
Constructing Treatment Portfolios
Using Affinity Propagation

Delbert Dueck1, Brendan J. Frey1,2, Nebojsa Jojic3, Vladimir Jojic1,3,4,
Guri Giaever2, Andrew Emili2, Gabe Musso2, and Robert Hegele5

1 Electrical and Computer Engineering, University of Toronto, Canada
2 Center for Cellular and Biomolecular Research, University of Toronto, Canada

3 Machine Learning and Statistics, Microsoft Research, Redmond, USA
4 Computer Science, Stanford University, USA

5 Cardiovascular Genetics Laboratory, Robarts Research Institute, London, Canada

Abstract. A key problem of interest to biologists and medical researchers is the
selection of a subset of queries or treatments that provide maximum utility for
a population of targets. For example, when studying how gene deletion mutants
respond to each of thousands of drugs, it is desirable to identify a small subset
of genes that nearly uniquely define a drug ‘footprint’ that provides maximum
predictability about the organism’s response to the drugs. As another example,
when designing a cocktail of HIV genome sequences to be used as a vaccine, it
is desirable to identify a small number of sequences that provide maximum im-
munological protection to a specified population of recipients. We refer to this
task as ‘treatment portfolio design’ and formalize it as a facility location prob-
lem. Finding a treatment portfolio is NP-hard in the size of portfolio and number
of targets, but a variety of greedy algorithms can be applied. We introduce a new
algorithm for treatment portfolio design based on similar insights that made the
recently-published affinity propagation algorithm work quite well for clustering
tasks. We demonstrate this method using the two problems described above: se-
lecting a subset of yeast genes that act as a drug-response footprint, and selecting
a subset of vaccine sequences that provide maximum epitope coverage for an
HIV genome population.

1 Treatment Portfolio Design (TPD)

A central question for any computational research collaborating with a biologist or
medical researcher is in what form computational analyses should be handed over to
the experimentalist or clinician. While application-specific predictions are often most
appropriate, we have found that in many cases what is needed is a selection of potential
options available to the biologist/medical researcher, so as to maximize the amount of
information gleaned from an experiment, which often can be viewed as consisting of
independently assayed targets. If the number of options is not too large, these can be
discussed and selected by hand. On the other hand, if the number of possibilities is
large, a computational approach may be needed to select the appropriate options. This
paper describes the framework and approaches that emerged while trying to address
problems of this type with our collaborators. In particular, we show how the affinity
propagation algorithm [1] can be used to effectively to approach this task.

M. Vingron and L. Wong (Eds.): RECOMB 2008, LNBI 4955, pp. 360–371, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Constructing Treatment Portfolios Using Affinity Propagation 361

For concreteness, we will refer to the possible set of options as ‘treatments’ and the
assays used to measure the suitability of the treatments as ‘targets’. Each treatment has
a utility for each target and the goal of what we will refer to as treatment portfolio de-
sign (TPD) is to select a subset of treatments (the portfolio) so as to maximize the net
utility of the targets. The terms ‘treatment’, ‘target’ and ‘utility’ can take on quite differ-
ent meanings, depending on the application. Treatments might correspond to queries,
probes or experimental procedures, while targets might correspond to disease condi-
tions, genes or DNA binding events.

Example 1: The treatments are a set of potential yeast gene deletion strains used to
query drug response, the targets are all ∼6000 yeast gene deletion strains, the util-
ity is the number of gene-drug interactions in all strains that are predicted by the
selected portfolio of strains.

Example 2: The treatments are a large set of potential vaccines derived from HIV
genomes, the targets are a population of HIV epitopes likely to be present in a
demographic with high infection risk, the utility is the level of immunological pro-
tection, i.e., number of epitopes present in the selected portfolio of HIV vaccines.

Example 3: The treatments are a set of baseline demographic, anthropometric, bio-
chemical and DNA SNP variables thought to be predictive of cardiovascular end-
points and postulated to form a clinical set of risk factors, the targets are ∼4,000,000
disease end-point targets comprising ∼20,000 patients and ∼200 conditions, the
utility is the predictability of disease end-points, including risk.

Example 4: The treatments are a set of laboratory procedures used to synthesize bio-
logically active compounds, the targets are a list of desired compounds to be syn-
thesized, the utility is the negative financial cost needed to synthesize all target
compounds using the selected portfolio of laboratory procedures.

