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Abstract

In the past decade, technologies have been developed that enable researchers
to quantify the levels of specific DNA transcripts present in cultures and tissues.
While the signal-to-noise ratios of these technologies has consistently improved over
the years, the signals provide only an observable projection of hidden, complex
underlying processes. A variety of interesting information processing problems
aimed at uncovering these hidden processes have emerged, and in this paper we
survey some of the problems being studied in our group.

1 Introduction
One of the most significant discoveries of the twentieth century is that the bio-chemical
processes used to build and maintain most living organisms are controlled by discrete-
symbol genetic programs stored in bio-molecules. Examples of such genetic programs
include DNA, RNA and proteins. The “central dogma” of molecular biology is that
DNA encodes genes, which are transcribed from the DNA into RNA sequences, which
are translated into proteins, which carry out cellular activities. Advances in bio-molecular
sensing technologies have enabled researchers to probe the genetic states of organisms
and determine the presence of specific sequences. These technologies can be applied to a
variety of problems, ranging from determining the entire DNA sequence that is specific to
an organism (e.g., the “human genome”) to detecting the activation of a specific gene in
a tissue sample (e.g., for the purpose of detecting disease or monitoring drug response).
Although researchers now have digital representations of the actors in cellular processes
and the ability to probe these actors, it is not yet known how the information is digitally
encoded and how the digital components interact to regulate cellular activities.

One technology for probing the amounts of various RNA sequences in a tissue sample
is the “mRNA expression array” [1]. An expression array is a 1′′ × 2′′ biology slide
containing tens of thousands of probes, each of which is specific to a particular nucleic
acid sequence (e.g., 40 nucleotides). After many mRNA sequences are extracted from a
tissue sample, they are tagged with a fluorescent molecule and washed over the array.
mRNA sequences from the tissue that match each probe will tend to hybridize (stick
to the probe), so when the slide is scanned by a laser, the level of florescence at each
probe indicates the amount of the corresponding mRNA sequence in the tissue sample.
If the mRNA probes are selected properly, each probe can also indicate the degree to
which a corresponding gene is expressed in the tissue, which is why these arrays are



sometimes called “gene expression arrays” or “gene microarrays”. By varying the type
of sample (e.g., heart versus brain) or by varying the conditions under which the sample
is taken (e.g., healthy versus diseased), multiple arrays can be used to construct a vector
of expression levels for each gene, where the elements of the vector correspond to the
different experimental conditions. Such a vector is called an “expression profile”.

By viewing expression profiles as points in a vector space, researchers have been able to
use well-known vector-space data analysis techniques to identify new patterns of biological
significance, and quickly make predictions based on previous studies that required a
large amount of time and resources. In particular, the construction of these profiles
has enabled the large-scale prediction of gene function for genes with unknown function,
based on genes with known function [2, 13]. Because many biological functions depend
upon the coordinated expression of multiple genes, similarity of expression profile often
implies similarity of function [4]. This relationship has been used by authors employing
discriminative techniques to predict the function of uncharacterized genes [5]. These
schemes make use of annotation databases, which assign characterized genes to one or
more predefined functional categories.

A variety of interesting information processing problems emerge in the analysis of
microarray data, ranging from problems of data denoising to problems of finding new gene
structures (c.f. [3]) and functional annotation of known genes. In this paper, we describe
two projects currently underway in our group. The first project deals with clustering
unannotated genes into multiple, simultaneous categories, which can be viewed as a
sparse matrix factorization problem. (See [9] for a detailed description of our method.)
The second project deals with removing the effects of cross-hybridization, where the
probe designed for a specific mRNA hybridizes with a different mRNA, and the goal is
to remove this cross-hybridization noise from the microarray data.

2 Probabilistic sparse matrix factorization
Often, data vectors lie in a low-dimensional subspace. One approach to analyzing data
vectors lying in a low-dimensional linear subspace is to stack them to form a data matrix,
X, and then find a low-rank matrix factorization of the data matrix. Given X ∈ RG×T ,
matrix factorization techniques find a Y ∈ RG×C and a Z ∈ RC×T such that X ≈ Y ·Z.
Interpreting the rows of X as input vectors {xg}G

g=1, the rows of Z (i.e. {zc}C
c=1) can be

viewed as vectors that span the C-dimensional linear subspace, in which case the gth row
of Y contains the coefficients {ygc}C

c=1 that combine these vectors to explain the gth row
of X.

