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ABSTRACT
Motivation: We address the problem of multi-way clustering
of microarray data using a generative model. Our algorithm,
probabilistic sparse matrix factorization (PSMF), is a probab-
ilistic extension of a previous hard-decision algorithm for this
problem. PSMF allows for varying levels of sensor noise in the
data, uncertainty in the hidden prototypes used to explain the
data and uncertainty as to the prototypes selected to explain
each data vector.
Results: We present experimental results demonstrating that
our method can better recover functionally-relevant clusterings
in mRNA expression data than standard clustering techniques,
including hierarchical agglomerative clustering, and we show
that by computing probabilities instead of point estimates, our
method avoids converging to poor solutions.
Contact: delbert@psi.toronto.edu

1 INTRODUCTION
Many kinds of data can be viewed as consisting of a set of
vectors, each of which is a noisy combination of a small
number of noisy prototype vectors. Moreover, these proto-
type vectors may correspond to different hidden variables that
play a meaningful role in determining the measured data. For
example, a gene’s expression is influenced by the presence of
transcription factor proteins, and two genes may be activated
by overlapping sets of transcription factors. Consequently, the
activity of each gene can be explained by the activities of a
small number of transcription factors.

This task can be viewed as the problem of factorizing a
data matrix, while taking into account constraints reflecting
the structural knowledge of the problem and the probabilistic
relationships between variables that are induced by known
uncertainties in the problem. A simple example of a tech-
nique for finding such a factorization is principal components
analysis (PCA). In this paper we study algorithms for finding
matrix factorizations, but with a specific focus on sparse fac-
torizations and on properly accounting for uncertainties while
computing the factorization.

∗To whom correspondence should be addressed.

Our interest in algorithms for ‘probabilistic sparse matrix
factorization’ (PSMF) is motivated by a problem identified
during our collaborations with researchers working in the
area of molecular biology. By viewing microarray expression
profiles as points in a vector space, researchers have been
able to use well-known vector-space data analysis techniques
to identify new patterns of biological significance and make
predictions based on previous studies. In particular, the data
matrices of these profiles have been used in the large-scale
prediction of gene function for genes with unknown function,
based on genes with known function (Hugheset al., 2000).
Because many biological functions depend upon the coordin-
ated expression of multiple genes, similarity of expression
profile often implies similarity of function (Marcotteet al.,
1999). This relationship has been exploited to predict the func-
tion of uncharacterized genes by various researchers (see e.g.
Brown et al., 2000). These schemes make use of annotation
databases like Gene Ontology (Ashburneret al., 2000), which
assign genes to one or more predefined functional categories.

However, noise in the expression measurements has limited
the predictive accuracy of these algorithms, especially in those
categories containing a small number of genes. These ‘small’
categories can be of greater interest because less is typically
known about them; furthermore, they make specific (and thus
more easily confirmed) predictions about gene function.

Here, we introduce an unsupervised technique that jointly
denoises expression profile data and computes a sparse matrix
factorization, thereby rendering a multi-way classification of
the data. Our technique models the underlying causes of the
expression data in terms of a small number of hidden factors.
The representation of the expression profile in terms of these
hidden factors is less noisy; here we explore whether this
representation is more amenable to functional prediction.

Our technique explicitly maximizes a lower bound on the
log-likelihood of the data under a probability model. The
sparse encoding found by our method can be used for a variety
of tasks, including functional prediction and data visualiza-
tion. We reportP -values, which show that our technique pre-
dicts functional categories with greater statistical significance
than a standard method, hierarchical agglomerative cluster-
ing (UPGMA). Also, we show that our algorithm, which
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computes probabilities rather than making hard decisions,
obtains a higher data log-likelihood than the version of the
algorithm that makes hard decisions.

2 METHODS FOR MATRIX FACTORIZATION
One approach to analyzing data vectors lying in a low-
dimensional linear subspace is to stack them to form a data
matrix, X, and then find a low-rank matrix factorization of
the data matrix. GivenX ∈ RG×T , matrix factorization
techniques find aY ∈ RG×C and aZ ∈ RC×T such that
X ≈ Y · Z.

