

Dimitris Geneiatakis, Georgios Kambourakis, Costas Lambrinoudakis,
Tasos Dagiuklas and Stefanos Gritzalis

Laboratory of Information and Communication Systems Security

Department of Information and Communication Systems Engineering
University of the Aegean, Karlovassi, GR-83200 Samos, Greece

Tel:+30-22730-82247
Fax: +30-22730-82009

Email:{dgen,gkamb,ntan,clam,sgritz}@aegean.gr

Abstract − As Internet Telephony and Voice over IP
(VoIP) are considered advanced Internet
applications/services, they are vulnerable to attacks
existing in Internet applications/services. For instance
HTTP digest authentication attacks, malformed messages,
message tampering with malicious code, SQL injection
and more, can be launched against any Internet
application/service. In this paper, we describe, analyze and
demonstrate the inheritance of message tampering attacks,
focusing on SQL injection, in the SIP protocol. This type
of attack has been successfully launched in Internet
environments, with very little cost, effort and specialized
knowledge. However, in the context of the SIP protocol, no
works or research efforts are reported until now. The
paper provides an in-depth analysis of SQL injection in
SIP realms, discussing implementation details, constraints
and possibilities for the attacker. In addition, we provide
some indicative experimental results by triggering this
style of attack against a properly designed SIP-based test-
bed environment. Finally, specific countermeasures,
remedies and new signature-oriented framework are
suggested for identifying and counter fight against this
attack.

I. INTRODUCTION
The advent and proliferation of the Internet Telephony-Voice
over IP (VoIP) promises new evolutionary telephony services.
Telecommunication and Internet Telephony Service Providers
(ITSPs) enjoy several advantages [23], thus being able to offer
advanced telephony services like instant messaging, Internet
conferencing rooms, personalized call transfer, etc. On the
other hand, the Public Switch Telephone Network (PSTN) is
dedicated to a single service (namely voice) considered to be
reliable and secure. As a result, VoIP must ensure at least the
same level of reliability, availability and security as in the
PSTN.
PSTN is mainly based on a closed network. On the contrary,
Internet is an open network thus being vulnerable to various
security threats. Consequently, VoIP inherits all these
problems. In addition, the utilization of VoIP signaling

standards like Session Initiation Protocol (SIP) [1], H.323 [27]
and MGCP/MEGACO [27] combined with the Internet
distributed architecture creates a hostile environment, as
aggressors can exploit the aforementioned standards in order
to launch several types of attacks, targeting to compromise
VoIP security.
SIP seems to overwhelm other standards, mainly due to the
fact that it has been adopted by various standardization
organizations (i.e. IETF, ETSI, 3GPP) as the protocol for both
wireline and wireless world in the Next Generation Networks
(NGN) era. SIP similarities with HTTP enable malicious users
to attack VoIP services with the same methods that HTTP
applications are being attacked. For instance, HTTP digest
authentication attacks [11], SQL injection [19] or message
tampering with malicious code [29], are attacks that can be
launched in a SIP-based network infrastructure to compromise
the provided service.
The aim of this paper is to introduce, describe and analyse an
attack, known as SQL injection, in a SIP-based network
architecture. We name this attack SIP message tampering (or
injection) with SQL code. Although, various injection style
attacks have been successfully launched over Internet
environments, to the best of our knowledge, no SIP-oriented
specific case have been reported until now. In this context, the
paper provides an in-depth analysis of SIP-oriented SQL
injection, discussing implementation details, constraints and
possibilities for the attacker to exploit. Moreover, the paper
introduces an initial signature-based framework that can assist
the identification of this attack.
The rest of the paper is structured as follows: Section II
briefly presents background information for SQL injection in
the Internet and an overview of the SIP protocol. Section III
describes the SIP database infrastructure, which is the most
prominent component regarding this attack. Section IV
focuses on SIP message tampering with SQL code,
introducing some counter measures for protection and a
signature-based scheme capable of identifying this kind of
threat. Last section concludes the paper and gives pointers to
future work.

