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Abstract

Unsupervised categorization of images or image parts is
often needed for image and video summarization or as a
preprocessing step in supervised methods for classification,
tracking and segmentation. While many metric-based tech-
niques have been applied to this problem in the vision com-
munity, often, the most natural measures of similarity (e.g.,
number of matching SIFT features) between pairs of images
or image parts is non-metric. Unsupervised categoriza-
tion by identifying a subset of representative exemplars can
be efficiently performed with the recently-proposed ‘affin-
ity propagation’ algorithm. In contrast to k-centers clus-
tering, which iteratively refines an initial randomly-chosen
set of exemplars, affinity propagation simultaneously con-
siders all data points as potential exemplars and iteratively
exchanges messages between data points until a good so-
lution emerges. When applied to the Olivetti face data set
using a translation-invariant non-metric similarity, affinity
propagation achieves a much lower reconstruction error
and nearly halves the classification error rate, compared
to state-of-the-art techniques. For the more challenging
problem of unsupervised categorization of images from the
Caltech101 data set, we derived non-metric similarities be-
tween pairs of images by matching SIFT features. Affinity
propagation successfully identifies meaningful categories,
which provide a natural summarization of the training im-
ages and can be used to classify new input images.

1. Introduction

Many vision tasks either produce as output a categoriza-

tion of input featurs or require unsupervised categorization

of input features as a preprocessing step for subsequent

analysis. The features to be categorized may take a wide

variety of forms, ranging from raw data such as vectors of

pixel intensities [1] to collections of SIFT features repre-

senting scale-invariant keypoints [2].

A powerful approach to representing image categories is

to identify a relatively small number of images or image

fragments, called ‘exemplars’. Exemplars have been used

with success in a variety of vision tasks, including image

synthesis [3, 4], super-resolution [5, 6], image and video

completion [7, 8] and combinedy tracking and object detec-

tion [9, 10].

The use of exemplars is attractive for several reasons.

A relatively small number of representative exemplars can

capture high-order statistics, since each exemplar can si-

multaneously express dependencies between a large number

of image features. In contrast to general statistical methods

for which many configurations of the parameters do not cor-

respond to realistic image data, each exemplar is an image

or an image fragment so it naturally corresponds to realis-

tic image data. For this reason, exemplars can be used to

make realistic predictions for missing image data and avoid

the blurring that often occurs when parametric methods are

applied. Exemplars are represented efficiently as pointers

into the training data (e.g., a subset of image features), so

the number of bits of information needing to be specified

during exemplar learning is quite small [11].

If N training cases to be categorized are labeled

1, . . . , N , the exemplar learning problem consists of iden-

tifying a set of exemplars and assigning every other train-

ing case to an exemplar so as to maximize a fitness func-

tion. Denoting the index of the exemplar representing train-

ing case i by ci and the input similarity between training

case i and k by s(i, k), the fitness function is S(c) =∑N
i=1 s(i, ci). An example of a simple metric similarity

is the negative Euclidean distance between input vectors:

s(i, k) = −||xi − xk||2, where x denotes an input vec-

tor. If training case i is an exemplar, we take ci = i, in

which case the fitness function will include a term s(i, i).
This value is also taken as input and represents the a pri-
ori preference that training case i be chosen as an exem-

plar. Note that s(i, i) is not computed in the same way as

s(i, k), since it does not represent an assignment similarity.

Learning consists of maximizing S(c) w.r.t c, subject to the
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constraints that for all i, if there exists a j �= i s.t. cj = i
then ci = i (i.e., if training case j is assigned to i, then i
must be an exemplar). This problem is NP-hard [12], but

approximate methods can be used to search for good solu-

tions [13, 14, 15].

As observed in [10], one of the primary advantages of

using exemplar-based learning to categorize images or im-

ages parts is that the input similarities need not be metric

(i.e., need not be symmetric or satisfy the triangle inequal-

ity). Non-metric similarity functions that have been used

in vision include Chamfer distance [9], Hausdorff distance

[16] and shuffle distance [17].