A variety of techniques have been proposed for finding matrix factorizations, including
non-probabilistic techniques such as principal components analysis (PCA), and proba-
bilistic techniques that account for noise, such as factor analysis. In many situations, we
anticipate that the data consists of additive combinations of positive sources. In these
cases, non-probabilistic techniques have been proposed for finding factorizations under
non-negativity constraints [6],[7]. For many kinds of data, we expect the low-dimensional
representation for each input vector to be sparse This type of problem was called “sparse
matrix factorization” in [8], and is related to independent component analysis [10]. In
their model, Srebro and Jaakkola augment the X ≈ Y ·Z matrix factorization setup with
the sparseness structure constraint that each row of Y has at most N non-zero entries.
They then describe an iterative algorithm for finding a sparse matrix factorization that
makes hard decisions at each step.

We extend previous work on sparse matrix factorization and derive a method that



Figure 1: Data matrix X, approximated by the product of a sparse matrix Y and a low-rank
matrix Z. Gene expression profiles appear as row vectors in X and are sorted by primary class (sg1),
secondary class (sg2), etc.

finds such sparse factorizations while accounting for uncertainties due to (1) different
levels of noise in the data, (2) different levels of noise in the factors used to explain the
data, and (3) uncertainty as to which hidden prototypes are selected to explain each
input vector. An example of such a factorization is shown in Figure 1.

Let X be the matrix of gene expression data such that rows correspond to each
of G genes and columns to each of T tissues (i.e. entry xgt represents the amount
by which gene g is expressed in cells of tissue type t.) We denote the collection of
unobserved transcription factor profiles as a matrix, Z, with rows corresponding to each
of C transcription factors and T columns corresponding to tissues, as before. Each gene
expression profile, xg, can be approximated by a linear combination of a small number
(rg) of these transcription factor profiles, zc:

xg ≈
∑rg

n=1
ygsgnzsgn (1)

The transcription factor profiles contributing to the gth gene expression profile are
indexed by {sg1, sg2, . . . , sgrg}, with corresponding weights {ygsg1 , ygsg2 , . . . , ygsgrg

}. This
is identical to the X ≈ Y ·Z matrix factorization with {S, r} representing the sparseness
structure constraint. We account for varying levels of noise in the observed data by
assuming the presence of isotropic Gaussian sensor noise (with variance ψ2

g) for each
gene’s expression profile, so the likelihood of xg is as follows:

P (xg|yg,Z, sg, rg, ψ
2
g) = N

(
xg;

∑rg

n=1
ygsgnzsgn , ψ2

gI
)

(2)

We complete the model with prior assumptions that the transcription factor profiles
(zc) are normally distributed and that the transcription factor indices (sgn) are uniformly
distributed. The number of causes, rg, contributing to each gene’s profile is multinomially
distributed such that P (rg =n) = νn, where ν is a user-specified N -vector. We make no
assumptions about Y beyond the sparseness constraint, so P (Y)∝1.



Multiplying these priors by (2) forms the following joint distribution:

P (X,Y,Z,S, r|Ψ) = P (X|Y,Z,S, r, Ψ) · P (Y) · P (Z) · P (S|r) · P (r) ∝ (3)
G∏

g=1

N
(
xg;

∑rg

n=1
ygsgnzsgn , ψ2

gI
)
·

C∏
c=1

N (zc; 0, I) ·
G∏

g=1

C∏
c=1

N∏
n=1

(
1
C

)δ(sgn−c) ·
G∏

g=1

N∏
n=1

(νn)δ(rg−n)

Exact inference with (3) is intractable so we utilize a factorized variational method [11]
and approximate the posterior distribution with a mean-field decomposition:

P (Y,Z,S, r|X, Ψ) ≈
G∏

g=1

Q(yg) ·
C∏

c=1

Q(zc)
G∏

g=1

N∏
n=1

Q(sgn) ·
G∏

g=1

Q(rg) (4)

We parameterize the Q-distribution as follows:

Q(yg) =

λgc is a point estimate of ygc︷ ︸︸ ︷
rg∏

n=1

δ
(
ygsgn − λgsgn

) ·

but for {sg ,rg}︷ ︸︸ ︷
C∏

c=1
c/∈{sg1,sg2,...,sgrg}

δ (ygc)

Q(zct) = N (zct; ζct, , φ2
c), Q(sgn=c) = σgnc, Q(rg=n) = ρgn.