A variety of techniques have been proposed for finding mat-
rix factorizations, including non-probabilistic techniques such
as principal components analysis, independent components
analysis (Bell and Sejnowski, 1995) and network component
analysis (Liaoet al., 2003), and also probabilistic techniques
that account for noise, such as factor analysis.

Interpreting the rows ofX as input vectors{xg}Gg=1, the

rows ofZ (i.e. {zc}Cc=1) can be viewed as vectors that span the
C-dimensional linear subspace, in which case thegth row of
Y contains the coefficients{ygc}Cc=1 that combine these vectors
to explain thegth row of X.

Gene expression is thought to be regulated by a small (com-
pared to the total number of genes) set of factors which act
in combination to maintain the steady-state abundance of
specific mRNAs. Some of these factors could represent the
binding of one (or more) transcription factors (TFs) to the
promoter region(s) of the gene, other factors could include
nonsense-mediated mRNA decay induced in varying degrees
depending on the abundance of specific splicing factors that
generate alternative splicing of the precursor mRNA. We
assume that the expression of each gene is influenced by only
a small subset of the possible factors and that these factors
influence their targets to various degrees.

There is good evidence that the TFs, in particular, have
varying effects on the expression of their targets. The TF
binding sites for different genes can have different affinit-
ies; some genes have multiple binding sites whereas others
have only one. It is also well known that factors act com-
binatorially. Inspired by this, we model the gene expression
vector as a weighted combination of a small number of pro-
totype vectors—each prototype representing the influence of
a different biological or experimental factor (or factors).

This type of problem is called ‘sparse matrix factorization’
in (Srebro and Jaakkola, 2001), and is related to independ-
ent component analysis (ICA). In their model, Srebro and
Jaakkola augment theX ≈ Y · Z matrix factorization setup
with the sparseness structure constraint that each row ofY has
at mostN non-zero entries1. They then describe an iterative

1WhenN = 1, this scheme degenerates to clustering with arbitrary data
vector scaling;N = C yields ordinary low-rank approximation.

algorithm for finding a sparse matrix factorization that makes
hard decisions at each step.

However, our method finds such a factorization while
accounting for uncertainties due to (1) different levels of noise
in each expression profile, (2) different levels of noise in the
factors used to explain the data and (3) uncertainty about the
hidden prototypes selected to explain each input vector.

2.1 Probabilistic sparse matrix factorization
Let X be the matrix of gene expression data such that rows
correspond to each ofG genes and columns to each ofT tis-
sues (i.e. entryxgt represents the amount by which geneg is
expressed in cells of tissue typet .) We denote the collection
of unobserved factor profiles as a matrix,Z, with rows corres-
ponding to each ofC factors andT columns corresponding to
tissues, as before.

We model each gene expression profile,xg, as a linear com-
bination of a small number (rg) of these factor profiles,zc, plus
noise:

xg =
rg∑

n=1

ygsgn zsgn + noise. (1)

The factor profiles contributing to thegth gene expression
profile are indexed by{sg1, sg2, . . . , sgrg

}, with correspond-
ing weights{ygsg1,ygsg2, . . . ,ygsgrg

}. This is identical to the
X ≈ Y · Z matrix factorization with{S, r} representing the
sparseness structure constraint. We account for varying levels
of noise in the observed data by assuming the presence of
gene-specific isotropic Gaussian sensor noise with variance
ψ2

g so the likelihood ofxg is as follows:

P(xg|yg, Z, sg, rg,ψ2
g ) = N

(
xg;

rg∑
n=1

ygsgn zsgn ,ψ
2
g I

)
. (2)

We complete the model with prior assumptions that the
factor profiles(zc) are normally distributed and that the factor
indices(sgn) are uniformly distributed. The number of causes,
rg, contributing to each gene’s profile is multinomially distrib-
uted such thatP(rg = n) = νn, whereν is a user-specified
N -vector. We make no assumptions aboutY beyond the
sparseness constraint, soP(Y) ∝ 1.