Recently, the ‘affinity propagation’ algorithm was pro-

posed as a new technique for exemplar learning and was

applied to machine learning tasks, including clustering face

images using Euclidean distance, finding genes using mi-

croarray data, document summarization and airline rout-

ing [15]. While affinity propagation was shown to achieve

larger values of the fitness function than other methods,

several questions of specific interest to vision researchers

were left open, including 1) Do improvements in the fitness

function translate into significant improvements in image

classification rates? 2) Affinity propagation was applied to

cluster face images using a metric similarity (Euclidean dis-

tance) – can it successfully be applied to vision tasks using

non-metric measures of similarity? 3) The authors of [15]

previously described a different version of affinity propaga-

tion [18] — which version obtains better results on vision-

related tasks? Here, we seek to answer these questions. In

particular, the major contributions of this paper are to pro-

vide the first ever comparison between the two versions of

affinity propagation; to demonstrate for the first time the

use of affinity propagation for unsupervised image catego-

rization with results reported in terms of classification error;

to develop useful non-metric similarity measures for unsu-

pervised image categorization — one based on translation-

invariance and the other based on matching SIFT features.

2. Background
Most techniques for identifying exemplars (e.g. k-

centers clustering) keep track of a fixed set of candidate

exemplars while searching for good solutions. The affinity

propagation algorithms introduced in [18] and [15], how-

ever, simultaneously consider all data points as candidate

exemplars. As mentioned earlier, given a data set of N
training cases, the clustering problem can be concisely de-

scribed by introducing N state variables, c1, . . . , cN , where

the index of the exemplar representing training case i is ci.

The original affinity propagation algorithm [18] was de-

rived as an instance of the loopy belief propagation algo-

rithm on a factor graph reflecting the constraints that no

cluster can be without an exemplar and that clusters must

contain at least one member in addition to said exemplar

(i.e. no singleton clusters); see [18] for details. The mes-

sage sent from each ci variable node to the kth constraint

function is referred to as the responsibility of cluster k for

data point i, denoted by r(i, k). The message sent from each

fk function to each ci variable is referred to as the avail-
ability of xk as a candidate exemplar for xi. These would

typically be N -ary probability vectors, but there are many

repeated quantities which, if exploited, make it possible to

pass scalar quantities between data points themselves. This

leads to the following update equations:

Affinity propagation (NIPS, 2006)
Initialization:

r(i, k) = 0, a(k, i) = 0 for all i, k

Responsibility updates:

r(i, k) ← s(i, k) − max
j:j �=k

(a(j, i) + s(i, j))

Availability updates:

a(k, k) ← max
j:j �=k

min(0, r(j, k)) +
∑

j:j �=k

max(0, r(j, k))

a(k, i)←min


 r(k, k)+

∑
j:j /∈{k,i}

max(0, r(j, k)),

−max
j:j /∈{k,i}

min(0, r(j, k))




Making assignments:

c∗i ← argmax
k

r(i, k)+ a(k, i)

For J input similarities, the above update rules take

O(J) scalar binary operations per iteration.

In [15], affinity propagation is re-derived using a sim-

pler constraint that drops the restriction on singleton clus-

ters. The use of this new constraint dramatically simplifies

the update equations and increases the speed and stability of

the algorithm. Most importantly, as shown for the first time

in our experimental results, the new algorithm achieves sig-

nificantly higher fitness function values. The new algorithm

is as follows:

Affinity propagation (Science, 2007)
Initialization:

r(i, k) = 0, a(k, i) = 0 for all i, k

Responsibility updates:

r(i, k) ← s(i, k) − max
j:j �=k

(a(j, i) + s(i, j))

Availability updates:

a(k, k) ← ∑
j:j �=k

max{0, r(j, k)}

a(k, i) ← min

(
0, r(k, k) +

∑
j:j /∈{k,i}

max{0, r(j, k)}
)

Making assignments:

c∗i ← argmax
k

r(i, k)+ a(k, i)



The responsibility update rule is unchanged: corresponding

similarities, s(i, k) are normalized by the best alternative,

modulated by its availability. The update rules for availabil-

ities, however, are now simpler than before: a(k, i) are set

to the responsibility r(k, k) plus the responsibilities from

other training cases, thresholded to be positive so there is

no penalty from distant training cases with low responsibil-

ity. The entire quantity is thresholded to be non-positive,

because it is the log-ratio of P (xi | xi in cluster xk) to

P (xi | xi in cluster xj �=k) given all incoming messages to

function node k, where the latter log-probability is the for-

mer rectified at zero.