SIP Message Tampering
 THE SQL code INJECTION attack

II. BACKGROUND

A. SQL injection
In order to administer dynamic content, Web applications
utilize server side script technologies like PHP, ASP, JSP and
databases. Script technologies are able to transfer data from a
database to a Web page and vice versa utilizing the
aforementioned technologies. This architecture is not
employed only for data administration, but also for providing
security services such as authentication to the corresponding
application. Authentication services that utilize these
technologies employ a data-entry form for the username, the
password and the appropriate server side script responsible to
handle user’s input. The server side script to be able to
authenticate the user includes SQL statements like the
following:

SELECT Last_Name FROM subscriber WHERE
User_ID='<username>' AND
User_Password='<password>';

Therefore, whenever a legitimate user submits a valid
username (e.g. dim) and his corresponding password (for
example: !#$), the server side script generates the following
SQL statement:

SELECT Last_Name FROM subscriber WHERE
User_ID='dim' AND User_Password='!#$';

Note, that the input data (User_ID & Password field) have not
been validated. Consequently, a perpetrator can exploit this
vulnerability by injecting malicious SQL code to the input
data. This attack is known as SQL injection [19]. For example,
the attacker can complement the User_ID field in the
equivalent Web form with the following SQL code:

“'--; DROP TABLE subscriber”

The resulting SQL statement will look like:

SELECT Last_Name FROM subscriber WHERE
User_ID='' -- AND User_Password='<password>';

DROP TABLE subscriber;

In this example, two SQL statements will be executed towards
the database: the SELECT and DROP statements. The
execution of the SELECT statement fails as the User_ID value
is null and the characters ‘- -’ are commenting out the rest of
the SELECT statement. However, it is clear, that the latter
statement will delete the Subscriber table. Several methods
have been proposed to identify such vulnerabilities and
provide remedies for input verification. A detailed analysis on
WWW SQL injection attacks can be found in
[19],[20],[21],[22]. Before addressing this vulnerability in the
context of a SIP-based network, an overview of the SIP
architecture is provided here below.

B. Overview of the SIP architecture
SIP is an application-layer signaling protocol [1] for handling
multimedia sessions over the Internet. In a typical SIP-based
network infrastructure, the following subsystems are involved:

• Registrar: The Registrar server is responsible for user
registration in VoIP services (e.g. instant messaging,
presence).

• Proxy: The proxy server is responsible either to deliver a
SIP message to the callee or forward the message to
another proxy.

• Redirect: The Redirect server is responsible to inform a
registered user to connect directly to another proxy or to
the registrar server.

In order to enable communication among users, SIP
introduces various types of messages similarly to the HTTP
message structure. SIP messages must identify the requested
resource, which corresponds to a unique address. SIP
addresses follow the general form of the HTTP addressing
scheme that is: “address_scheme:resource”. An
example of a SIP address is: ‘sip:dgen@aegean.gr’. A
typical SIP message, depicted in Figure 1, consists of a
request or status line followed by header fields and a message
body.

INVITE sip:dgen@aegean.gr SIP/2.0
To: Geneiataki Dimitri <dgen@aegean.gr>
From: Karopoulos Georgios <sip:gkar@aegean.gr>;tag=76341
CSeq: 2 INVITE
Authorization: Digest username="gkar",
realm="195.251.164.23", algorithm="md5",
uri="SIP:195.251.164.23",
nonce="41352a56632c7b3d382b39e0179ca5f98b9fa03b",
response="a6466dce70e7b098d127880584cd57"
Contact: <SIP:195.251.166.73:9384>;>
Content-Type: application/sdp

v=0
o=Tesla 2890844526 IN IP4 lab.high-voltage.org
c=IN IP4 100.101.102.103
t=0 0
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

SIP
header

Session
Description

Figure 1. Structure of SIP (INVITE) message

REGISTER and INVITE are the most common messages in
SIP. The REGISTER message (Figure 2) is used by a user to
sign in a corresponding VoIP service.

re g is tra r
re g is te r

z in ta n @ re a l.c o m ,IP

u n a u th o r iz e d 4 0 7

O K 2 0 0

R e g is te r+ c re d e n t ia ls

s ip u s e r

Figure 2. Register flow

On the other hand INVITE (Figure 3) is used to invite another
user to participate in a session.

