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Abstract

Many kinds of data can be viewed as consisting of a set of vectors, each
of which is a noisy combination of a small number of noisy prototype vec-
tors. Physically, these prototype vectors may correspond to different hidden
variables that play a role in determining the measured data. For example,
a gene’s expression is influenced by the presence of transcription factor pro-
teins, and two genes may be activated by overlapping sets of transcription
factors. Consequently, the activity of each gene can be explained by the ac-
tivities of a small number of transcription factors. This task can be viewed
as the problem of factorizing a data matrix, while taking into account hard
constraints reflecting structural knowledge of the problem and probabilistic
relationships between variables that are induced by known uncertainties in
the problem. We present soft-decision probabilistic sparse matrix factoriza-
tion (PSMF) to better account for uncertainties due to varying levels of noise
in the data, varying levels of noise in the prototypes used to explain the data,
and uncertainty as to which hidden prototypes are selected to explain each
expression vector.
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1 Introduction

Many information processing problems can be formulated as finding a factorization of a ma-
trix of data, X ≈ Y ·Z, while taking into account hard constraints reflecting structural knowl-
edge of the problem and probabilistic relationships between variables that are induced by
known uncertainties in the problem (e.g., noise in the data). A simple example of a technique
for finding such a factorization is principal components analysis (PCA). In this paper, we study
algorithms for finding matrix factorizations, but with a specific focus on sparse factorizations,
and on properly accounting for uncertainties while computing the factorization.

One approach to analyzing data vectors lying in a low-dimensional linear subspace is to
stack them to form a data matrix, X, and then find a low-rank matrix factorization of the data
matrix. Given X ∈ RG×T , matrix factorization techniques find a Y ∈ RG×C and a Z ∈ RC×T

such that X ≈ Y · Z.
Interpreting the rows of X as input vectors {xg}

G
g=1, the rows of Z (i.e. {zc}

C
c=1) can be

viewed as vectors that span the C-dimensional linear subspace, in which case the gth row of
Y contains the coefficients {ygc}

C
c=1 that combine these vectors to explain the gth row of X.

This type of problem was called “sparse matrix factorization” in [1], and is related to inde-
pendent component analysis [2]. In their model, Srebro and Jaakkola augment the X ≈ Y · Z
matrix factorization setup with the sparseness structure constraint that each row of Y has at
mostN non-zero entries1. They then describe an iterative algorithm for finding a sparse matrix
factorization that makes hard decisions at each step.

On the other hand, our method finds such a factorization while accounting for uncertain-
ties due to (1) different levels of noise in the data, (2) different levels of noise in the factors used
to explain the data, and (3) uncertainty as to which hidden prototypes are selected to explain
each input vector.

2 Probabilistic sparse matrix factorization (PSMF)

Let X be the matrix of data such that rows correspond to each ofG data points and columns to
each of T data dimensions. We denote the collection of unobserved factor profiles as a matrix,
Z, with rows corresponding to each of C factors and T columns, as before. Each data point,
xg, can be approximated by a linear combination of a small number (rg) of these transcription
factor profiles, zc:

xg ≈
∑rg

n=1
ygsgnzsgn (1)

1When N = 1, this scheme degenerates to clustering with arbitrary data vector scaling; N = C yields ordinary
low-rank approximation.
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The factor profiles contributing to the gth data point are indexed by {sg1, sg2, . . . , sgrg}, with
corresponding weights {ygsg1 , ygsg2 , . . . , ygsgrg}. This is identical to the X ≈ Y ·Z matrix factor-
ization with {S, r} representing the sparseness structure constraint. We account for varying
levels of noise in the observed data by assuming the presence of isotropic Gaussian sensor
noise (with variance ψ2

g ) for each data point, so the likelihood of xg is as follows:

P (xg|yg,Z, sg, rg, ψ
2
g) = N

(

xg;
∑rg

n=1
ygsgnzsgn , ψ

2
gI
)

(2)

We complete the model with prior assumptions that the factor profiles (zc) are normally
distributed and that the factor indices (sgn) are uniformly distributed. The number of causes,
rg, contributing to each data point is multinomially distributed such that P (rg = n) = νn,
where ν is a user-specifiedN -vector. We make no assumptions about Y beyond the sparseness
constraint, so P (Y)∝1.