Example 5: The treatments are a large set of microRNAs potentially involved in reg-
ulating the expression of disease-associated genes, the targets are a list of gene-
disease pairs, the utility is the net corrected correlation between gene expression
and expression of microRNAs in portfolio for all disease conditions.

The input to TPD is a set of potential treatments or queries T , a representative pop-
ulation of targets R and a utility function u : T × R → R, where u(T, R) is the utility
of applying treatment T ∈ T to target R ∈ R. This utility may be based on a variety
of factors, including the benefit of the treatment, the cost, the time to application, the
time to response, the estimated risk, etc. The goal of computational TPD is to select a
subset of treatments P ⊆ T (called the ‘portfolio’) so as to maximize their net utility
for the target population. A defining aspect of the utility function is that it is additive;
for portfolio P , the net utility is

∑
R∈R

max
T∈P

u(T, R).

To account for the fact that some treatments are preferable to others regardless of their
efficacy for the targets (e.g., different setup costs), we use a treatment-specific cost
function c : T → R. The net utility, including the treatment cost is

U(P) =
∑

R∈R
max
T∈P

u(T, R) −
∑

T∈P
c(T). (1)

362 D. Dueck et al.

Provided with T , R, u and c, the computational task is to find maxP⊆T U(P). Note
that the number of treatments in the portfolio will be determined by balancing the utility
with the treatment cost.

1.1 Relationship to K-Medians Clustering and Facility Location

Under certain conditions, TPD can be viewed as a K-medians clustering problem or
facility location problem (a.k.a. the p-median model) [3, 4, 5]. Given a set of points X
and a pairwise distance measure d : X ×X → R, the goal of K-medians clustering is to
select a subset of points as centers and assign every other point to its nearest center, so as
to minimize the sum of distances. To control the number of identified centers, either the
number of centers is pre-specified or a cost is associated with each center. Because of
the combinatorics involved in selecting K centers, the K-medians clustering problem
is NP-hard (c.f. [5]). TPD can be viewed as K-medians clustering, if the treatment set
equals the target set (T = R). The application of K-medians clustering algorithms to
TPD is discussed below.

In general, the treatment set does not equal the target set. Then, TPD can be viewed
as a facility location problem, which is framed as opening up facilities or warehouses
to service customers. Given a set of facilities that can potentially be opened F , a set of
customers C, a distance function d : C × F → R and a facility opening cost function
c : F → R, the facility location problem [5] consists of identifying a subset of facilities
and assigning every customer to a facility so as to minimize the net facility opening cost
and distance of customers to facilities. Because the number of possible combinations of
facilities to choose from is exponential in the number of potential and chosen facilities,
the facility location problem is NP-hard.

Most work on approximation algorithms for K-medians clustering and facility loca-
tion relies on d being metric (convex) (c.f. [5] for a review), but this is not necessary.
Both problems can be formulated as binary-valued integer programs and then relaxed to
linear programs. If the linear program solution is non-integer, it can be rounded, giving
rise to various approximations. Unfortunately, these approximation algorithms are of
limited practical value. We have experimented extensively with a data set of 400 Eu-
clidean points derived from images of faces and found that CPLEX 7.1 takes several
hours and gigabytes of memory to find solutions that can be found in less than one
minute using a couple megabytes of memory via the affinity propagation algorithm [1]
(data available at www.psi.toronto.edu/affinitypropagation).

2 Standard Algorithms Adapted to TPD

A variety of non-iterative and iterative algorithms for optimizing the objective func-
tions can be formulated in a straight-forward fashion. A simple method is to start with
an empty portfolio and add the single treatment T1 that maximizes the net utility (in-
cluding the treatment cost). All targets are assigned to that treatment and the current
utility v(R) for target R is set to u(T1, R). Next, another treatment is added to the
portfolio and this treatment is chosen so as to maximize the net utility. This involves
examining every treatment T not currently in the portfolio, computing a net utility gain

Constructing Treatment Portfolios Using Affinity Propagation 363

∑
R∈R max(u(T, R) − v(R), 0) − c(T), and selecting the treatment with maximum

utility gain. This treatment, denoted T2, is added to the portfolio. This procedure is
repeated until another treatment cannot be added to the portfolio without decreasing
the net utility. Note that in the absence of a treatment cost (i.e., c = 0, assuming that
all utilities are non-negative), all treatments would be added to the portfolio. Then,
the number of treatments K may instead be specified, in which case the algorithm is
terminated when K treatments have been added to the portfolio.