IN V ITE
c lam @ aegean.g r

407 A uthen tica tion
P roxy A u thentica te

re-Inv ite
P roxy-A uthoriza tion

s ip ca lle r p roxy

Figure 3. Invite flow

III. THE SIP DATABASE INFRASTRUCTURE
It must be mentioned that SIP servers rely on databases such
as MySQL [7], Postgress [9] or Oracle [8] and utilize SQL
statements in order to store and administer users’ credentials
and appropriate data for providing VoIP services. For
example, open-source SIP implementations (e.g. SIP Express
Router (SER) [10] provides build-in modules in order to
support MySQL and Postgress databases. This database
schema is composed of various data tables. Among them,
“Subscriber” and “Location” tables are of major importance,
as they store critical data required for smooth VoIP operation.
More specifically, the “Subscriber” table stores the
appropriate data such as user name, domain, password etc,
(see Table 1) for the legitimate users, while the “Location”
table stores all the data representing the current available
contact addresses for the legitimate subscribers (signed in a
VoIP service).
Therefore, in case this attack is triggered against a SIP
installation like SER, any corruption in the integrity of
database and especially in the “Subscriber” and “Location”
tables drives the provisioning of VoIP services to fail.
Furthermore, the utilization of Web interfaces for the
provision of VoIP services makes this attack more attractive to
the potential perpetrators.

Table 1. A subscriber record contained in table
“Subscriber”

It is to be noted that the communication with the SIP database
mandates the existence of a database user, having the
appropriate privileges, who acts on behalf of the
corresponding SIP server as depicted in Figure 4.

SIP
USER

REQUEST

SIP
SERVER

database

DATABASE
USER

REQUEST

RESPONSE DATA

SQL

Figure 4. SIP Database Architecture

IV. SQL INJECTION IN SIP

A. Attack description
The text-based nature of SIP messages offers the opportunity
for message tampering attacks [5] in SIP telephony services,
similarly to HTTP messages. This attack is not only targeting
in data modification, but also in the downfall of database
services to cause a Denial of Service (DoS). The concept of
SQL injection in SIP is quite similar to the aforementioned
attack described in section II.A. The attack can be triggered
every time a SIP network entity (e.g. SIP UA, SIP Proxy) is
asking for authentication. When this situation occurs, the User
Agent (UA) on behalf of the authorized user computes the
appropriate credentials based on the HTTP Digest mechanism
[11]. The result of this computation (credentials) is included in
the message’s authorization header (see Figure 1). Then the
message is forwarded to the corresponding proxy server,
which has to authenticate the received message. Thus, it re-
calculates user’s credentials using the user’s password stored
in the “Subscriber” table as presented in Table 1. To
accomplish this task, it generates an SQL statement according
to the following syntax:

Select password from subscriber where username='gkar'
and realm='195.251.164.23'

In case a malicious user attempts to launch an attack in the
SIP architecture, exploiting SQL injection, he tampers the SIP
message and inserts the malicious SQL code in its
Authorization header (see Figure 5). The candidate for
injection message can be any SIP method, requiring
authentication by a SIP server. The malicious code can be
embodied either in the username or in realm fields in the
Authorization header.

 Authorization:Digest username="gkar';
 Update subscriber set first_name='malicious'
 where username='gkar'--",
 realm="195.251.164.23", algorithm="md5",
 uri="sip:195.251.164.23",
 nonce="41352a56632c7b3d382b5f98b9fa03b",
 response="a6466dce70e7b098d127880584cd57

Figure 5. SQL Injection in the SIP protocol

As soon as the proxy receives a SIP message with an
‘infected’ Authorization header, as illustrated in Figure 5, it
generates and executes the following SQL statement:

Select password from subscriber where user name=
'gkar';
Update subscribe set first_name='malicius' where
username='gkar'--

As a result, albeit message authentication fails, due to the fact
that the attacker does not know the legitimate user’s password,
the second command manages to change ‘gkar's
first_name’ to ‘malicious’. It is also possible for a
malicious user to attempt to employ similar SQL commands,
aiming to make database useless and cause a DoS to the
provided VoIP service.

SUBSCRIBER
User
name domain password

First
name

Last
name Phone

dgen aegean !#ertFGgh Dimitris Soccer 123@sip.aeg.com

The previous example it requires, from the SQL user that acts
on behalf of the calling party (see Figure 4), to have the
UPDATE privilege in the SIP subscribers’ database.
However, this is not a major restriction, as described further
down in Section IV.B. Additionally, the malicious user can be
an authorized “insider” (e.g. a legitimate subscriber), injecting
the Authorization header with the SQL code as depicted in the
Figure 6.