3. Comparison of the NIPS (2006) and Sci-
ence (2007) Algorithms

Previous publications have never contained a compari-

son between the two published affinity propagation algo-

rithms. We find that the original constraint in [18] disallow-

ing singleton clusters unnecessarily prevents the algorithm

from moving through regions of the search space on the way

to better (higher fitness) solutions.

The newer affinity propagation algorithm of [15] is also

less sensitive to the order in which messages are updated.

The original algorithm passed messages with a sequen-

tial schedule (requiring an ordering of nodes), but the new

algorithm also works well using a less-arbitrary parallel

message-passing schedule; oscillations can be effectively

managed with moderate damping (see [15] for details).

In [18], affinity propagation was applied to several dis-

tinct problems in machine learning, including exon/gene de-

tection, character recognition and image segmentation. To

compare the proposed new affinity propagation algorithm

to the original version, we examined the task of clustering

patches taken from an image, which was described in the

original paper.

Briefly (see [18] for details) a tiling of 24 × 24
non-overlapping patches was extracted from the image

and translation-invariant similarities between patches were

computed by comparing smaller 16 × 16 windows within

each patch. The lowest squared error between windows

(over all possible translations) was chosen as a similarity

measure. Patches were clustered using affinity propaga-

tion and the resulting likelihood was compared with 1000
restarts of k-centers clustering (we use 100, 000 restarts),

garnering results ranking 3188th of 100, 000 for K = 6
clusters. We downloaded the similarities from the web site

reported in [18] and ran the original version of affinity prop-

agation and reproduced these results.

We ran the later version of affinity propagation from

[15] and compared it to 100, 000 restarts of k-centers clus-

tering (requiring roughly 1000 times the computation as

both affinity propagation algorithms), achieving better re-
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Figure 1. Performance (measured by ranking within 100, 000 runs

of k-centers clustering plus one run of each affinity propagation

algorithm) for various numbers of clusters on a patch clustering

task. A common value for the exemplar preferences was tuned

to produce K = {2, . . . , 12} clusters and the result was com-

pared to the that obtained from 100, 000 random initializations of

k-centers. In most cases, the new version of affinity propagation

finds a configuration at or near the best of the many k-centers ini-

tializations, while the older version performs comparatively worse.

For K = 3, the clustering task is trivial (search space of size(
64
3

)
= 41664, so k-centers clustering works well.

sults that rank in the top 300 of k-centers runs for the same

K = 6 setting. We believe the results would have been even

more favorable on a more difficult problem with a larger

search space, as the task of partitioning the 64 training cases

into 6 clusters only has
(
64
6

) ≈ 2.8 billion possibilities. For

instance, modifying the exemplar preference to output 9
clusters yields results ranked in the top 5 of 100, 000 (the

old version of affinity propagation gives rank 1447). Rank-

ings for varying K, the number of clusters, between 2 and

12 are shown in Figure 1.

4. Unsupervised Categorization of Olivetti
Face Images

In the next section, we develop a framework for catego-

rizing general images using scale-invariant keypoints (SIFT

features). Here, we study the more straight-forward prob-

lem of unsupervised categorization of face images extracted

from the Olivetti database. In [15], these images were ana-

lyzed using Euclidean distance and comparisons were made

with k-centers clustering in terms of squared error. Here,

we compare affinity propagation with several other meth-

ods and additionally study a non-metric similarity derived

from considering relative translations of the two images be-

ing compared. Importantly, instead of reporting squared er-

ror, we present results on unsupervised classification error,



which is more relevant to many vision applications.