Multiplying these priors by Equation (2) forms the follow-
ing joint distribution:

P(X, Y, Z, S, r|�)

= P(X|Y, Z, S, r,�) · P(Y) · P(Z) · P(S|r) · P(r)

∝
G∏

g=1

N
(

xg;
rg∑

n=1

ygsgn zsgn ,ψ
2
g I

)
·

C∏
c=1

N (zc; 0, I)

·
G∏

g=1

C∏
c=1

N∏
n=1

(
1

C

)[sgn=c]

︸ ︷︷ ︸
uniformly distributed

·
G∏

g=1

N∏
n=1

(νn)
[rg=n]

︸ ︷︷ ︸
multinomially distributed

. (3)
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Here, the Iverson notation is used where[True] = 1 and
[False] = 0.

2.2 Factorized variational inference
Exact inference with Equation (3) is intractable so we utilize
a factorized variational method (Jordanet al., 1998, www.ai.
mit.edu/research/abstracts/abstracts2001/genomics/Olsrebro.
pdf) and approximate the posterior distribution with a mean-
field decomposition:

P(Y, Z, S, r|X,�) ≈
G∏

g=1

Q(yg) ·
C∏

c=1

Q(zc)

·
G∏

g=1

N∏
n=1

Q(sgn) ·
G∏

g=1

Q(rg). (4)

We introduce variational parameters (λ, ζ , φ, σ , ρ) that
parameterize theQ-distribution as follows:

Q(yg) =

λgc is a point estimate ofygc︷ ︸︸ ︷
rg∏

n=1

δ
(
ygsgn − λgsgn

) ·

but for {sg ,rg}︷ ︸︸ ︷
C∏

c=1
c/∈{sg1,sg2,...,sgrg }

δ
(
ygc

)
Q(zct) = N (zct ; ζct , ,φ2

c )

Q(sgn = c) = σgnc

Q(rg = n) = ρgn.

Using this approach, inference corresponds to bringing the
Q-distribution as close as possible to the P-distribution by
setting the variational parameters to minimize the relative
entropy, D(Q‖P):

min{λ,ζ ,φ,σ ,ρ}

∫
Y,Z,S,r

Q(Y, Z, S, r) · log
Q(Y, Z, S, r)

P (Y, Z, S, r|X,�)
.

(5)

The constraints
∑C

c=1 σgnc = 1,
∑N

n=1 ρgn = 1 become
Lagrange multipliers in this optimization problem.

There is no closed-form expression for the posterior
[denominator in (5)], but we can subtract logP(X)

inside the integral (It is independent of the vari-
ational parameters.) to form the readily-minimized free
energy,F :

F = D(Q‖P) − logP(X)

=
∫

Y,Z,S,r
Q(Y, Z, S, r) · log

Q(Y, Z, S, r)
P (X, Y, Z, S, r|�)

...

=
G∑

g=1

N∑
n=1

ρgn

n∑
n′=1

C∑
c=1

(
σgn′c · log

σgn′c

1/Cn

)

+
G∑

g=1

N∑
n=1

(
ρgn · log

ρgn

νn

)
+ T

2

G∑
g=1

log 2πψ2
g

− T

2

C∑
c=1

(
1 + logφ2

c

)
+ 1

2

T∑
t=1

C∑
c=1

(
ζ 2

ct + φ2
c

)

+ 1

2

G∑
g=1

T∑
t=1

N∑
n=1

ρgn

ψ2
g

C∑
c1=1

σg1c1

C∑
c2=1

σg2c2 · · ·

C∑
cn=1

σgncn


(

xgt −
n∑

n′=1

λgcn′ ζcn′ t

)2

+
n∑

n′=1

λ2
gcn′ φ

2
cn′


 .

The free energy can be minimized sequentially with respect
to each variational parameter (λ, ζ , φ, σ , ρ) by analytic-
ally finding zeros of the partial derivatives with respect to
them. This coordinate descent represents the E-step in vari-
ational EM (Jordanet al., 1998) that alternates with a brief
M-step, where the global sensor noise is fit by similarly
solving ∂F/∂� = 0. For a more detailed treatment of the
algorithm and parameter update equations (Dueck and Frey,
2004, www.psi.toronto.edu).