Multiplying these priors by (2) forms the following joint distribution:

P (X,Y,Z,S, r|Ψ) = P (X|Y,Z,S, r,Ψ) · P (Y) · P (Z) · P (S|r) · P (r)

∝
G∏

g=1

N
(

xg;
∑rg

n=1
ygsgnzsgn , ψ

2
gI
)

·
C∏

c=1

N (zc; 0, I)

·
G∏

g=1

C∏

c=1

N∏

n=1

(
1
C

)δ(sgn−c)
·

G∏

g=1

N∏

n=1

(νn)δ(rg−n) (3)

It is often easier to work with the complete log likelihood, `C :

`C = logP (X,Y,Z,S, r|Ψ)

= −
1

2

G∑

g=1

T∑

t=1

[

log 2πψ2
g +

(

xgt −
∑rg

n=1
ygsgnzsgnt

)2
/ψ2

g

]

−
1

2

C∑

c=1

T∑

t=1

(
log 2π + z2

ct

)
−

G∑

g=1

rg · logC +
G∑

g=1

log νrg (4)

3 Iterated Conditional Modes (ICM)

Learning globally-optimal settings for variables Y, Z, S, r and the Ψ noise parameter in (4) is
intractable, so we resort to approximate techniques. One possibility is to set each variable to
its maximum empha posteriori (MAP) value and iterate. For instance, this procedure would
modify the r-variable as follows:

r ← argmax
r

P (r|X,Y,Z,S,Ψ)

= argmax
r

`C
︷ ︸︸ ︷

{logP (r|X,Y,Z,S,Ψ) + logP (X,Y,Z,S|Ψ)} (5)

The scheme in (5) is known as iterated conditional modes [3], and can be implemented by
directly maximizing the complete log likelihood, `C . This section concludes by outlining the

2



PSI-Group Technical Report TR 2004– 023 University of Toronto

steps within a single ICM iteration (6)–(10).

∀g ∈ {1, . . . , G}, ∀n ∈ {1, . . . , rg} :

sgn ← argmin
sgn∈{1,...,C}

{
T∑

t=1

(

xgt −
∑rg

n=1
ygsgnzsgnt

)2
}

(6)

∀g ∈ {1, . . . , G} :

rg ← argmin
rg∈{1,...,N}

{

1

2

T∑

t=1

[(

xgt −
∑rg

n=1
ygsgnzsgnt

)2
/ψ2

g

]

+ log
Crg

νrg

}

(7)

Elements of the r-vector and S-matrix are independent of each other when conditioned on
the other variables, so they can be updated element-wise, as in (6)–(7). This is not the case for Y

and Z, whose MAP values can be determined by solving ∂`C/∂Y = 0 and ∂`C/∂Z = 0. Rows
of Y are independent of one another (given {Z,S, r}), as are columns of Z (given {Y,S, r}),
so the updated values for the gth row of Y (8) and the tth column of Z (9) are solutions to the
following linear systems:

∀c ∈ {sg1, sg2, . . . , sgrg} :
rg∑

n=1

ygsgn

{
T∑

t=1

zctzsgnt

}

=
T∑

t=1

xgtzct (8)

∀c ∈ {1, . . . , C} :

zct +

C∑

c′=1

zc′t







G∑

g=1

ygcygc′

ψ2
g






=

G∑

g=1

xgtygc

ψ2
g

(9)

Finally, the parameter Ψ is learned by updating it with its maximum likelihood estimate,
obtained by similarly solving ∂`C/∂Ψ = 0.

