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ABSTRACT Our interest in algorithms for ‘probabilistic sparse matrix

Motivation: We address the problem of multi-way clustering
of microarray data using a generative model. Our algorithm,
probabilistic sparse matrix factorization (PSMF), is a probab-
ilistic extension of a previous hard-decision algorithm for this
problem. PSMF allows for varying levels of sensor noise in the
data, uncertainty in the hidden prototypes used to explain the
data and uncertainty as to the prototypes selected to explain
each data vector.

Results: We present experimental results demonstrating that
our method can better recover functionally-relevant clusterings
in MRNA expression data than standard clustering techniques,
including hierarchical agglomerative clustering, and we show
that by computing probabilities instead of point estimates, our
method avoids converging to poor solutions.

Contact: delbert@psi.toronto.edu

1 INTRODUCTION

Many kinds of data can be viewed as consisting of a set o?
vectors, each of which is a noisy combination of a small

factorization’ (PSMF) is motivated by a problem identified
during our collaborations with researchers working in the
area of molecular biology. By viewing microarray expression
profiles as points in a vector space, researchers have been
able to use well-known vector-space data analysis techniques
to identify new patterns of biological significance and make
predictions based on previous studies. In particular, the data
matrices of these profiles have been used in the large-scale
prediction of gene function for genes with unknown function,
based on genes with known function (Hugkeesl., 2000).
Because many biological functions depend upon the coordin-
ated expression of multiple genes, similarity of expression
profile often implies similarity of function (Marcottet al.,
1999). This relationship has been exploited to predict the func-
tion of uncharacterized genes by various researchers (see e.g.
Brown et al., 2000). These schemes make use of annotation
databases like Gene Ontology (Ashburetex ., 2000), which
ssign genes to one or more predefined functional categories.
However, noise in the expression measurements has limited

the predictive accuracy of these algorithms, especially inthose

number of noisy prototype vectors. Moreover, these proto'c:ategories; containing a small number of genes. These ‘small’

type vectors may correspond to different hidden variables tha&ategories can be of greater interest because less is typically

play a meaningful role in determining the measured data. FOlEnown about them; furthermore, they make specific (and thus
example, a gene’s expression is influenced by the presenceg{

L . i ore easily confirmed) predictions about gene function.
transcription factor proteins, and two genes may be activate

. . Here, we introduce an unsupervised technique that jointly
by overlapping sets of transcription factors. Consequently, thaenoises expression profile data and computes a sparse matrix

actlvlllty of EaCh fgene can .be ?xplamed by the activities of Factorization, thereby rendering a multi-way classification of
Sn_l]_i. numker 0 tt:ans_crlpt:jon acr:ors. bl ‘1 - the data. Our techniqgue models the underlying causes of the
IS task can be viewed as the problem of factorizing aexpression data in terms of a small number of hidden factors.

data matrix, while taking into account constraints refleqing-rhe representation of the expression profile in terms of these
the structural knowledge of the problem and the prObab'“St'%idden factors is less noisy; here we explore whether this

relationships between variables that are induced by knoWpepresentation is more amenable to functional prediction.

u_ncertaint_ies_ in the problem._ A _sim_ple ?X&.lmple of a tech- Our technique explicitly maximizes a lower bound on the
nique for finding such a factorization is principal Componemslog-likelihood of the data under a probability model. The

analysis (PCA). In this paper we study algorithms for finding g, s encoding found by our method can be used for a variety

matrix factorizations, but with a specific focus on sparse fac'of tasks, including functional prediction and data visualiza-

torizations and on properly accounting for uncertainties whiletion We reportP-values, which show that our technique pre-
computing the factorization. dicts functional categories with greater statistical significance
than a standard method, hierarchical agglomerative cluster-
ing (UPGMA). Also, we show that our algorithm, which

*To whom correspondence should be addressed.
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computes probabilities rather than making hard decisionsalgorithm for finding a sparse matrix factorization that makes
obtains a higher data log-likelihood than the version of thehard decisions at each step.

algorithm that makes hard decisions. However, our method finds such a factorization while
accounting for uncertainties due to (1) different levels of noise
in each expression profile, (2) different levels of noise in the
2 METHODS FOR MATRIX FACTORIZATION factors used to explain the data and (3) uncertainty about the