3 EXPERIMENTAL RESULTS
To experimentally analyze the performance of our algorithm,
we use the recently-published expression dataset from Zhang
et al. (2004, http://hugheslab.med.utoronto.ca/Zhang). This
dataset is one of the most comprehensive mammalian gene
expression datasets now available, containing profiles of over
40 000 known and predicted genes (of which they determined
that 22 709 contained a clear expression) across a set of 55
mouse tissues, organs and cell types. In addition to measuring
the profiles, Zhanget al. associated Gene Ontology Biological
Process (GO-BP) annotations with each gene and showed that
a supervised learning algorithm can be trained to predict these
annotations with high precision. These results were obtained
using profiles in which the expression measurement of a gene
in each tissue is represented by the approximate log ratio of
the normalized intensity of the gene in the given tissue to
the gene’s median normalized intensity across the 55 tissues.
Observing that the majority of genes expressed in any tissue
were expressed in less than half of the tissues, Zhanget al. set
ratios less than one equal to one, reasoning that these ratios
represent noise rather than downregulation. We use the same
representation of the data as Zhanget al., so the data is entirely
non-negative. The factor loading and factor profile matrices
(Y and Z), however, are free to contain positive or negat-
ive entries, consistent with the notion that factors can act to
increase or reduce expression levels.
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Fig. 1. Data matrixX approximated bŷX, the product of sparseY and low-rankZ. Gene expression profiles appear as row vectors inX
andX̂ sorted by primary class(sg1), secondary class(sg2), etc. (a) shows the complete dataset. (b) shows only those genes where factor 3
is primary (i.e.{∀g | sg1 = 3}—note the vertical line inyg). (c) shows those genes where factor 3 is primary and factor 33 is secondary
(i.e. {∀g | sg1 = 3 ∩ sg2 = 33}—note the vertical lines inyg).

The functional category labels for the genes with known
biological function were taken from (Zhanget al., 2004).
An example of a category label is ‘visual perception’, which
indicates the gene expresses a protein that is involved in ‘the
series of events required for an organism to receive a visual
stimulus, convert it to a molecular signal, and recognize and
characterize the signal’. These labels are derived from GO-BP
category labels (Ashburneret al., 2000) assigned to genes by
the European Bioinformatics Institute and Mouse Genome
Informatics.

Among the 22 709 clearly expressed genes in the Zhang
et al. database, 9499 have annotations in one or more of
992 different GO categories. The category sizes range from
3 to 456 genes, with more than half the categories having
<20 genes.

We present results for the 22 709 genes× 55 tissues data-
sets shown in Figure 1. The data matrix,X, is shown alongside
the model’s approximation,̂X, also expressed aŝX = Y · Z.
A total of C = 50 factors were used, and the user-specified
prior on the number of factors (rg) explaining each expression
profile was set toν = [

.55 .27 .18
]
, makingN = 3.

A uniform prior ν (reflecting no knowledge about the dis-
tribution of r) would give equal preference to all values of a
particularrg. For any givenrg < N , a factor can almost always

be found that, if present with infinitesimal weight (ygc), will
imperceptibly improve the cost function (F ), with the end
result that almost allrg would then be maximized (equal toN ).
Weighting the prior towards lower values ensures that factors
will only be included if they make a non-negligible difference
(we only chooseνn ∝ 1/n, ∀n ≤ N for simplicity).

Gene expression profiles (row vectors) in Figure 1 are first
sorted by ‘primary’ factor (sg1); next, within eachsg1 group-
ing, genes are sorted by ‘secondary’ factor (sg2), and so
on. This organization is easily visualized in the hierarchical
diagonal structure ofY.

Figure 1b zooms in on the 598 genes whose primary factor
is 3 (i.e. sg1 = 3). Genes with this primary factor show
high expression in colon, small intestine and large intestine
(the prominent vertical expression band in thexg panel in
Figure 1b). The most significantly enriched GO-BP category
in this category are lipid metabolism [GO:0006629] (P -value
<10−10). Figure 1c zooms in further on to a subset of 17 genes
whose secondary factor is 33 (i.e.sg2 = 33). Genes associated
with factor 33 show high expression in tissues associated with
the immune system (like thymus and bone marrow) and are
most significantly enriched for the GO-BP category response
to pest/pathogen/parasite [GO:0009613] (P -value < 10−13).
Indeed, the set of genes shown in Figure 1c contains six
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Fig. 2. P -values for UPGMA and probabilistic sparse matrix factorization(C = 50,N = 3). Significantly enriched factors/clusters (atα = 0.05
after Bonferroni correction) are shown as solid bars.