Using this approach, factorization corresponds to bringing the Q-distribution as close
as possible to the P-distribution by varying the Q-distribution parameters (hence, λ,
ζ, φ, σ, and ρ are referred to as variational parameters). To ensure normalization, the
variational parameters are constrained to satisfy

∑C
c=1σgnc =1 and

∑N
n=1ρgn =1 — these

become Lagrange multipliers in the later optimization problem.
In order to closely approximate the P-distribution, we seek to minimize the relative

entropy, D(Q‖P ), between it and the Q-distribution:

min
{λ,ζ,φ,σ,ρ}

∫

Y,Z,S,r

Q(Y,Z,S, r) · log
Q(Y,Z,S, r)

P (Y,Z,S, r|X,Ψ)
(5)

There is no closed-form expression for the posterior (denominator in (5)), but we can
subtract log P (X) inside the integral (it is independent of the variational parameters) to
form the readily-minimized free energy, F . The free energy can be minimized sequentially
with respect to each variational parameter (λ, ζ, φ, σ, ρ) by analytically finding zeros
of the partial derivatives with respect to them. This coordinate descent represents the
E-step in variational EM [11] that alternates with a brief M-step, where the global sensor
noise is learned by similarly solving ∂F/∂Ψ = 0. For a more detailed treatment of the
algorithm and parameter update equations, see [12].

2.1 Experimental Results

To experimentally analyze the performance of our algorithm, we use the expression data
from Zhang et al. in [13]. Each gene’s profile is a measurement of its expression in a
set of 55 mouse tissues. Expression levels are rectified at the median expression level, so
that the data set is entirely non-negative, consistent with the notion of light intensities
also being non-negative.



The functional category labels for the genes with known biological function were taken
from [13]. An example of a category label is “cell wall biosynthesis”, which indicates the
gene expresses a protein that is involved in building the cell wall. These labels are derived
from Gene Ontology Biological Process (GO-BP) category labels [14] assigned to genes
by EBI and MGI.

Among the 22,709 genes in the Zhang et al. database, 9499 have annotations in one
or more of 992 different GO categories. The category sizes range from 3 to 456 genes,
with more than half the categories having fewer than 20 genes.

We present results for the 22,709 genes × 55 tissues data set shown in Figure 1.
The data matrix, X, is shown alongside the model’s approximation, X̂, also expressed as
X̂ = Y·Z. A total of C = 50 factors were used, and the user-specified prior on the number
of factors (rg) explaining each expression profile was set to ν =

[
.55 .27 .18

]
, making

N = 3.1 Gene expression profiles (row vectors) are first sorted by ‘primary’ transcription
factor (sg1); next, within each sg1 grouping, genes are sorted by ‘secondary’ transcription
factor (sg2), and so on. This organization is easily visualized in the hierarchical diagonal
structure of Y.

The overall objective for this research is to develop a model accurately capturing
biologically significant factors behind gene expression data. Success can be measured
by determining how closely each of the transcription factors learned by the model are
aligned with Gene Ontology (GO) categories (a.k.a. the “enrichment”) [15]. We use
p-values calculated from the hypergeometric distribution to quantify the probability that
categorizations could have resulted by mere chance [16]. Specifically, we select the subset
of genes whose ‘primary’ factor is transcription factor c (i.e. sg1 = c), and compare this
cluster alongside the most similar GO category, assigning the significance of transcrip-
tion factor c to be the resulting hypergeometric p-value. This process is repeated for
‘secondary’ (sg2) and ‘tertiary’ (sg3) factors.

Figure 2: P-values for hierarchical agglomerative clustering and probabilistic sparse matrix factor-
ization (C=50, N=3). Significant factors/clusters (after Bonferroni correction of threshold α = .05)
are shown as solid bars.

1A uniform prior ν (reflecting no knowledge about the distribution of r) would give equal preference
to all values of a particular rg. For any given rg<N , a factor can almost always be found that, if present
with infinitesimal weight (ygc), will imperceptibly improve the cost function (F), with the end result
that almost all rg would then equal N . Weighting the prior towards lower values ensures that factors will
only be included if they make a noteworthy difference. We only choose νn∝1/n, ∀n<N for simplicity.



Histograms of these p-values, as well as for industry-standard hierarchical agglomer-
ative clustering (by Pearson correlation) into C classes [17], are shown in Figure 2.

A p-value of α = .05 may be used as a threshold of significance, however this threshold
must first be corrected to account for the fact that the most favorable GO category
was chosen for comparison with each cluster. The Bonferroni correction conservatively
accounts for this by dividing the significance threshold by the total number of comparisons
(number of GO categories multiplied by number of clusters examined). In [9], we show
that the soft-decision factorized variational method (PSMF) performs better than the
hard-decision iterated conditional modes technique (SMF) [8, 18], in terms of finding
statistically significant clusters.