ALGORITHM 1: K-TREATMENTS CLUSTERING

Input: T , R, u, c, K, M

Repeat M times:

P ′ ← random subset of T of size K
∀R ∈ R, p(R) ← argmaxT∈P′u(T, R)

Repeat until convergence:
Select T ∈ P ′ (in order)
∀T ′ ∈ T \ P ′, compute

g(T ′) ←
∑

R:p(R)=T u(T ′, R) − u(T, R) − c(T ′) + c(T)
T alt ← argmaxT ′∈T \P′g(T ′)
If g(T alt) > 0 then set P ′ ← (P ′ \ {T }) ∪ {T alt}
∀R ∈ R, p(R) ← argmaxT∈P′u(T, R)

If first repetition, then P ← P ′; else if U(P ′) > U(P), then P ← P ′

Output: P

One problem with the above method is that after the subsequent addition of a treat-
ment, previously-added treatments may no longer be the ones that maximize the utility.
A natural extension is to initially find K treatments and then iteratively revisit treat-
ments and consider replacing them with other treatments not in the current portfolio,
until the portfolio converges. Alternatively, instead of deterministically initializing the
portfolio, it can be randomly initialized to K treatments and then iteratively refined.
The advantage of this approach is that a large number, M , of random initializations
can be tried and the refined portfolio with highest net utility can be selected. To re-
flect the similarity of this approach to the standard K-means clustering and K-medians
clustering algorithms [3], we will refer to it as ‘K-treatments clustering’. Note that
K-treatments clustering is not identical to K-means clustering or K-medians cluster-
ing, because treatments are neither means nor medians – in fact, they generally lie in a
different space than the targets that are assigned to them. See Alg. 1 for details.

3 Modified Affinity Propagation for TPD

The recently-introduced affinity propagation algorithm is an exemplar-based clustering
algorithm that operates by exchanging messages between data points until a subset of
data points emerge as the cluster centers (exemplars) [1]. Unlike most other clustering

364 D. Dueck et al.

algorithms, affinity propagation does not store and refine a fixed number of potential
cluster centers, but instead simultaneously considers all data points as potential cluster
centers. Data points exchange two kinds of message: the responsibility sent from point
i to point k indicates how well-suited point k is as the exemplar for point i in contrast
to other potential exemplars; the availability sent from point k to point i indicates how
much support point k has received from other points for being an exemplar. As the
message-passing procedure proceeds, responsibilities and availabilities become more
extreme until a clear set of exemplars and clusters emerges.

In [1], affinity propagation was shown to find better solutions than other frequently-
used methods, including K-medians (K-centers) clustering and hierarchical agglomer-
ative clustering. It should be kept in mind that for small problems, e.g. < 500 points,
linear programming [5] can often be used to find an exact solution. Also, when the
number of sought-after exemplars is quite low (e.g., < 10), methods that use random
initialization (e.g., K-centers clustering) can work quite well. One randomly-initialized
method that works quite well is the vertex substitution heuristic. Recently in [2], affinity
propagation was shown to be significantly faster than the vertex substitution heuristic
for moderately large problems. For example, 20 randomly-initialized runs of the ver-
tex substitution heuristic took ∼10 days to find 454 clusters in 17,770 Netflix movies,
whereas affinity propagation took ∼2 hours and achieved lower error.

The input to the affinity propagation algorithm is a set of similarities {s(i, k)}, where
s(i, k) is the similarity of point i to k, and a set of preferences {p(k)}, where p(k) is the
a priori preference that point k be chosen as an exemplar. After exchanging messages,
affinity propagation identifies a set of exemplars K so as to maximize the net similarity∑

i/∈K maxk∈K s(i, k) +
∑

k∈K p(k). Viewing treatments as potential exemplars, we
can adapt affinity propagation to TPD: if point i is a target and point k is a treatment,
we can set s(i, k) to the utility of that treatment for that target; if point k is a treatment,
we can set p(k) to the negative cost for that treatment.

However, one important difference between the problem statements for exemplar-
based clustering and TPD is the distinction between treatments and targets. The orig-
inal affinity propagation algorithm treats all points as potential exemplars and every
non-exemplar point must be assigned to an exemplar. In TPD, only treatments can be
selected as exemplars, and only targets have utilities for being assigned to exemplars
(treatments). Treatments that are not selected for the portfolio (exemplar set) are nei-
ther exemplars nor assigned to another exemplar (treatment).