 Authorization:Digest username=gkar, realm=1.23.4.5
 UNION SELECT FROM subscriber
 WHERE username=charlie and realm='195.251.164..23'
 algorithm="md5",
 uri="sip:195.251.164.23",
 nonce="41352a56632c7b3d382b5f98b9fa03b",
 response="a6466dce70e7b098d127880584cd57

Figure 6. Alternative example of SQL injection

Under these circumstances, the SIP proxy will generate the
following SQL statement which prerequisite for the database
user acting on behalf of SER to have only the READ
privilege:
Select password from subscriber where user name= 'gkar'
and realm=’1.23.4.5’
UNION
Select password from subscriber where user name=
'Charlie' and realm=’195.251.164.23’;

When this statement is executed, Charlie (the attacker) will be
registered as gkar (the legitimate user) in the provided SIP
service. This attack is executed successfully because the first
statement will deliberately fail as the malicious user has
spoofed the realm and has injected the message with the
second SELECT statement: “UNION SELECT FROM
SUBSCRIBER WHERE username=’charlie’ and
realm=’195.251.164.23’ ”. Eventually, the whole message
(the two Selects) will be executed as one statement. In
addition, the malicious user has re-computed the
corresponding credentials to the authorization header too.

B. Moderate limitations on the Attack
The SQL injection attack is independent from the underlying
database and the specific implementation of the SIP server.
The only restriction is coming from the Application
Programming Interface (API) that is being utilized. For
instance, the MySQL C API up to version 4.1 is quite immune
to this type of attack, since only one SQL statement can be
executed during one system call as pointed out in MySQL
documentation [7], and some of the SQL injection attacks
require the execution of more than one SQL statement (see the
first example of Section IV.A).
In order for this attack to be successful, the hijacked SQL user
(that acts on behalf of e.g. SER) must have the appropriate
SQL authorization privileges to execute the malicious
statement. Thus, the attacker may attempt, from the first place,
to spoof user permissions table before launching the attack. Of
course, he can also passively wait or actively keep trying until
he locates the competent SQL user that holds the right
privileges. However, VoIP providers, similarly to other
Internet applications, allow their users to register, modify or

even delete their current settings on-the-fly. This means that
the administrator of the provided service must convey, to the
SQL user that acts on behalf of the corresponding proxy (see
Figure 4), the INSERT, UPDATE and/or DELETE privileges
for the appropriate tables in the database. As a result, even this
restriction is not a rigorous one.

C. Experimentation
Figure 7 depicts the test-bed that we have been utilized in
order to provide some ‘real-usage’ experimentation results for
the aforementioned attack. It consists of two laptop machines
running SIP client software and the appropriate combination
of SIP server and database. One of the SIP clients is the well-
known Microsoft product implementing SIP stack named
Portrait [13], while the other employs an open source SIP
client called Osip [14].

Ae
ge

an
 ne

tw
or

k

Microsoft Portrait

Aegean SIP client
SIP Server

database

Figure 7. SIP test-bed architecture

The SIP client Portrait has been used, in order to discover if
the SQL attack can also be launched through Commercial Off-
The-Shelf (COTS) SIP clients. The attacker does not need to
have any special skills for successfully performing the
injection. In the case of Portrait, the malicious SQL code is
added in one of the text boxes appearing in the corresponding
authentication window. On the other hand, using the Osip
client, the aggressor has simply to execute the application and
modify the appropriate file that contains the SQL code. We
were able to inject several SQL statements as described
hereafter:

1. Update subscribe set password='malicious122' where
username='gkar'

2. Drop table Subscriber
3. Delete from Subscriber where username=’gkar’

4. Insert into subscriber (Username, domain,phone
Values (‘charlie’,’1.1.1.1’,’sip:ch@voip.com)

The damage provoked in the corresponding database depends
on the malicious SQL code (UPDATE, INSERT, DROP,
DELETE, CREATE) and the user’s privileges that acts on
behalf of SIP server to execute the SQL statements. As
already mentioned in Section IV.B, the attacker can attempt to
spoof user’s permissions to the database in order to have the
injected SQL code executed. Of course, there are also other
prosperous ways [30][31] to manipulate SQL user’s
credentials, like doing some hacking in the database
permission table. However, a detailed analysis on this issue is
outside the scope of this paper.

