIP malformed message attacks have

been analyzed. We have presented attacks against
different SIP subsystems, exploiting implementation
“errors” sending malformed messages and launching an
SQL injection attack correspondingly. A novel
mechanism has been proposed to detect SIP-based
malformed messages. Through experimentation, the
proposed solution has been evaluated in terms of
robustness and processing overhead, considering well-
respected SIP products (server and client software). The
derived times have demonstrated that the proposed
solution is robust, flexible, feasible to implement and
above all secure. Moreover, the proposed scheme and its
associated signatures database can be easily applied or
added up to other VoIP signaling protocols (e.g. H.323),
firewalls or other open source IDS products.

ACKNOWLEDGEMENTS

This work has been performed in the framework of the
IST-2004-005892 project SNOCER, (www.snocer.org),
which is funded by the European Union.

REFERENCES
[1] VOIPSA, "VoIP Security and Privacy Threat Taxonomy"

http://www.voipsa.org/Activities/taxonomy.php, October 2005
[2] Sisalem D., Ehlert S., Geneiatakis D., Kambourakis G., Dagiuklas

T., Markl J.,Rokos M.,Botron O.,Rodriguez J., Liu J., Towards a
Secure and Reliable VoIP, http://www.snocer.org, May 2005

[3] “Asterisk SIP Implementation Issue”,
http://www.atstake.com/research/advisories/2003/a090403-1.txt,
August 2003

[4] CERT® Advisory CA-2003-06, “Multiple vulnerabilities in
implementations of the Session Initiation Protocol (SIP)”,
http://www.cert.org/advisories/CA-2003-06.html, February 2003.

[5] CERT-In Advisory CIAD-2003-09 “Buffer Overrun In RPC
Interface Could Allow Code Execution and Denial of Service”,
August 2003.

[6] Fontana J., “Exchange Server 5.5 Bug Could Be Exploited for
Attacks”,http://www.pcworld.com/resource/article/0,aid,33882,00
.asp, November 2000.

[7] Paxson V., Auman M., Dawson S., Fenner W., Griner J., Heavens
J., Labey K., Semke J., and B.Volt,. “Known TCP implementation
problems”, RFC 2525, March 1999.

[8] Wieser C, Laakso M, Schulzrinne H , “Security testing of SIP
implementations”,
http://compose.labri.fr/documentation/sip/Documentation/Papers/
Security/Papers/462.pdf, 2003.

[9] Rosenberg J., Schulzrinne H., Camarillo G., Johnston A., Peterson
J., Spark R., Handley M., Schooler E., “Session Initiation
Protocol”, RFC 3261, June 2002.

[10] “SIP Express Router”, http://www.iptel.org/ser
[11] Geneiatakis D., Kambourakis G., Dagiuklas T., Lambrinoudakis

C. and Gritzalis S., "A Framework for Detecting Malformed
Messages in SIP Networks", Proceedings of 14th IEEE Workshop
on Local and Metropolitan Area Networks (LANMAN),
September 2005, Chania-Crete, Greece.

[12] Geneiatakis D., Kambourakis G., Lambrinoudakis C, Dagiuklas
T, and Gritzalis S., “SIP Message Tampering: THE SQL code
INJECTION attack”, Proceedings of 13th International
Conference on Software, Telecommunications and Computer
Networks (SoftCOM 2005), September 2005, Split, Croatia

[13] Scott D. and Sharp R., “Abstracting Application-Level Web
Security,” Proc. 11th Int’l World Wide Web Conf., ACM Press,
New York, May 2002, pp. 396-407.

[14] Dharmapurikar S., Krishnamurthy P., Sproull T., and Lockwood
J., “Deep Packet Inspection Using Parallel Bloom Filters.” In
Proceedings 11th Symposium of High Performance Interconnects
(HOTI’03), pages 44-71, 2003.

[15] Srisuresh P., Kuthan J., Rosenberg J., Molitor A. and Rayan A:
“Middlebox Communication Architecture and framework”, IETF,
RFC 3303, August 2002.

[16] Geneiatakis D., Kambourakis G., Dagiuklas T., Lambrinoudakis
C. and Gritzalis S., "SIP Security Mechanisms: A state-of-the-art
review", Proceedings of the Fifth International Network
Conference (INC 2005), July 2005, Samos, Greece.

[17] Perl Compatible Regular Expressions, http://www.pcre.org
[18] KPhone A Voice over Internet phone,

http://www.wirlab.net/kphone/
[19] SIPBOMBER, http://www.metalinkltd.com/downloads.php
[20] K. G. Anagnostakis, E. P. Markatos, S. Antonatos, and M.

Polychronakis. E2xB: A domain–specific string matching
algorithm for intrusion detection. Proceedings of the 18th IFIP
International Information Security Conference (SEC2003), May
2003