One approach to analyzing data vectors lying in a low-hidden prototypes selected to explain each input vector.

dimensional linear subspace is to stack them to form a data L . .

matrix, X, and then find a low-rank matrix factorization of 2.1 Probabilistic sparse matrix factorization

the data matrix. GiverX € RY*T matrix factorization Let X be the matrix of gene expression data such that rows

techniques find & € RY*¢ and az € R¢*T such that correspond to each @ genes and columns to each®tis-

X~Y.Z. sues (i.e. entryg represents the amount by which genis
Avariety of techniques have been proposed for finding matexpressed in cells of tissue typg We denote the collection

rix factorizations, including non-probabilistic techniques suchof unobserved factor profiles as a matix with rows corres-

as principal components analysis, independent componengnding to each of factors and” columns corresponding to

analysis (Bell and Sejnowski, 1995) and network componentissues, as before.

analysis (Liacet al., 2003), and also probabilistic techniques We model each gene expression profilg,as a linear com-

that account for noise, such as factor analysis. bination of a small number) of these factor profileg,, plus
Interpreting the rows oK as input vectors{xg}gzl, the  noise: ,

rows ofZ (_i.e. {zci}f:l) can be viewed as vectors that span the X = i: Vesy Zsy, -+ NOISE. @)

C-dimensional linear subspace, in which casegtterow of oo

Y containsthe coef“ficien(sgc}f:1 that combine these vectors

to explain thegth row of X.

n=1
The factor profiles contributing to thgh gene expression

Gene expression is thought to be regulated by a small (com?mfc\;a iarhet indexed bYse1, 552 - - - ’S_Ié'ﬁi}’ iW'itg i:]?irrels?o?rc]i-
pared to the total number of genes) set of factors which ac{'9 * $gzs{yg€ﬁ}’¥g%%":"ty.gfgrg}'.th{ss s lde cat. 0 the
in combination to maintain the steady-state abundance ~ Y - Z matrix factorization with{S, r} representing the

specific mMRNAs. Some of these factors could represent th%??]rs.igeistitéug;ir:rcggS(;r;g]tbwzgsccr?#nm fg]reva?gggr:gzegsf
binding of one (or more) transcription factors (TFs) to the IS€ | v y uming P

promoter region(s) of the gene, other factors could incIudeq%ne'stﬁe?i'ﬂc“ﬁo”gp'; C;:-auss?a”n \i/er]sor noise with variance
nonsense-mediated mMRNA decay induced in varying degre S0 the likelihood ok, IS as Tollows:

depending on the abundance of specific splicing factors that re

generate alternative spchmg of the precursor mMRNA. We P(xg|yg,Z,sg,rg,¢§) N Xg;zygsgnzsgn,wgq . ()
assume that the expression of each gene is influenced by only ]

a small subset of the possible factors and that these factors ) ) )
influence their targets to various degrees. We complete the model with prior assumptions that the

There is good evidence that the TFs, in particular, havdactor profiles(z.) are normally distributed and that the factor
varying effects on the expression of their targets. The THNdices(sgn) are uniformly distributed. The number of causes,
binding sites for different genes can have different affinit-"» contributing to each gene’s profile is multinomially distrib-
ies; some genes have multiple binding sites whereas othet§ed such thaP(r; = n) = v,, wherev is a user-specified
have only one. It is also well known that factors act com-V-vector. We make no assumptions abdttbeyond the
binatorially. Inspired by this, we model the gene expressiorfParseness constraint, 8gY) oc 1.
vector as a weighted combination of a small number of pro- Multiplying these priors by Equation (2) forms the follow-
totype vectors—each prototype representing the influence d¢fd joint distribution:

a different biological or experimental factor (or factors). P(X.Y.Z,S,1|0)
This type of problem is called ‘sparse matrix factorization’ e

in (Srebro and Jaakkola, 2001), and is related to independ- = P(X[Y,Z,S,;r,¥)- P(Y)- P(Z)- P(Sr)- P(r)
ent component analysis (ICA). In their model, Srebro and G re c
Jaakkola augment thé ~ Y - Z matrix factorization setup < TTN [ x.: 2 -