The Olivetti face database consists of ten 64 × 64 grey-

scale images of each of 40 individuals, where each indi-

vidual appears with a range of in- and out-of-plane pose

variations. From each 64 × 64 image, we extracted a cen-

tered 50 × 50 region, so as to avoid pixel intensities in the

corners of the images, which often contain background. To

remove overall image brightness or darkness as a cue that

would make unsupervised categorization easy, we normal-

ized the pixel intensities in each image so that the mean was

zero and the variance was 0.1. To examine the effect of a

wider range in image variation for each individual, we con-

structed a second data set by extracting the images of 10
individuals and for each of the resulting 100 images, apply-

ing 3 in-plane rotations and 3 scalings, producing a data set

of 900 images.

When applying affinity propagation, we set the exemplar

preferences s(i, i) for all training cases equal to the same

common value and then applied the new affinity propaga-

tion algorithm. This value was varied to obtain different

numbers of categories and we report results for all values

that we tried. In general, the preferences were chosen to

span the range of input similarities, so that the number of

detected clusters ranged from small to large.

4.1. Performance on squared error

Using the 900 images including rotations and scales, we

set the similarity between image i and image k to the nega-

tive of the sum of squared pixel differences (squared error).

In addition to applying affinity propagation (which took 5

sec for each number of clusters), we applied 10, 000 runs

of k-centers clustering with different random initializations

(which took 116 sec for each number of clusters). For each

number of clusters, we then defined the baseline error to

be the 1st percentile of error found by the 10, 000 runs of

k-centers clustering. Fig. 2 shows the error relative to the

baseline achieved by affinity propagation versus the num-

ber of clusters, as well as the range of error values achieved

by the many runs of k-centers clustering. While the error

achieved by the best of 10, 000 runs of k-centers clustering

is comparable to that of affinity propagation for small num-

bers of categories, for most solutions affinity propagation

achieves significantly lower error.

In Fig. 2, for limited numbers of clusters, we also show

the error achieved by 1) the best of one million runs of

k-centers clustering (4 hours), 2) k-centers clustering ini-

tialized by placing centers uniformly along the first princi-

pal component of the data, 3) the best quantized output of

10 runs of the EM algorithm applied to isotropic mixtures

of Gaussians (240 sec), 4) hierarchical agglomerative clus-

tering using the similarities to pick the best new exemplar

at each agglomeration step (5 hours). Affinity propagation

uniformly achieves lower errors in much less time.
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Figure 2. A comparison of the errors achieved relative to the base-

line, for a variety of unsupervised image categorization methods

applied to images extracted from the Olivetti face database. Affin-

ity propagation achieves significantly lower error than other meth-

ods when the number of clusters is reasonably large.

4.2. Performance on unsupervised image classifica-
tion

In several vision tasks, such as image or video summa-

rization, labels are unavailable and the goal is to detect

meaningful image categories in an unsupervised fashion.

Even in supervised tasks, it can be helpful to first perform

unsupervised categorization of images or image parts so as

to reduce the dimensionality of the input and simplify su-

pervised learning. Here, we explore for the first time the

performance of affinity propagation in terms of classifica-

tion error.

In this paper, we take two approaches to measuring the

unsupervised classification error of the learned categories

based on the true categories. In the first approach, each

learned category is associated with the true category that ac-

counts for the largest number of training cases in the learned

category. In this case, the classification rate will approach

100% as the number of learned categories approaches the

number of training cases. So, we report classification rate

as a function of the number of learned categories. The sec-

ond approach is to determine, for each solution, the ‘rate of

true association’, which is the fraction of pairs of images

from the same true category that were correctly placed in

the same learned category, as well as the ‘rate of false asso-
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Figure 3. Performance on unsupervised classification error for the

Olivetti face data. The true association rate is plotted against

the false association rate for affinity propagation and the best of

10, 000 runs of k-centers clustering. Affinity propagation achieves

significantly higher true association rates.

ciation’, which is the fraction of pairs of images from differ-

ent true categories that were erroneously placed in the same

learned category. In this section, we use the latter approach.

Fig. 3 plots the true association rate against the false as-

sociation rate for affinity propagation (circles) and the best

of 10, 000 runs of k-centers clustering (pluses), on the data

set containing 400 images. Affinity propagation achieves a

true association rate that is roughly 70% higher than that of

k-centers clustering, for the same false association rate.