To allow some treatments to not be selected for the portfolio and also not be assigned
to any other points, we introduce a special ‘garbage collector’ point and set the similar-
ities of treatments to this point to zero. So, unless there is a net benefit in utility minus
cost when including a treatment in the portfolio (exemplar set), it will be assigned to
the garbage collector point. In summary, the following similarity constraints account
for the bipartite structure of TPD:

s(target, treatment)=u(treatment, target) and s(target, target′)=s(target, garbage)=−∞
s(treatment, garbage)=0 and s(treatment, target)=s(treatment, treatment′)=−∞

s(garbage, target)=s(garbage, treatment)=−∞
p(treatment)=−c(treatment) and p(target)=p(garbage)=∞

Constructing Treatment Portfolios Using Affinity Propagation 365

The last constraints ensure that targets cannot be selected as exemplars and that the
garbage collection point is always available as an exemplar.

It turns out that when the above constraints are inserted into the original affinity
propagation updates, certain simplifications occur and the garbage collection point need
not be explicitly represented. In fact, many messages need not be computed and the
algorithm reduces to messages exchanged on a bipartite graph connecting treatments
and targets. The resulting algorithm is provided in Alg. 2 – note that messages need
only be exchanged between a treatment and target if the utility is not −∞. The input
λ ∈ (0, 1) is a damping factor that is used to improve convergence.

ALGORITHM 2: BIPARTITE AFFINITY PROPAGATION

Input: T , R, u, c, λ

Initialization: ∀T, R : u(T, R) > −∞, set a(T, R) ← 0, r(T, R) ← 0

Repeat until convergence:

Update responsibilities: ∀T, R : u(T, R) > −∞, set

r(T, R)←λr(T, R)+(1−λ)·(u(T, R)−max
T ′∈T\{T}:

u(T ′,R)>−∞

{u(T ′, R)+a(T ′, R)}
)

(2)
Update availabilities: ∀T, R : u(T, R) > −∞, set

a(T, R)←λa(T, R)+(1−λ)·min{0,
∑

R′∈R\{R}:
u(T,R′)>−∞

max(0, r(T, R′))−c(T)}

(3)
Output:

P ← {T :
∑

R∈R:
u(T,R)>−∞

max(0, r(T, R)) > c(T)} (4)

This algorithm can be derived as an instance of the max-product algorithm in a fac-
tor graph describing Eq. 1. Here, we provide some intuition for why the updates make
sense. Initially, the availabilities a(·, ·) are zero and Eq. 2 indicates that the responsibil-
ity of treatment T for target R is set to its utility minus the largest competing utility of
another treatment for the same target. In subsequent iterations, the utilities of competing
treatments are modulated by their availabilities. As indicated in Eq. 3, the availability
of treatment T for target R is set to the sum of its responsibilities for other treatments
minus its cost. Only positive responsibilities are included in this sum, because for a
treatment to be deemed useful, it is only necessary that some targets yield high utility,
not that all targets yield high utility. The availability is not allowed to rise above zero;
this acts to prevent a treatment that accounts for a large number of targets from dominat-
ing other potential treatments. After convergence, Eq. 4 compares the net responsibility
of target T with its cost, and includes it in the portfolio if the benefit outweighs the cost.

366 D. Dueck et al.

(a) (b)

(c) (d)

Fig. 1. Performance with affinity propagation and K-treatments clustering on finding yeast strains
that are representative of gene-drug interaction profiles. (a) and (b) show training and test results,
for a held-out test set of randomly-selected drugs; (c) and (d) show similar results, but where the
held-out test drugs consisted of a small number of drugs with different dosage levels and exposure
times. (a) and (c) show that affinity propagation maximizes the net utility of the training set better
than the best of hundreds of thousands of random restarts of K-treatments clustering. (b) and (d)
show that on the test drug set, affinity propagation has better sensitivity at a given specificity than
K-treatments clustering.

4 Application 1: Selecting Yeast Gene Deletion Queries for Drug
Profiling

We applied TPD to a data set showing the interaction of 1259 different drug-dosage-
exposure combinations (called just drugs hereon in for brevity) with yeast gene-deletion
strains. Our goal was to find a small query set of genes (a subset of the 5985 yeast genes)
on which new drugs could be tested for the purpose of predicting interactions between
the drug and genes not in the query set. The selection of a query set would avoid needing
to test all genes on new drugs, which can be costly, especially when expanding tests,

Constructing Treatment Portfolios Using Affinity Propagation 367

e.g., to include proteomic profiling. In this application, the treatment set equals the
target set (T = R); in the next section, we describe results on an application where the
treatment set and target set are disjoint.