: ’ P Y YesaZsar Wel | | | N (2;0,1)
with the sparseness structure constraint that each rdhaf g ¢ ; S T E ‘
at mostN non-zero entriés They then describe an iterative

G C N q\[m=] G N
T ()" TTeat =1 @

1 - - - - g=lc=1ln=1 g=1n=1

When N = 1, this scheme degenerates to clustering with arbitrary data
vector scalingN = C yields ordinary low-rank approximation. uniformly distributed multinomially distributed
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Here, the lverson notation is used whegfgue] = 1 and Com'e
[Falsg = 0. = Z Z Pgn Z Z ("gﬂ - log :chn)
g=1n=1 n'=1c=1
2.2 Factorized variational inference p r &
Exact inference with Equation (3) is intractable so we utilize  + Z Z (Pgn log gn) + 2 Z log Zﬂxﬁgz
a factorized variational method (Jordetrel., 1998, www.ai. g=1n=1 s=1
mit.edu/research/abstracts/abstracts2001/genomics/Olsrebro. 1.
df) and approximate the posterior distribution with a mean- 2) 4 = 2 2
pdf) and approximate the p Z(l+log¢c)+222(cct+¢c)
field decomposition: par] =1 ¢
1 G T N o
G c = Fan o
gle Og2c;
P(Y,Z,SriX,w) ~[] oWy ] Q@) Zgéz & Z Z

g=1 c=1

H H QO (sqn) - H Q(re).  (4)

g=1n=1

We introduce variational parameters, ¢, ¢, o, p) that
parameterize th@-distribution as follows:

Age IS @ point estimate Ofg but for {s,r,}

l_[ ) ygsgn -
c#{se1.552,..-

0@zat) = N (zat; Sty 192
Q(Sgn =) = Ognc
O(ry = n) = pgn.

c

gsgn) : 1_[

c=1

0(y,) = 8 (Yge)

Sre |

E , Ognc,

n n
(xgt - Z Agc, ;e,,n‘) + Z )‘Sc,‘,%z,,,

= n'=1 n'=1

The free energy can be minimized sequentially with respect
to each variational parametex, (¢, ¢, o, p) by analytic-
ally finding zeros of the partial derivatives with respect to
them. This coordinate descent represents the E-step in vari-
ational EM (Jordaret al., 1998) that alternates with a brief
M-step, where the global sensor noise is fit by similarly
solving 3. F /0¥ =0. For a more detailed treatment of the
algorithm and parameter update equations (Dueck and Frey,
2004, www.psi.toronto.edu).

3 EXPERIMENTAL RESULTS
To experimentally analyze the performance of our algorithm,

Using this approach, inference corresponds to bringing thive use the recently-published expression dataset from Zhang

Q-distribution as close as possible to the P-distribution b
setting the variational parameters to minimize the relativ

entropy, Q| P):

o,Z,Sr)
P(Y,Z,Sr|X,¥)’
)

min
{r.¢.¢.0.0}

/ o,Z,Sr)-log
Y.ZSr

The constraints Y% 0ge=1, YN pgn=1 become
Lagrange multipliers in this optimization problem.

yet al. (2004, http://hugheslab.med.utoronto.ca/Zhang). This
JSataset is one of the most comprehensive mammalian gene

expression datasets now available, containing profiles of over
40000 known and predicted genes (of which they determined
that 22 709 contained a clear expression) across a set of 55
mouse tissues, organs and cell types. In addition to measuring
the profiles, Zhangt al. associated Gene Ontology Biological
Process (GO-BP) annotations with each gene and showed that
a supervised learning algorithm can be trained to predict these
annotations with high precision. These results were obtained
using profiles in which the expression measurement of a gene

There is no closed-form expression for the posteriofn €ach tissue is represented by the approximate log ratio of

[denominator in (5)], but we can subtract |8gX)

the normalized intensity of the gene in the given tissue to

inside the integral (It is independent of the vari- the gene’'s median normalized intensity across the 55 tissues.
ational parameters.) to form the readily-minimized freeObserving that the majority of genes expressed in any tissue

energy,F.