Regarding the SIP server and the corresponding database we
employed the following architectures:
1. ‘Simulated’ architecture: In this architecture we simulate

the SIP server’s stack and the Microsoft SQL database to
administer user data.

2. Lab architecture A: In this architecture we use SER as
the SIP server. The corresponding database infrastructure
that connected with the SER employs MySQL in version
4.0.20.

3. Lab architecture B: The same as the previous architecture
which utilizes the newer MySQL version 4.1.3.

In the first (‘Simulated’ architecture) and the third architecture
(Lab architecture B) both of the malicious SQL statements
described in Sub-Section A of the present section executed
successfully. On the contrary, in the second architecture (Lab
architecture A) due to the restriction in MySQL’s C language
API, as already mentioned in section IV.B, we did not manage
to successfully execute the first of the examples (due to the
restriction for execution of two statements in one system call).
However, the execution of the second example statement was
successful, giving access to a different user instead to the
legitimate one. It is also worthy of note, that in this last
example there is no need for the attacker to have any special
permission to the database. Only the SELECT (read from the
database) permission, which is either way compulsory for the
VoIP service to operate, is sufficient for the attacker to
execute the corresponding statement.
These outcomes confirm that this threat can become extremely
dangerous as the aggressor is in position to effectively delete
or modify crucial data needed for the accurate operation of the
corresponding SIP-based VoIP service. For instance, among
other things, the attacker can modify or delete subscribers’
billing data. More importantly, this attack can be triggered
from anywhere using cheap and easy to find commercial or
open source software, as those used in our examples.

D. Protection from SQL injection in SIP
To facilitate the development of a robust and secure SIP based
VoIP service, highly immune to SQL injection attacks one has
to employ a number of prevention and detection mechanisms.
Having these mechanisms acting simultaneously, it is possible
to create a more secure environment. Various researchers have
proposed a broad range of defense or shielding strategies
[25],[26],[28],[29], aiming to protect Web architectures from
equivalent SQL injection attacks as well (see Section II.A).

1) Prevention, Remedies and Countermeasures
Input validation procedures must be considered vital for the
security of SIP based VoIP services. As already described in
Section IV.A, the lack of any validation in data input process
(e.g. in SIP message Authorization header) is responsible for
security flaws. The employment of gateways to filter
malicious input at the application level has also been studied
[29]. Current firewall technologies incorporate packet
inspection [24] for validating input data. The same techniques
can be applied in the corresponding SIP architectures using
the Middlebox communication approach [12].

Another technique for preventing SQL tampering in SIP is to
digitally sign the messages that are exchanged. As a result,
any modification in a SIP message can be detected, having the
message automatically discarded by the SIP server. Generally,
digital signatures can protect SIP messages from any sort of
tampering attack. Nevertheless, digital signatures scheme
requires the installation of a global or layered Public Key
Infrastructure (PKI) beforehand. Moreover, this method is
totally ineffective against “insiders”. Finally, in order to avoid
errors in input validation or to prevent any other malicious
attempt, the SQL account that the SIP server uses to connect
to the database must have only the minimum-required
privileges.

2) Detection Framework
No matter how strong the existing security prevention
mechanisms employed in current SIP based VoIP Services
are, there is always the possibility for a malicious user to
manage to by-pass them. So, in case an insider launches an
intrusion attack, it is quite probable that no one of the existing
prevention mechanisms will trigger an alarm. For example,
consider a legitimate SIP user who is injecting malevolent
SQL code in a message and then signs it with his private key.
There is no doubt that this attack can be hardly defeated by the
usual detection or prevention mechanisms.
To avoid such situations, the employment of an Intrusion
Detection System (IDS), for the offered SIP based VoIP
services is considered mandatory. On the other hand, in some
cases, it is more economical to prevent only the uppermost
attacks and detect the rest, than trying to prevent everything in
a much higher cost. Besides that, lately, it has become a
common belief that the use of a detection system is itself
sufficient for protecting Web applications from SQL injection.
For example, well know open source IDS tools like Snort
(www.snort.org), have been employed to effectively detect
this assault [25]. In those systems any distinct attack of this
form is described through some specific static structure,
known as the attack’s ‘signature’. Thus, SQL injection attack
in SIP architectures can be similarly confronted by
identifying, categorizing and prototyping the corresponding
signatures.
After several trial signature combinations that facilitate the
detection of the SQL injection attack in the SIP protocol, we
ended up in the one depicted in Figure 8. The proposed
signature is based on the SIP message syntax, which is fully
specified in RFC 3261 [1]. Since all SIP messages are based
on this syntax, it will be more easily to embody a light SIP
IDS mechanism in a slightly modified SIP protocol stack.
Alternatively, it is possible to add this signature scheme in
existing open source IDSs without making any modifications
to the SIP stack.
Moreover, SIP messages, which include malicious SQL code,
do not conform to SIP specifications. As a result, it can be
characterized as a special case of illegal messages. Thus, the
basic idea is to construct a general identification framework
that is able to apply to any malicious SIP message, which is
not compatible with SIP specifications. Each signature is
composed by the malicious SIP message optionally followed
by some additional rules. Based on this general architecture