Gene-drug interactions were measured using TAG3 molecular barcode arrays [6].
z-scores were calculated by standardizing the rank-normalized intensity for each strain
under the given drug against the intensity from a set of untreated controls. We imposed
a threshold score of 5 for there to be an interaction between the strain and drug, which
yielded roughly 150, 000 interactions of a possible 7.5 million combinations (2%). The
utility of a potential query gene deletion strain (treatment) for representing another gene
deletion strain (target) was set to the number of drug responses that were active for both.
To test the predictive power of TPD, this utility was computed using a training set of
drugs consisting of only 90% of the original; results are reported for both uniformly
sampling the 10% test set of drugs and using a non-random test set consisting of all
different dosage levels and exposure times for a smaller set of drugs (still 10% of the
total number of conditions).

TPD was performed using both affinity propagation and K-treatments clustering (us-
ing a huge number of random restarts), with results shown in Fig. 1. All runs of affinity
propagation took less than five hours whereas the many runs of K-treatments clustering
took over 3 days. Results for the uniformly-sampled test set are shown in Fig. 1(a) and
(b), whereas similar results are shown in Fig. 1(c) and (d) for the test set with fewer
drugs with varying dosages and exposure times. Fig. 1(a) and (c) plot the net utility (to-
tal number of drug-gene interactions in the training set accounted for by the portfolio)
versus the number of treatments. Affinity propagation finds better representative yeast
strains than K-treatments clustering, for both training sets.

Additionally, Fig. 1(c) and (d) plot sensitivity vs. specificity curves for both al-
gorithms, using the held-out test sets. At any given specificity (proportion of non-
interactions correctly predicted in the test data), affinity propagation achieves a higher
sensitivity (proportion of interactions correctly predicted in the test data) than K-treat-
ments clustering. Note that as the size of the portfolio (K) increases, both specificity
and sensitivity experience corresponding increases.

It is evident from Fig. 1 that many thousands of random restarts of K-treatments clus-
tering are needed to find good solutions. For example, for all data points shown in both
plots, we found that the portfolios found by affinity propagation never represented fewer
than 7 target genes, whereas in all but one case for K-treatments clustering (the lowest,
K = 16), the portfolios included singleton genes, leading to less-accurate predictions.

Exemplar genes found by both affinity propagation and the K-treatments algorithm
were also analyzed for functional enrichment [7]. In nearly all cases, the list of exem-
plars was not over-enriched for any functional category, indicating that these represen-
tatives were well dispersed in terms of biological function.

5 Application 2: Selecting HIV Strains that Maximize Immune
Target Coverage

Next, we pose the problem of HIV vaccine cocktail design as a TPD. The idea here
is to find a set of optimal HIV strains for the purpose of priming the immune systems

368 D. Dueck et al.

of many patients. The treatments T are thousands of HIV strain sequences (available
at www.hiv.lanl.gov). The targets R are a set of short sequences (patches, fragments)
that correspond to the epitopes that immune systems respond to (we use all nonamers
or 9-mers). The utility u(T, R) of a strain T for a fragment R would ideally be set to
its potential for immunological protection, but following [8, 9, 10, 12] we set it to the
frequency of the fragment in the database of HIV sequences, if fragment R is present
in strain T and 0 otherwise. The net utility is also referred to as ‘coverage’.1

Fig. 2 shows aligned pieces of Gag protein from several different strains, with two vari-
able sites marked by arrows as well as known or predicted T-cell epitopes for the MHC
molecules of five different patients taken from the WA cohort [11]. Epitopes recognizable
by a single patient are shown in a single color, and each patient is assigned a different
color. The white patient could be immunized against three forms of the same epitope:
KKYKLKHIV, KKYQLKHIV, KKYRLKHIV. In this small example, we can design a
vaccine consisting of the following segments which epitomizes in an immunological
sense the seven strains shown in the figure: VLSGGKLDKWEKIRLRPGGKKKYK-
LKHIVWASRELERF LSGGKLDRWEKIRLR KKKYQLKHIVW KKKYRLKHIVW.