F =D(Q|P) —log P(X)
oX,Z,5r)

P(X,Y,Z,S,r|¥)

=/ o,Z,S,r)-log
Y.Z,Sr

were expressed in less than half of the tissues, Zbaaigset
ratios less than one equal to one, reasoning that these ratios
represent noise rather than downregulation. We use the same
representation of the data as Zhahgl ., so the datais entirely
non-negative. The factor loading and factor profile matrices
(Y and Z), however, are free to contain positive or negat-
ive entries, consistent with the notion that factors can act to
increase or reduce expression levels.
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@) Comlete Data Set b) Data subset — factor #3 is primary

s

~598 genes -

U

E

~ T=55 tissues — —C=50 factors -

=22709 genes .
22709 genes .

b — 1=55 tissues —
~T=55 tissues —

-G
-G

3" factor
weights

(c) Data subset — factor #3 is primary
and factor #33 is secondary

~17 genes -

~T=55 tissues - ~T=55 tissues - ~C=50 factors -
i
X, X scale: 01 2 3 >4 33 factor
= = E weights
~T=55 tissues - ~T=55 tissues - ~C=50factors— vy 7 gcale: <04 0 1 >2

Fig. 1. Data matrixX approximated byX, the product of spars¥ and low-rankZ. Gene expression profiles appear as row vecto in
andX sorted by primary clas§,1), secondary clas§,»), etc. @) shows the complete dataset) Ehows only those genes where factor 3

is primary (i.e.{Vg | 5,1 = 3}—note the vertical line iryg). (c) shows those genes where factor 3 is primary and factor 33 is secondary
(i.e.{Vg | sg1 = 3N 542 = 33}—note the vertical lines igg).

The functional category labels for the genes with knownbe found that, if present with infinitesimal weightf), will
biological function were taken from (Zhargy al., 2004). imperceptibly improve the cost functioF(, with the end
An example of a category label is ‘visual perception’, which result that almost all, would then be maximized (equalig).
indicates the gene expresses a protein that is involved in ‘thé/eighting the prior towards lower values ensures that factors
series of events required for an organism to receive a visualill only be included if they make a non-negligible difference
stimulus, convert it to a molecular signal, and recognize andwe only choose, « 1/n, Vrn < N for simplicity).
characterize the signal’. These labels are derived from GO-BP Gene expression profiles (row vectors) in Figure 1 are first
category labels (Ashburnet al., 2000) assigned to genes by sorted by ‘primary’ factor,1); next, within eacty,1 group-
the European Bioinformatics Institute and Mouse Genoméng, genes are sorted by ‘secondary’ factgy,), and so
Informatics. on. This organization is easily visualized in the hierarchical

Among the 22709 clearly expressed genes in the Zhandiagonal structure oY .
et al. database, 9499 have annotations in one or more of Figure 1b zooms in on the 598 genes whose primary factor
992 different GO categories. The category sizes range froris 3 (i.e. s,1 = 3). Genes with this primary factor show
3 to 456 genes, with more than half the categories havindrigh expression in colon, small intestine and large intestine
<20 genes. (the prominent vertical expression band in thgpanel in

We present results for the 22 709 gene$5 tissues data- Figure 1b). The most significantly enriched GO-BP category
sets shown in Figure 1. The data matdx,s shown alongside in this category are lipid metabolism [GO:0006628}yalue
the model's approximatiorfi, also expressed *=Y- Z. <10719). Figure 1c zooms in further on to a subset of 17 genes
A total of C = 50 factors were used, and the user-specifiedvhose secondary factoris 33 (isg; = 33). Genes associated
prior on the number of factorsy) explaining each expression with factor 33 show high expression in tissues associated with
profile was set to = [ .55 .27 .18], makingN = 3.  the immune system (like thymus and bone marrow) and are
A uniform prior v (reflecting no knowledge about the dis- most significantly enriched for the GO-BP category response
tribution of r) would give equal preference to all values of a to pest/pathogen/parasite [GO:000961Bhalue < 1013).
particular,. For any giverr, < N, afactor can almostalways Indeed, the set of genes shown in Figure 1c contains six
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Fig.2. P-valuesfor UPGMA and probabilistic sparse matrix factorizatior= 50, N = 3). Significantly enriched factors/clusters¢at= 0.05
after Bonferroni correction) are shown as solid bars.