we suggest a signature to identify SIP messages that include
SQL code (see Figure 8). Note that the proposed signature is
very similar to valid SIP messages. The main difference is that
the message is characterized as malicious whenever any SIP
method requires authentication and the corresponding
Authorization header contains an SQL statement. Moreover,
to make this signature more robust, we added an additional
rule that checks the length of the Authorization header. For
instance, if also the authorization header has length bigger
than then expected, this can help to identify possible SQL
injection when an attacker tries to evade the IDS. However,
this parameter must be utilized very wisely because any
misuse of this attribute will trigger a false alarm. Finally, note
that this is an indicative signature for a wide range of similar
attacks, as it is well known that attacker will try many
different ways to evade the detection system.

METHOD SIP-URI | SIPS-URI MESSAGE HEADER+
MESSAGE HEADER =Via | Max-Forwards | From |To

 | Call-Id |CSeq | Contac |User-agent
 |Authorization |Event |Content-Length

Authorization = Digest username=".+(';SQL-STATM COMMENT)"
realm=" Ipaddress" |

Authorization = Digest username=".+" realm=“Ipaddress
(';SQL-STATM COMMENT)“ |

Authorization = Digest username=".+(';SQL-STATM COMMENT)"
 realm=" Ipaddress (';SQL-STATM COMMENT)"

SQL-STATM= UPDATE | INSERT | UNION
COMMENT = "--|#"
UPDATE = SEE SQL 92 syntax
INSERT = SEE SQL 92 syntax
additional rules
size_of(Authorization)> %constant% e.g 100 bytes

Figure 8. SQL injection attack signature in SIP

V. CONCLUSIONS AND FUTURE WORK
As SIP based VoIP services are becoming more and more
popular, the Internet-inherited security problems and threats
will become more severe. Attackers can cause serious
problems in regular VoIP operation, by exploiting a wide
range of existing malicious tools. In this paper, we shifted the
SQL injection attack, already found in other Internet
applications, to the SIP architecture. As this attack is not yet
reported in SIP environments, we demonstrated how
malicious users could take advantage of it, in order to
compromise sensitive SIP components and induce commotion
to or paralyze the provided service. We employed two
different SIP clients and properly designed test-beds, to
demonstrate that the attack is profitable even with little know-
how and resources. Moreover, we introduced
countermeasures, remedies and a detection signature-based
framework against this kind of attack.
However, the overheads, in terms of performance, introduced
in SIP as a result of the proposed solutions are still under
study. In addition, we esteem that a slight modification of this
aggression can also be applicable in any VoIP service,
independently from the underlying signaling protocol used.
For this reason, there is an urgent need for a general
identification framework capable of detecting similar attacks,
to be established. The accomplishment of this goal, currently

under inquiry, will contribute a great deal in VoIP security
and reliability.

Acknowledgments
This work has been performed in the framework of the IST-
2004-005892 project SNOCER (www.snocer.org), which is
funded by the European Union.

REFERENCES
[1] Rosenberg J., Schulzrinne H., Camarillo G., Johnston A., Peterson J.,

Spark R., Handley M., Schooler E., “Session Initiation Protocol”, RFC
3261, June 2002.

[2] Computer Emergency Response Team. CERT/CC Statistics 1988-2004
http://www.cert.org/stats/cert_stats.html , January 2005.