A lot of discussion among HIV vaccine experts has been focused on the need for
constraining vaccine constructs optimized for coverage to resemble naturally occur-
ring strains [10, 9]. This is motivated by several pieces of evidence that deviation from
naturally occurring strains often reduces efficacy in animal models as well as in vac-
cine trials, both in terms of the cellular and antibody responses. Thus, [9] proposes
enrichment of the vaccine with a sequence that sits in the center of the HIV phyloge-
netic tree, so that this single native-like (but still artificially derived) strain is used to
provide high coverage of immune targets in as natural way as possible, while the ad-
ditional coverage is achieved with an epitome fragment or fragments. In contrast, in
their recent paper [10] Fischer et. al. avoid the use of fragments altogether, and propose
building the entire vaccine out of multiple strain-like constructs optimized by simu-
lated strain recombination, dubbed ‘mosaics’. A mosaic vaccine is therefore a cocktail
of artificially-derived strains, not existent among the observed strains of the virus, but
achievable by recombining many times the existing strains. These vaccine components
resemble natural strains, but have higher nonamer coverage than what would be ex-
pected from a cocktail of natural strains. Mosaics can always achieve higher coverage

1 Despite its simplicity, this problem set-up is quite biologically relevant. The immune system
recognizes pathogens by short protein segments called epitopes. These targets are recognized
both on the surface of the free viral particles, as well as on the surface of the infected cells,
where the peptide targets are presented by the cell’s own MHC molecules in charge of signaling
about the normal or abnormal protein expression in the cell. Due to a need for efficiency, the
immune system takes longer to recognize a new pathogen the first time it is encountered than
in subsequent infections. To prime such an adaptive system against foreign intruders, various
vaccination strategies have been developed, all essentially with the same goal — to expose
the patient to a harmless vaccine that shares similarities with a targeted pathogen, so that in
the immune system gets prepared for the true infection. For many pathogens, with HIV being
a prime example, genetic diversity poses a significant problem for vaccine design. The goal
of vaccine design is to load the vaccine with targets that would work for multiple strains and
multiple patients [8, 9, 10, 12].

Constructing Treatment Portfolios Using Affinity Propagation 369

Fig. 2. Fragments of Gag protein with epitopes recognized by several HIV-infected patients. Epi-
topes recognizable by a single patient are shown in a single color; mutations marked by red arrows
escape MHC I binding.

than natural strains, so while they may not be viable as vaccines, they provide an upper
bound on potential coverage.

As the data set of known HIV sequences is constantly growing, the potential for
achieving high coverage with a cocktail of true natural strains is growing as well. Newly
discovered strains differ from existing ones mostly by the combination of previously
seen mutations, rather than by the presence of completely new nonamers. In fact, Fis-
cher et. al. have increased the Gag vaccine coverage by their use of mosaic by some
4–5% in comparison to natural strain cocktails for Gag and Nef protein vaccines con-
sisting of 3–5 components. This is not much larger than the differences of around 2% of
all nonamers that they report among coverage scores of mosaics optimized on different
datasets (even within the same HIV clade). Furthermore, as the problem is NP-hard, the
natural strain cocktails (treatment portfolios) in their paper are found by a greedy tech-
nique (a combination of K-treatments clustering and the vertex substitution heuristic),
which may further decrease the perceived potential of natural strain cocktails, espe-
cially for a larger number of components. For a large M -clade dataset consisting of
1755 Gag proteins from the LANL database, a Gag sequence consisting of the best 4
natural strains we could find had only 3% lower coverage than the mosaic of the same
size optimized on the same data (69% vs 66%); the differences in the Pol gene were
even lower. Obviously, as the dataset grows, the computational burden for finding the
optimal cocktail grows exponentially, as is the case for the general TPD problem.

Furthermore, while potentially important for the cellular arm of the immune system,
a vaccine components’ closeness to natural strains is even more important for properly

370 D. Dueck et al.

presenting potential targets of the humoral (antibody) arm of the immune system. As
opposed to the T-cell epitopes, antibody epitopes are found on the surface of the folded
proteins. It has been shown that slight changes in the HIV Env protein can cause it to
mis-fold, and so naturally occurring HIV strains are more likely to function properly
than artificially derived Env proteins.

In our experiments, we solve the TPD problem for the Gag vaccine cocktail opti-
mization for larger cocktails, where the coverage approaches 80% or more, and where
exhaustive search is computationally out of the question. Instead, we used the affin-
ity propagation algorithm described above, and compare its achieved utility (coverage)
with that of the greedy method and the mosaic upper bound [10]. Table 1 summarizes
our results on 1755 strains from M -clade (combination of all clades, and thus the most
diverse).