∀g ∈ {1, . . . , G} : ψ2
g ←

1

T

T∑

t=1

(

xgt −
∑rg

n=1
ygsgnzsgnt

)2
(10)

4 Factorized Variational Inference

Iterated conditional modes is a simple method of learning latent variables and parameters by
directly maximizing the log likelihood, but it is susceptible to getting trapped in local maxima.
This occurs because ICM fails to account for uncertainty as it makes hard decisions. Another
solution is to utilize a factorized variational method [4] and approximate the posterior distri-
bution (3) with a mean-field decomposition:

P (Y,Z,S, r|X,Ψ) ≈
G∏

g=1

Q(yg) ·
C∏

c=1

Q(zc) ·
G∏

g=1

N∏

n=1

Q(sgn) ·
G∏

g=1

Q(rg) (11)

We parameterize the Q-distribution as follows:

Q (yg) =

λgc is a point estimate of ygc, ...
︷ ︸︸ ︷
rg∏

n=1

δ
(
ygsgn − λgsgn

)
·

... unless {sg ,rg} force ygc to zero.
︷ ︸︸ ︷

C∏

c=1
c/∈{sg1,sg2,...,sgrg}

δ (ygc) (12)

Q(zct) = N (zct; ζct, φ
2
c); Q(sgn = c) = σgnc; Q(rg = n) = ρgn (13)

3
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Using this approach, factorization corresponds to bringing the Q-distribution as close as pos-
sible to the P-distribution by varying the Q-distribution parameters. For this reason, the pa-
rameters in the Q-distribution are called variational parameters [4]. To ensure normalization,
the variational parameters are constrained to satisfy

∑C
c=1 σgnc = 1 and

∑N
n=1 ρgn = 1. Note

that ICM can be considered a special case where the Q-distribution consists entirely of point
estimates of P-distribution latent variables.

In order to closely approximate the P-distribution, we seek to minimize the relative en-
tropy, D(Q‖P ), between it and the Q-distribution:

{λ, ζ, φ, σ, ρ} ← argmin
{λ,ζ,φ,σ,ρ}

∫

Y,Z,S,r

Q(Y,Z,S, r) · log
Q(Y,Z,S, r)

P (Y,Z,S, r|X,Ψ)
(14)

There is no closed-form expression for the posterior (denominator in (14)), but we can
subtract logP (X) inside the integral (it is independent of the variational parameters) to form
the readily-minimized free energy, F :

F = D(Q‖P )− logP (X) =

∫

Y,Z,S,r

Q(Y,Z,S, r) · log
Q(Y,Z,S, r)

P (X,Y,Z,S, r|Ψ)

...

=
G∑

g=1

N∑

n=1

ρgn

n∑

n′=1

C∑

c=1

(

σgn′c · log
σgn′c

1/C

)

+
G∑

g=1

N∑

n=1

(

ρgn · log
ρgn

νn

)

−
T

2

C∑

c=1

(
1 + log φ2

c

)
+

1

2

T∑

t=1

C∑

c=1

(
ζ2
ct + φ2

c

)
+
T

2

G∑

g=1

log 2πψ2
g

+
1

2

G∑

g=1

T∑

t=1

N∑

n=1

ρgn

ψ2
g

C∑

c1=1

C∑

c2=1

· · ·
C∑

cn=1

n∏

n′=1

σgn′cn′





(

xgt −
n∑

n′=1

λgcn′ ζcn′ t

)2

+
n∑

n′=1

λ2
gcn′

φ2
cn′



(15)

Computation of the final term in (15), which sums over all possible configurations of the
sparseness enforcement variational parameters ({S, r}), is O(GN 2CNT ). Considerable com-
putational savings can be realized by taking advantage of complete factorization of S; the
∏n

n′=1 σgn′cn′
probabilities and the

∑C
c1=1

∑C
c2=1 · · ·

∑C
cn=1 summations can be rearranged to

make things O(GN3C2T ) as shown in (16).