(of twelve annotated) genes involved in the immune responstertiary’ factor assignments (wherg > 3). So, for example,
including two genes involved in the major histocompatibility genesg and g’ are in the same ‘primary’ factor cluster if
complex (H2-Q1, H2-T23), a portion of a T-cell receptor, ands,1 = s¢1. We label each cluster with the GO-BP category
a subunit of the proteasome (Psmel). Here, PSMF appearshaving the lowest (i.e. best) hypergeometfievalue for the
have identified a subset of the genes expressed in the lowgenes in that cluster, making this tRevalue associated with
digestive system that are involved in immune system activitythe entire cluster. Histograms of thegevalues, as well as

occurring there. those for hierarchical agglomerative clustering, are shown in
) o Figure 2.
3.1 Unsupervised characterization of mMRNA data For reference, we also compute the functional enrichment of

The overall objective for this research is to develop a modefiene clusters generated randomly and those generated using
that captures the functionally relevant hidden factors that/PGMA, sparse matrix factorization (SMF), PCA and ICA.
explain gene expression data. As such we can gauge succés generate the UPGMA clusters, we used average linkage
by measuring the similarity of the hidden factor assignmentsvith Pearson’s correlation coefficient as the distance measure
between genes with similar functions. on the expression profiles. We generated SMF clusters in the
We cluster genes on the basis of their factor assignmentsame way as we generated the PSMF clusters. Note that unlike
and useP-values calculated from the hypergeometric distri-UPGMA, PSMF and SMF allow us to generate ‘primary’,
bution to measure the enrichment of these clusters for genésecondary’ and ‘tertiary’ clusters.
with similar functions (Tavazoietal., 1999). Foragivengene  For PCA, we cluster genes by their dominant principal com-
cluster of sizeVf of which K elements had a given functional ponent measured by the absolute value. To generate the ICA
annotation, the hypergeometifevalue is the probability that clusters, we used the FastICA package (Hyvarinen, 1999,
a random set of genes of siaé (selected without replace- www.cis.hut.fi/projects/ica/fastica) to recover 55 source vec-
ment from all genes in the dataset) would ha&eor more  tors (i.e. factors) foX, each of length 22 709. We ignore the
elements with given functional annotation. F8r=3, we  mixing matrix recovered by FastICA, and cluster the genes
generate three different clustering of the genes: by ‘primaryby the index of the largest absolute value among the corres-
factor, ‘secondary’ factor (for those genes where- 2), and  ponding 55-dimensional slice in the matrix of source vectors.

1148



Multi-way clustering of microarray data using generative model

8 100% . 100% 100%
e I\
(] Np IR
O 80%| % \E\r 80% 80%
=
c
D 60% 60% 60%
)
ey
2 40% 40% 40%  L\;
2
2]
‘6 20% 20% 20%
o
8
y— 0% 0% 0%
0 20 40 60 80 100 0 0 -
— PSMF (variational) (tertiary’)
SMF (ICM)
= 1 PCA
257 -, ICA 25
— 111 UPGMA
() .
= random clustering 20
T )}
T
o -15 -15
N
o
i
(@]
-10 / -10
o o /1 /* o 1
c ~« Ll
& =5 51
S ®®e0c00000000c000000 ®®e0c00000c00c0000000 "o'ooooo-ooto.o-oooSQS
0 0 0 (‘tertiary’)
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

C (# clusters, factors) C (# clusters, factors) C (# clusters, factors)

Fig. 3. Fraction of clusters/factors with significance (top row) and mearyl@gvalue (bottom row). PSMF (Dueck and Frey, 2004) and
SMF (Srebro and Jaakkola, 2001) are shown¥oe 1 (left), N = 2 (center) andv = 3 (right) along with UPGMA and random clustering

over a range of -values. PCA is shown only faf < T = 55 after which it would overfit the data; ICA is shown f6r= 55 only. Error bars
represent the sample standard deviation over 10 trials. Results for UPGMA and random clustering are shown on all plots for comparison.