[3] Falstrom P, “E.164 Number and DNS”, RFC 2916, September 2000.
[4] Rescorla E, “SSL and TLS Designing and Building Secure Systems”.

Addison Wesley 2000.
[5] Geneiatakis D., Kambourakis G., Dagiuklas T., Lambrinoudakis C. and

Gritzalis S., “SIP Security Mechanisms: A state-of-the-art review”, to be
presented in the Fifth International Network Conference (INC 2005),
Samos, Greece, July 2005.

[6] Sisalem D., Kuthan J. and Schäfe G., “Denial of Service attack and SIP
infrastructure” Voice over IP: Challenges and Solutions", IEEE
GLOBECOM 2004, December 2004.

[7] “MySQL open source database”, http://www.mysql.com
[8] “Oracle database”, http://www.oracle.com
[9] “Postgress database”, http://www.postgreSQL.org
[10] “SIP Express Router”, http://www.iptel.org/ser
[11] Franks J., Hallam-Baker P., Hostetler J., Lawrence S., Leach P.,

Luotonen A. and Stewart L., “HTTP Authentication: Basic and Digest
Access Authentication” IETF, RFC 2617, June 1999.

[12] Srisuresh P., Kuthan J., Rosenberg J., Molitor A. and Rayan A:
“Middlebox Communication Architecture and framework”, IETF, RFC
3303, August 2002.

[13] “Microsoft Portrait” http:// research.microsoft.com/~jiangli/portrait/.
[14] “oSIP ”, open source implementation of SIP stack, http://www.osip.org
[15] Wieser C, Laakso M, Schulzrinne H , “Security testing of SIP

implementations”,
http://compose.labri.fr/documentation/sip/Documentation/Papers/Securit
y/Papers/462.pdf, 2003.

[16] Dusse S., Hoffman P., Ramsdell B., Lundblade L., Repka L. “S/MIME
Version 2 Message Specification”, IETF , RFC 2311 March 1998.

[17] Liu C. and Albitz P, “DNS & BIND”, O'Reilly Third Edition, September
1998.

[18] Sicker D and Lookabaugh T., “VoIP Security: Not an Afterthought”,
ACM Queue vol. 2, no. 6 , September 2004.

[19] Anley C, “Advanced SQL Injection In SQL Server Applications.” An
NGSSoftware Insight Security Research (NISR) Publication, 2002.

[20] Spett K, “Blind SQL Injection”,
http://ww.spidynamics.com/whitepapers/Blind_SQLInjection.pdf, 2003.

[21] Ofer Maor, “SQL Injection Signatures Evasion”,
http://www.imperva.com/application_defense_center/white_papers/sql_i
njection_signatures_evasion.html, April 2004.

[22] Finnigan P., “SQL Injection and Oracle, Part One”,
http://www.securityfocus.com/infocus/1644, November 2002.

[23] Varshney U, Snow A, McGivern Mt, and Christi H, “Voice Over IP”
Communications of the ACM Vol. 45, 2002.

[24] Dharmapurikar S., Krishnamurthy P., Sproull T., and Lockwood J.,
“Deep Packet Inspection Using Parallel Bloom Filters.” In Proceedings
11th Symposium of High Performance Interconnects (HOTI’03), pages
44-71, 2003.

[25] Mookhey K. K. and Burghate N, “Detection of SQL Injection and
Cross-site Scripting Attacks”
http://www.securityfocus.com/infocus/1768#ref1, March 2004.

[26] “Preventing HTML form tampering”,
http://advosys.ca/papers/form−tampering.htm January 2005.

[27] Black U., “Voice Over IP”, Prentice Hall, August 1999.
[28] Scott D. and Sharp R, “Developing Secure Web Applications”, IEEE

Internet Computing, pp. 38-45, November 2002.

[29] Scott D. and Sharp R., “Abstracting Application-Level Web Security,”
Proc. 11th Int’l World Wide Web Conf., ACM Press, New York, May
2002, pp. 396-407.

[30] “MySQL UDF Dynamic Library Exploit”, http://
www.securiteam.com/exploits/6G00P1PC0U.html

[31] “MySQL DoS and local root exploits” http://www.sfu.ca/~siegert/linux-
security/msg00017.html