F =
G∑

g=1

C∑

c=1

N∑

n=1

(
N∑

n′=n

ρgn′

)(

σgcn · log
σgcn

1/C

)

+
G∑

g=1

N∑

n=1

(

ρgn · log
ρgn

νn

)

−
T

2

C∑

c=1

(
1 + log φ2

c

)
+

1

2

T∑

t=1

C∑

c=1

(
ζ2
ct + φ2

c

)
−

1

2

G∑

g=1

∑N
n=2 (n− 1) ρgn

ψ2
g

T∑

t=1

x2
tg

+
T

2

G∑

g=1

log 2πψ2
g +

1

2

G∑

g=1

N∑

n=1

∑N
n′=n ρgn′

ψ2
g

C∑

c=1

σgcn

T∑

t=1

[

(xgt − λgcζct)
2 + λ2

gcφ
2
c

]

+
G∑

g=1

N∑

n=1

N∑

n′=n+1

∑N
n′′=n′ ρgn′′

ψ2
g

C∑

c=1

C∑

c′=1

σgcnσgc′n′λgcλgc′

T∑

t=1

ζctζc′t (16)

4
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The variational parameters λ, ζ, φ, σ, and ρ can be minimized sequentially by analytically
finding zeros of partial derivatives similar to the ICM case (8)-(10). First, the update for ρgn

can be obtained by finding the zero of ∂
[

F + Lg

(

1−
∑N

n′=1 ρgn′

)]

/∂ρgn:

∀g ∈ {1, . . . , G }, ∀n ∈ {1, . . . , N} :

ρgn ∝ νn · e
−

C∑

c=1

n∑

n′=1

(

σgcn′ ·log
σgcn′

1/C

)

· e
− 1

2ψ2
g

C∑

c=1

(
∑n
n′=1

σgcn′)
T∑

t=1

[−2xgtλgcζct+λ2
gc(ζ2

ct+φ2
c)]

· e
− 1

ψ2
g

C∑

c′=1

C∑

c′′=1

(
n∑

n′=1

n∑

n′′=n′+1

σgc′n′σgc′′n′′

)

λgc′λgc′′
T∑

t=1

ζc′tζc′′t
(17)

Part of introducing the Lg Lagrange multiplier also involves normalizing ρgn by
∑N

n′=1 ρgn′ to
make it a valid probability distribution (summing to one).

Likewise, finding the zero of ∂
[

F + Lgn

(

1−
∑C

c′=1 σgc′n

)]

/∂σgcn yields an update equation
for σgcn:

∀g ∈ {1, . . . , G}, ∀c ∈ {1, . . . , C} , ∀n ∈ {1, . . . , N} :

σgcn ∝ e
− 1

2ψ2
g

T∑

t=1

[(xgt−λgcζct)
2+λ2

gcφ
2
c]
· e

− 1

ψ2
g

C∑

c′=1

N∑

n′=1
n′ 6=n

∑N
n′′=max(n,n′)

ρgn′′

∑N
n′′=n

ρgn′′
σgc′n′λgcλgc′

T∑

t=1

ζctζc′t

(18)

As before, each σgcn must be normalized by
∑C

c′=1 σgc′n.
φc is updated as follows:

φ2
c ←



1 +
G∑

g=1

λ2
gc

ψ2
g

N∑

n=1

σgcn

N∑

n′=1

ρgn′





−1

(19)

Analogous to the ICM case, rows of λ are independent of one another as are columns of ζ,
given all other variational parameters. Updated values for the gth row of λ and the tth column
of ζ are solutions to (20), (21).

∀c ∈ {1, . . . , C} :
C∑

c′=1

λgc′

{(
N∑

n=1

N∑

n′=n+1

(
σgcnσgc′n′ + σgcn′σgc′n

)
N∑

n′′=n′

ρgn′′

)(
T∑

t=1

ζctζc′t

)}

+λgc

{(
N∑

n=1

σgcn

N∑

n′=n

ρgn′

)(
T∑

t=1

(
ζ2
ct + φ2

c

)

)}

=

(
N∑

n=1

σgcn

N∑

n′=n

ρgn′

)(
T∑

t=1

xgtζct

)

(20)

ζct
φc

+
C∑

c′=1

ζc′t







G∑

g=1

λgc′λgc

ψ2
g

N∑

n=1

N∑

n′=n+1

(
σgcnσgc′n′ + σgcn′σgc′n

)
N∑

n′′=n′

ρgn′′







=
G∑

g=1

xgtλgc

ψ2
g

N∑

n=1

σgcn

N∑

n′=n

ρgn′ (21)

5
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Finally, parameter Ψ is again learned by solving ∂F/∂Ψ = 0.