Tablel. Fraction of clusters that have significant functional enrichment (for of clusters with significance fof =50 factors and Figure 3

C = 50 clusters or factors) shows both these quantities fér= {1, 2, 3 over0< C < 80.
The plot shows that PSMF withv =1 outperforms
Primary Secondary Tertiary UPGMA and clustering by dominant sources with ICA. For
N > 1, the functional enrichment of ‘primary’ clusters for

PSMF(N = 1) 0.59 PSMF and SMF remains constant but the ‘secondary’ and
PSMF(N =2 0.57 0.22 ‘tertiary’ clusters are also more functionally enriched than
PSMF(N =3) 0.54 022 0.078 random. Note that for all values of, the PSMF clusters are
SMF(N = 1) 0.47 more enriched than the corresponding SMF clusters.
SMF(N =2 0.44 0.19
SMF(N = 3) 0.44 0.16 0.004 o o )
. 034 3.2 Avoiding local minima by accounting for
ICA (C = 55) 0.44 uncertainty
UPGMA 0.38 The soft-decision factorized variational method (PSMF) finds
Random 0 better hidden factors than the hard-decision iterated con-

ditional modes (SMF) (Srebro and Jaakkola, 2001; Besag,
1986). This may be the case because SMF is too inflexible
This method (as opposed to transposing matrices or not taking properly allow factor groupings to evolve, as shown in
absolute values) was selected because it yielded results withe likelihood plots of Figure 4. Note that these plots com-
the greatest significance. pare complete log-likelihoods [i.e. log of Equation (3)] for
We summarize these histograms in two ways: the proporboth PSMF and SMF—not the more favorable free energy for
tion of clusters that are significantly enriched for at least ond®SMF—so the number of parameters is the same.
functional category at = 0.05 (after a Bonferroni correction)  As an example, consider the case where there is uncertainty
and the mean log (P-value). Table 1 shows the proportion about gene having as its primary factas,1) profile ¢ or
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x 10° algorithm to avoid local minima found by iterated conditional
or modes.
There are clearly=50 hidden factors that contribute to
ol the gene expression in mouse. Indeed, a recent study iden-

tified 779 likely TFs alone (Zhangt al., 2004). We have,
however, limited ability to identify factors by the available
—4r PSMF (factorized variational data. We cannot, for example, distinguish factors that do
not have an observably different effect on mRNA levels in
the profiled tissues. Also, the data we modeled were drawn

Complete LogLikelihood

adl SMF (iterated conditional modes) primarily from adult tissue whereas many TFs are most act-
ive during embryogenesis. With additional data, we would
_gl be able to model more factors. However, the fact that, with
just 50 hidden factors, we were able to extract functionally-
relevant representations is a strong validation of our

=% 5 10 15 20 25 30 approach.

Compared to a standard technique used in the bioinform-
atics community for clustering gene expression profiles,
) _ . o UPGMA, our technique finds clusters that have higher stat-
Fig. ‘.‘" D'reCt complete Iog_.“ke."hOOd maximization Of. SMF istical significance (loweP-values) in terms of enrichment
and indirect complete log-likelihood maximization (via free . . "
energy minimization—see Section 2.2) of PSMF. The completeOf gene function categories. A_n add|t|or_1al adyantage of our
log-likelihood is calculated after each iteration of both ICM method over S.tandard clustering techniques is that the ;ec-
and variational EM using maximum-likelihood latent variable ©ndary and higher-order labels found for each expression
estimates. vector can be used for more refined visualization and func-

tional prediction. Currently we are using this method to
) o ) analyze a new genome-wide, exon resolution, mouse gen-
c2 (with probabilities 0.49 and 0.51, respectively). When they e gataset containing over 12 million measurements. We
factor profiles Z) are updaFed .to reflect their_ n_wembership,are currently using this method to analyze a new genome-
SMF makes the maximum-likelihood hard decisionthat=" yide exon-tiling microarray dataset, in conjunction with our
czand geng updates factor profile., only. Onthe otherhand, GenRate algorithm (Frest al., 2005).
soft-decision PSMF accounts for the uncertainty by updating

profilesz., andz., in proportion to their probabilities (roughly
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