2.2 Conclusions

Many kinds of data vectors can most naturally be explained as an additive combination
of a selection of prototype vectors, which can be viewed as computational problem of
finding a sparse matrix factorization. While most work on biological gene expression
arrays has focused on clustering techniques and methods for dimensionality reduction,
there is recent interest in performing these tasks jointly, which corresponds to sparse
matrix factorization. Like [8], our algorithm computes a sparse matrix factorization, but
instead of making point estimates (hard decisions) for factor selections, our algorithm
computes probability distributions. We find that this enables the algorithm to avoid
local minima found by iterated conditional modes and obtain clusters that have higher
statistical significance than other methods.

3 Iterative cross-hybridization compensation
While in the previous section we described progress on the high-level task of functional
annotation of genes based on microarray data, in this section, we describe progress on a
data-preprocessing problem: removing cross-hybridization signals from microarray data.

One of the important problems in DNA microarray analysis and gene functional pre-
diction is that the data generated from microarray experiments is typically prone to many
types of noise from various sources. A particular class of noise that has received little
attention so far is the biological effect of gene cross-hybridization on microarray data [19].
Here, probes on a microarray will measure not only the mRNA level of their target gene,
but also the unwanted mRNA levels of other, non-specific genes. We propose a signal
model to represent the effect of cross-hybridization in microarray data, in which the ex-
pression profiles measured by probes are to be explained by taking a weighted linear sum
of a relatively small number of latent gene expression profile variables. To compensate
for the effect of cross-hybridization, these hidden gene expression profiles are iteratively
inferred from the data via a method based on the Iterated Conditional Modes (ICM)
[18] inference algorithm which will then use the inferred quantities to perform cross-
hybridization compensation (XHC). Microarray data in which this cross-hybridization
effect has been removed will allow for increased specificity and sensitivity in predicting
the function of genes from microarray data produced from microarray experiments.

To gauge the impact of cross-hybridization on the observed expression data, we per-
formed a statistical test in which each observed expression profile vector from the data
described below was normalized in the range [0, 1]. Taking the oligonucleotide sequences
of the probes on the array and the corresponding sequences of their target genes, we
performed a sequence-based search [21] to find the possible probe-to-gene mappings. We



then computed the Pearson correlation coefficient between randomly-paired profiles and
sequence-matched profiles and found that for a particular correlation threshold, 33% of
the sequence-matched profiles have high correlation, while only 2% of randomly-paired
profiles have high correlation. This validates our hypothesis that the data contains a
significant level of cross-hybridization signal.

To remove cross-hybridization noise, we model each probe in the array as being capa-
ble of hybridizing to multiple genes. Conversely, each gene can have multiple probes that
can hybridize to it. We assume a model for the microarray data in which the set of N
observed expression profile vectors X can be explained by a smaller set of M latent gene
expression profiles Z via an affine transformation represented by the hybridization matrix
Λ plus independent Gaussian noise with covariance σ2I. Let the microarray contain N
probes and let T be the number of measurements per probe. For a given probe, each
of these T measurements corresponds to a scalar mRNA expression level in a particular
tissue pool. Let X = [x1, x2, · · · , xT ] denote a matrix in which the tth column denotes
the measurement across all N probes in the microarray for tissue pool t, t = 0, 1, · · · , T .
Accordingly, let Z = [z1, z2, · · · , zT ] denote the matrix of hidden gene expression profiles
to be inferred over the T tissue pools; the tth column of Z therefore denotes the true, la-
tent mRNA expression levels across all M probed genes for tissue pool t. We thus model
the relationship between X and Z as follows: xt ∼ N (Λzt, σ

2I), zt ∼ δ(z − zt), where

xt ∈ RN
+ , zt ∈ RM

+ , Λ ∈ R(N×M)
+ . Thus, we seek to iteratively estimate the hybridization

matrix Λ and the set of latent gene expression profiles Z over all T measurements by
maximizing the log-likelihood of the observed data X under the assumption of uniform
random sensor noise level across all probes.