(of twelve annotated) genes involved in the immune response
including two genes involved in the major histocompatibility
complex (H2-Q1, H2-T23), a portion of a T-cell receptor, and
a subunit of the proteasome (Psme1). Here, PSMF appears to
have identified a subset of the genes expressed in the lower
digestive system that are involved in immune system activity
occurring there.

3.1 Unsupervised characterization of mRNA data
The overall objective for this research is to develop a model
that captures the functionally relevant hidden factors that
explain gene expression data. As such we can gauge success
by measuring the similarity of the hidden factor assignments
between genes with similar functions.

We cluster genes on the basis of their factor assignments
and useP -values calculated from the hypergeometric distri-
bution to measure the enrichment of these clusters for genes
with similar functions (Tavazoieet al., 1999). For a given gene
cluster of sizeM of whichK elements had a given functional
annotation, the hypergeometricP -value is the probability that
a random set of genes of sizeM (selected without replace-
ment from all genes in the dataset) would haveK or more
elements with given functional annotation. ForN = 3, we
generate three different clustering of the genes: by ‘primary’
factor, ‘secondary’ factor (for those genes whererg ≥ 2), and

‘tertiary’ factor assignments (whererg ≥ 3). So, for example,
genesg and g′ are in the same ‘primary’ factor cluster if
sg1 = sg′1. We label each cluster with the GO-BP category
having the lowest (i.e. best) hypergeometricP -value for the
genes in that cluster, making this theP -value associated with
the entire cluster. Histograms of theseP -values, as well as
those for hierarchical agglomerative clustering, are shown in
Figure 2.

For reference, we also compute the functional enrichment of
gene clusters generated randomly and those generated using
UPGMA, sparse matrix factorization (SMF), PCA and ICA.
To generate the UPGMA clusters, we used average linkage
with Pearson’s correlation coefficient as the distance measure
on the expression profiles. We generated SMF clusters in the
same way as we generated the PSMF clusters. Note that unlike
UPGMA, PSMF and SMF allow us to generate ‘primary’,
‘secondary’ and ‘tertiary’ clusters.

For PCA, we cluster genes by their dominant principal com-
ponent measured by the absolute value. To generate the ICA
clusters, we used the FastICA package (Hyvärinen, 1999,
www.cis.hut.fi/projects/ica/fastica) to recover 55 source vec-
tors (i.e. factors) forX, each of length 22 709. We ignore the
mixing matrix recovered by FastICA, and cluster the genes
by the index of the largest absolute value among the corres-
ponding 55-dimensional slice in the matrix of source vectors.
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Fig. 3. Fraction of clusters/factors with significance (top row) and mean log10 P -value (bottom row). PSMF (Dueck and Frey, 2004) and
SMF (Srebro and Jaakkola, 2001) are shown forN = 1 (left), N = 2 (center) andN = 3 (right) along with UPGMA and random clustering
over a range ofC-values. PCA is shown only forC < T = 55 after which it would overfit the data; ICA is shown forC = 55 only. Error bars
represent the sample standard deviation over 10 trials. Results for UPGMA and random clustering are shown on all plots for comparison.

Table 1. Fraction of clusters that have significant functional enrichment (for
C = 50 clusters or factors)

Primary Secondary Tertiary

PSMF(N = 1) 0.59
PSMF(N = 2) 0.57 0.22
PSMF(N = 3) 0.54 0.22 0.078

SMF (N = 1) 0.47
SMF (N = 2) 0.44 0.19
SMF (N = 3) 0.44 0.16 0.004

PCA 0.34
ICA (C = 55) 0.44
UPGMA 0.38
Random 0

This method (as opposed to transposing matrices or not taking
absolute values) was selected because it yielded results with
the greatest significance.

We summarize these histograms in two ways: the propor-
tion of clusters that are significantly enriched for at least one
functional category atα = 0.05 (after a Bonferroni correction)
and the mean log10 (P -value). Table 1 shows the proportion

of clusters with significance forC = 50 factors and Figure 3
shows both these quantities forN = {1, 2, 3}over 0< C ≤ 80.