∀g ∈ {1, . . . , G} :

ψ2
g ←

1

T

C∑

c=1

(
N∑

n=1

σgcn

N∑

n′=n

ρgn′

)
T∑

t=1

[

(xgt −λgcζct)
2+λ2

gcφ
2
c

]

−
1

T

(
N∑

n=2

(n− 1) ρgn

)
T∑

t=1

x2
tg

+
2

T

C∑

c=1

C∑

c′=1

(
N∑

n=1

N∑

n′=n+1

σgcnσgc′n′

N∑

n′′=n′

ρgn′′

)

λgcλgc′

T∑

t=1

ζctζc′t (22)

5 Structured Variational Inference

The mean field decomposition in (11) assumes a significant degree of independence among
{Y,Z,S, r}. More accurate Q-distributions approximating (3) are possible if more structure is
introduced. For instance, if the number of factors associated with each data point (rg) and the
indices of these factors (sg1, . . . , sgrg ) are coupled, the Q-distribution assumes the following
structure:

P (Y,Z,S, r|X,Ψ) ≈
G∏

g=1

Q (yg) ·
C∏

c=1

Q (zc) ·
G∏

g=1

Q (sg, rg) (23)

An obvious parameterization is as follows:

Q (yg) =

λgc is a point estimate of ygc, ...
︷ ︸︸ ︷
rg∏

n=1

δ
(
ygsgn − λgsgn

)
·

... unless {sg ,rg} force ygc to zero.
︷ ︸︸ ︷

C∏

c=1
c/∈{sg1,sg2,...,sgrg}

δ (ygc) (24)

Q(zct) = N
(
zct; ζct, φ

2
c

)
; Q

(
sg =

[
c1 c2 · · · cn

]
, rg = n

)
= σgc1c2···cn (25)

Calculating D(Q‖P )− logP (X) as before (15) yields the new free energy:

F =
G∑

g=1

N∑

n=1

C∑

c1=1

· · ·
C∑

cn−1=1+cn−2

C∑

cn=1+cn−1

σgc1···cn−1cn · log
σgc1···cn−1cn

νn

/
∑N

n′=1 νn′

(
C
n′

)

−
T

2

C∑

c=1

(
1 + log φ2

c

)
+

1

2

T∑

t=1

C∑

c=1

(
ζ2
ct + φ2

c

)
+
T

2

G∑

g=1

log 2πψ2
g

+
1

2

G∑

g=1

1

ψ2
g

N∑

n=1

C∑

c1=1

· · ·
C∑

cn=1+cn−1

σgc1···cn

T∑

t=1





(

xgt −
n∑

n′=1

λgcn′ ζcn′ t

)2

+
n∑

n′=1

λ2
gcn′

φ2
cn′



 (26)

Because the factor probabilities are not fully factorized as before, no meaningful simplification
of this O(GN2CNT ) expression is possible.

It should be noted that since the factors for each data point are no longer independent,
elements of each sg must be sorted in ascending order for the sake of uniqueness. This is
built into the indexing of the

∑C
c1=1 · · ·

∑C
cn−1=1+cn−2

∑C
cn=1+cn−1

σgc1···cn summations. The
other implication is that while factor choices are still uniformly distributed, the σ variational
parameters are no longer uniform because the P (rg = n) = νn prior is mixed in, as shown in
the first line of (26).

6
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Finally, an even less-factored approximating Q-distribution discards the assumption of in-
dependence between Y and {S, r}. Its Q-distribution is:

P (Y,Z,S, r|X,Ψ) ≈
C∏

c=1

Q (zc) ·
G∏

g=1

Q (yg, sg, rg) (27)

with new parameterization:

Q
(
yg, sg =

[
c1 c2 · · · cn

]
, rg = n

)
= σgc1c2···cn ·

n∏

n′=1

δ
(
ygcn′−λgn′c1c2···cn

)
·

C∏

c=1
c/∈{c1,c2,...,cn}

δ(ygc) (28)

The free energy is identical to (26) except that λgcn′ is replaced with λgn′c1c2···cn . This factor-
ization improves accuracy, but requires N times the memory as the first structured variational
technique. In the former, the bottleneck is σgc1c2···cn , requiring storage forG ·

∑N
n=1

(
C
n

)
floating

point values. In the latter, the bottleneck is λgn′c1c2···cn , with G ·N ·
∑N

n=1

(
C
n

)
values.