The log-likelihood L(X,Z) of the observed data X and the latent data Z can be
written (omitting constant terms) as

L(X, Z) = log
T∏

t=1

p(xt|zt)p(zt) =
T∑

t=1

log p(xt|zt)p(zt) (6)

= − 1

2σ2

T∑
t=1

(xt − Λzt)
T (xt − Λzt) = − 1

2σ2

T∑
t=1

N∑
n=1

(xtn − ztm(n,1) − λztm(n,2))
2,

where m(n, 1) and m(n, 2) denote the gene indices corresponding to the primary and
secondary gene respectively for probe n. Optimizing the above equations by taking
derivatives with respect to the hidden profiles Z and the free λ

(n)
2 parameters and setting

them to zero yields the following ICM update equations for the latent profiles and the
λ

(n)
2 parameters:

ztk =

∑
n:m(n,1)=k(xtn − λ

(n)
2 ztm(n,2)) +

∑
n:m(n,2)=k λ

(n)
2 (xtn − ztm(n,1))

M
(k)
1 +

∑
n:m(n,2)=k(λ

(n)
2 )2

(7)

and

λ
(n)
2 =

∑
t ztm(n,2)(xtn − ztm(n,1))∑

t z
2
tm(n,2)

(8)

where M
(k)
1 is the number of array probes that can hybridize to gene k. Thus, we iterate

between equations (7) and (8) until convergence in the log-likelihood. The latent variable

and paramater estimates ztn and λ
(n)
2 are therefore the pointwise maximum a posteriori

(MAP) values corresponding to the maxima of the joint distribution p(X,Z).



3.1 Experimental results

We pre-processed the data by removing genes that exhibited a large variance in their
corresponding probes’ measured expression levels. The possible probe-to-gene sequence
mappings were determined via a BLAST search [21] (default settings) between the probe
oligonucleotide sequences and the sequences of the targeted genes. The output of the
search is a ranked list of matching gene nucleotide sequences for each probe sequence,
each of which is ranked by its number of mismatches to the probe. The number of
mismatches is a good measure of the hybridization binding potential between a probe
and its target gene according to the thermodynamic properties of hybridization [20]. In
our initial experiments, we limit the number of genes per probe to 2. The 2 genes to
which each probe was mapped were selected according to the 2 best matching genes for
the probe in the output of the BLAST search. In addition, each gene was assumed to
have at least one primary probe associated with it: that is, a probe which hybridizes to
that gene with a unity hybridization coefficient. We removed any genes that hybridized
to less than 3 probes on the array; this was done to remove gene profiles that would be
uninformative for the purposes of inferring the hidden gene expression profiles based on
the effect of cross-hybridization.

We tested the algorithm for two cases: A probe hybridizes to a primary and secondary
gene according to its BLAST matches; A probe hybridizes to its primary probe according
to its best BLAST match and to a randomly-selected secondary gene. The objective is
thus to verify that the ICM algorithm is not simply fitting coefficients to noisy gene
expression profiles which do not have biological meaning. In addition, we ran the ICM
algorithm in the cases that each probe hybridizes to only one gene and then two genes.
This allows us to verify that the use of 2 gene expression profiles to explain an observed
expression profile allows for a significant reduction in reconstruction error than if only
1 gene profile is used. We report results using the Signal-to-Noise Ratio (SNR) over
the entire array, as a measure of how much error is incurred in estimating the observed
expression profiles using the inferred gene profiles. We define the microarray SNR as

SNRarray = 10 log
( P

t ‖xt‖2P
t ‖xt−x̂t‖2

)
, where x̂t = Λzt is the estimate of the observed expression

profile xt given Λ and zt.
Figure 3 shows the cumulative distribution plot of the resulting SNRs. A higher

proportion of probes have high SNR figures with XHC using the pre-processed data
than the proportion obtained from optimizing on the full measured data set or a subset
thereof that is thresholded at the 33rd percentile in expression level. The resulting gain
in microarray SNR with respect to the case in which a single gene is assigned to a probe
suggests that performing XHC produces an increase in SNR by increasing the precision
with which the observed data can be estimated by taking into account multiple sources
of hybridization for each probe. In addition, the significant gain in SNR with respect to
the case in which each probe’s secondary gene is randomly assigned further enhances the
biological validity and significance of the inferred gene expression profiles.

3.2 Conclusions

We have shown that cross-hybridization has a significant impact on a non-negligible
proportion of microarray measurements and we have introduced a model and iterative
algorithm that partially compensates for cross-hybridization. Possible improvements to
the current approach include allowing for more than 2 hybridizing genes per probe and
allowing the number of cross-hybridizing genes to be randomly distributed; allowing for
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Figure 3: Cumulative distributions of SNR gains for cross-hybridization compensation.

a probability distribution to model uncertainty in the hidden gene profiles; introducing a
prior distribution for modelling the sparse structure of the parameter matrix Λ; allowing
for a more robust estimation of gene expression profiles with respect to noisy expression
data and outliers.
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