The plot shows that PSMF withN = 1 outperforms
UPGMA and clustering by dominant sources with ICA. For
N > 1, the functional enrichment of ‘primary’ clusters for
PSMF and SMF remains constant but the ‘secondary’ and
‘tertiary’ clusters are also more functionally enriched than
random. Note that for all values ofN , the PSMF clusters are
more enriched than the corresponding SMF clusters.

3.2 Avoiding local minima by accounting for
uncertainty

The soft-decision factorized variational method (PSMF) finds
better hidden factors than the hard-decision iterated con-
ditional modes (SMF) (Srebro and Jaakkola, 2001; Besag,
1986). This may be the case because SMF is too inflexible
to properly allow factor groupings to evolve, as shown in
the likelihood plots of Figure 4. Note that these plots com-
pare complete log-likelihoods [i.e. log of Equation (3)] for
both PSMF and SMF—not the more favorable free energy for
PSMF—so the number of parameters is the same.

As an example, consider the case where there is uncertainty
about geneg having as its primary factor(sg1) profile c1 or
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Fig. 4. Direct complete log-likelihood maximization of SMF
and indirect complete log-likelihood maximization (via free
energy minimization—see Section 2.2) of PSMF. The complete
log-likelihood is calculated after each iteration of both ICM
and variational EM using maximum-likelihood latent variable
estimates.

c2 (with probabilities 0.49 and 0.51, respectively). When the
factor profiles (Z) are updated to reflect their membership,
SMF makes the maximum-likelihood hard decision thatsg1 =
c2 and geneg updates factor profilezc2 only. On the other hand,
soft-decision PSMF accounts for the uncertainty by updating
profileszc1 andzc2 in proportion to their probabilities (roughly
equally, in this case).

In our simulations, we observe that SMF appears to get
trapped in a local log-likelihood maximum immediately after
the first several iterations—a consequence of making hard
decisions early on in the optimization. An additional advant-
age of using probabilistic inference is that the free energy
provides a tighter bound on the marginal log-likelihood of
the data (not shown), which is greater than the complete
log-likelihood.

4 SUMMARY
Many kinds of data vectors can most naturally be explained
as a linear combination of a selection of prototype vec-
tors, which can be viewed as a computational problem
of finding a sparse matrix factorization. While most work
on biological gene expression arrays has focused on clus-
tering techniques and methods for dimensionality reduc-
tion, there is recent interest in performing these tasks
jointly, which corresponds to sparse matrix factorization.
Our algorithm computes a sparse matrix factorization, but
instead of making point estimates (hard decisions) for factor
selections (Srebro and Jaakkola, 2001), our algorithm com-
putes probability distributions. We find that this enables the

algorithm to avoid local minima found by iterated conditional
modes.

There are clearly>50 hidden factors that contribute to
the gene expression in mouse. Indeed, a recent study iden-
tified 779 likely TFs alone (Zhanget al., 2004). We have,
however, limited ability to identify factors by the available
data. We cannot, for example, distinguish factors that do
not have an observably different effect on mRNA levels in
the profiled tissues. Also, the data we modeled were drawn
primarily from adult tissue whereas many TFs are most act-
ive during embryogenesis. With additional data, we would
be able to model more factors. However, the fact that, with
just 50 hidden factors, we were able to extract functionally-
relevant representations is a strong validation of our
approach.

Compared to a standard technique used in the bioinform-
atics community for clustering gene expression profiles,
UPGMA, our technique finds clusters that have higher stat-
istical significance (lowerP -values) in terms of enrichment
of gene function categories. An additional advantage of our
method over standard clustering techniques is that the sec-
ondary and higher-order labels found for each expression
vector can be used for more refined visualization and func-
tional prediction. Currently we are using this method to
analyze a new genome-wide, exon resolution, mouse gen-
ome dataset containing over 12 million measurements. We
are currently using this method to analyze a new genome-
wide exon-tiling microarray dataset, in conjunction with our
GenRate algorithm (Freyet al., 2005).
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