6 Simulation Results

We present the results of applying the optimization algorithms presented in the previous sec-
tions to sample data. This data was generated with the following MATLAB code:

% Generate Sample Data in MATLAB

Z = randn(C,T);
Y = zeros(G,C);
for g = 1:G,

n = ceil(N*rand);
Y(g,ceil(C*rand(1,n))) = -5 + 10*rand(1,n);

end;
X = Y * Z + randn(G,T);

Since the data is artificially generated directly from the generative model (-), this is not a
valid test of model applicability to real-world situations. This synthetic data can, however, be
used to assess the relative performance of each Q-distribution factorization depth.

Each of the algorithms (ICM, (11), (23), (27)) was run for 100 iterations on a data set with
G = 1000, T = 15, C = 25, andN = 3. The variational methods used ν =

[
.55 .27 .18

]
(i.e.

νn ∝ 1/n), though other priors weighted more towards low n-values2 would produce similar
values. The plots showing the free-energy minimization (and the related log likelihood (4)
maximization) are shown in Figure 1.

Clearly, iterated conditional modes is outperformed by mean-field factorization, and the
structured factorizations in turn outperform mean-field. Interestingly, the Q(Y) · Q(S, r) and
Q(Y,S, r) structured factorizations end up with similar log likelihoods. They differ greatly,
however, in computational complexity, which is shown by plotting free energy and log likeli-
hood as a function of running time (as opposed to iteration) in Figure 2.

For this particular data set size (G = 1000, T = 15, C = 25, N = 3), the tradeoff be-
tween computational complexity and Q-distribution accuracy is such that each step up in al-
gorithm complexity involves roughly an order of magnitude increase in running time. The

2A uniform prior ν (reflecting no knowledge about the distribution of r) would give equal preference to all
values of a particular rg . For any given rg<N , a factor can almost always be found that, if present with infinitesimal
weight (ygc), will imperceptibly improve the cost function (F), with the end result that almost all rg would then
equal N . Weighting the prior towards lower values ensures that factors will only be included if they make a
noteworthy difference.

7



PSI-Group Technical Report TR 2004– 023 University of Toronto

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

iterated conditional modes (ICM)

Q(Z)·Q(Y)·Q(S)·Q(r)

Q(Z)·Q(Y)·Q(S,r)

Q(Z)·Q(Y,S,r)

FREE ENERGY MINIMIZATION

Variational EM iteration

F   

0 20 40 60 80 100

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

x 10
4

iterated conditional modes (ICM)

Q(Z)·Q(Y)·Q(S)·Q(r)

Q(Z)·Q(Y)·Q(S,r)

Q(Z)·Q(Y,S,r)

    LOG LIKELIHOOD MAXIMIZATION

Variational EM iteration

lC

Figure 1: Free energy (F) minimization and model log likelihood (`C) maximization as a function of EM
iteration. Iterated conditional modes and factorized variational methods with three different factorization
levels are shown.
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Figure 2: Free energy (F) minimization and model log likelihood (`C) maximization as a function of
running time. Iterated conditional modes and factorized variational methods with three different factor-
ization levels are shown.

key running-time quantity to keep in mind is C2 (for ICM and mean-field) versus CN (for
more-structured Q).
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7 Summary

Many kinds of data vectors can most naturally be explained as an additive combination of
a selection of prototype vectors, which can be viewed as computational problem of finding
a sparse matrix factorization. While most work has focused on clustering techniques and
methods for dimensionality reduction, there is recent interest in performing these tasks jointly,
which corresponds to sparse matrix factorization. Like [1], our algorithm computes a sparse
matrix factorization, but instead of making point estimates (hard decisions) for factor selec-
tions, our algorithm computes probability distributions. We find that this enables the algo-
rithm to avoid local minima found by iterated conditional modes.
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