Table 1. The utility (“epitope coverage”) of vaccine portfolios found by affinity propagation and
a greedy method, including an upper bound on utility (found using mosaics)

Natural strains Artificial mosaic strains
Problem Affinity propagation Greedy (upper bound)

Gag, K = 20 77.54% 77.34% 80.84%
Gag, K = 30 80.92% 80.14% 82.74%
Gag, K = 38 82.13% 81.62% 83.64%
Gag, K = 52 84.19% 83.53% 84.83%

These results show that affinity propagation achieves higher coverage than the greedy
method. Importantly, these results also suggest that the sacrifice in coverage necessary
to satisfy the vaccine community’s often-emphasized need for natural components, may
in fact be bearable if large datasets and appropriate algorithms are used to optimize
coverage.

6 Summary

We introduced a computation problem called ‘treatment portfolio design’, which is a
key problem for biologists and medical researchers who need select a set of options
useful for extracting maximum information or utility from a set of targets. This prob-
lem is equivalent to the non-metric K-medians problem or facility location problem, but
while these problems are not new, practical algorithms that produce good solutions are
still elusive. We showed how the recently-introduced affinity propagation algorithm can
be modified to perform treatment portfolio design. We demonstrated a greedy algorithm
for TPD and affinity propagation on the problem of identifying a yeast gene-deletion
query set for the purpose of drug profiling and identifying strains of HIV that together
maximize coverage of epitopes. Both methods were useful for identifying treatment
sets, but we found that affinity propagation achieved significantly higher utility val-
ues and better test set performance (in terms of sensitivity and specificity), even when
the greedy method was re-run hundreds of thousands of times using different random
initializations.

Constructing Treatment Portfolios Using Affinity Propagation 371

References

1. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315,
972–976 (2007)

2. Frey, B.J., Dueck, D.: Affinity propagation and the vertex substitution heuristic. Science (in
press)

3. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In:
Proc. 5th Berkeley Symp. on Mathematical Statistics and Probability, pp. 281–297. Univ. of
California Press (1967)

4. Balinksi, M.L.: On finding integer solutions to linear programs. In: Proc. IBM Scientific
Computing Symp. on Combinatorial Problems, pp. 225–248 (1966)

5. Charikar, M., Guha, S., Tardos, A., Shmoys, D.B.: A constant-factor approximation algo-
rithm for the k-median problem. J. Comp. and Sys. Sci. 65(1), 129–149 (2002)

6. Pierce, S.E., Fung, E.L., Jaramillo, D.F., Chu, A.M., Davis, R.W., Nislow, C., Giaever, G.: A
unique and universal molecular barcode array. Nature Methods 3(8), 601–603 (2006)

7. Maere, S., Heymans, K., Kuiper, M.: BiNGO: a Cytoscape plugin to assess overrepresen-
tation of gene ontology categories in biological networks. Bioinformatics 21, 3448–3449
(2005)

8. Jojic, N., Jojic, V., Frey, B., Meek, C., Heckerman, D.: Using epitomes to model genetic
diversity: Rational design of HIV vaccine cocktails. NIPS 18, 587–594 (2005)

9. Nickle, D.C., et al.: Coping with Viral Diversity in HIV Vaccine Design. PLoS Computa-
tional Biology 3(4), e75 (2007)

10. Fischer, W., Perkins, S., et al.: Polyvalent vaccines for optimal coverage of potential T-cell
epitopes in global HIV-1 variants. Nature Medicine 13, 100–106 (2006)

11. Mallal, S.: The Western Australian HIV Cohort Study, Perth, Australia. Journal of Acquired
Immune Deficiency Syndromes and Human Retrovirology 17(Suppl. 1), 23–27 (1998)

12. Jojic, V.: Algorithms for rational vaccine design. Ph.D. Thesis, University of Toronto (2007)

	Constructing Treatment Portfolios Using Affinity Propagation
	Treatment Portfolio Design (TPD)
	Relationship to K-Medians Clustering and Facility Location

	Standard Algorithms Adapted to TPD
	Modified Affinity Propagation for TPD
	Application 1: Selecting Yeast Gene Deletion Queries for Drug Profiling
	Application 2: Selecting HIV Strains that Maximize Immune Target Coverage
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