4.3. Performance using non-metric similarities

When comparing two face images, Euclidean distance

ignores the fact that certain facial features may appear in

different positions in the two images. In the next section,

we describe a general-purpose non-metric similarity func-

tion based on SIFT features, but here, we study a non-metric

similarity function that is tailored toward matching face im-

ages and show that by making the similarity non-metric, we

can achieve higher classification rates.

Denoting the vector of pixel intensities for images i and

k by xi and xk, the previous two subsections used the fol-

lowing definition of similarity: s(i, k) = −||xi − xk||2.

Here, we compute the similarity of image i to image k by

extracting a sub-image from the center of image i and find-

ing its best match to all sub-images (not necessarily cen-

tered) in image k. Let T denote an operator that cuts a win-

dow of a fixed size out of the image it is operating on. There

will be many operators corresponding to different possible

positions from which the window may be extracted. Let T0
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Figure 4. Unsupervised image categorization using non-metric

similarities. (a) The similarity of an image (upper left) to each

other images is determined by finding the best match (in Euclidean

distance) between a window centered in the first image and all

possible windows of the same size in the second image. (b) The

true association rate is plotted against the false association rate for

affinity propagation and the best of 1000 runs of k-centers cluster-

ing, using the non-metric similarity function. Also shown is the

plot for affinity propagation applied using the Euclidean similarity

function described previously. Affinity propagation applied using

the non-metric similarity function achieves the highest classifica-

tion rate.

denote the operator that cuts the window out of the center

of the image. The similarity that we use in this section is

given by

s(i, k) = −min
T

||T0xi − Txk||2.

We use the original Olivetti images of size 64 × 64 with

a window size of 50 × 50. Fig. 4a shows an example of

an image xi (upper left) and the windows that achieve the

minimum in the above expression, for the other 9 images in

the same true category.

Fig. 4b plots the rate of true association against the rate

of false association for affinity propagation applied to this



Figure 5. A sample category of images learned by affinity propagation. The central “Snoopy” image is the exemplar; the 17 other category

members are shown with a stream of SIFT features matching the exemplar leading up to them. The thickness of the red “swoop” around

the perimeter indicates the relevance of each image to this category as measured by the rank of its normalized similarity. Notice that the

shared SIFT features for the three (weakly) misclassified chair images contain pieces that look similar to Snoopy’s basket.

non-metric similarity function (circles). Included for com-

parison is the plot obtained using the best of 1000 runs of k-

centers clustering applied to the same non-metric similarity

function (pluses). Also included is the plot obtained using

the Euclidean similarities described in the previous section

(boxes). When comparing with Fig. 3, note the different

x-axis scale. The non-metric similarity function facilitates

a significant increase in the classification rate and affinity

propagation achieves higher classification rates, compared

to k-centers clustering.

5. Unsupervised Categorization of Caltech101
Images Using SIFT Features

The Caltech101 image dataset [19] contains 8677 pic-

tures of objects, each with approximately 0.1 megapixel



resolution, belonging to 101 categories. We extract features

believed to be important to human perception from a sub-

set of images in the dataset and cluster the images based on

this information, providing results for affinity propagation

and another algorithm for comparison. Previous work [20],

[21] utilizing SIFT features for image matching and cate-

gory learning has focussed on the smaller Caltech4 image

database or used supervised learning [21].

Input images are first subjected to the Scale-invariant

feature transform (SIFT) [2], an algorithm that identifies lo-

cal appearance features invariant to scale and rotation. Each

feature is described by a 128-dimensional vector that has

been shown to be quite useful for matching images. Lowe

describes an algorithm used for matching the features ex-

tracted from one image with those from another: for each

local feature from the first image, the nearest and second-

nearest features are found in the second image (comparing

descriptors by Euclidean distance). If the distance ratio be-

tween the nearest and second-nearest neighbors is greater

than 0.8, the match is considered significant. Note that this

comparison is asymmetric i.e. comparing image i to image

j differs from comparing image j to image i.
We denote the number of significant feature matches

found comparing image i with image k (with an upper

threshold of 100) as m(i, k), and define the similarity

s(i, k) between image i and image k to be the number of

significant feature matches (subject to the threshold), nor-

malized by subtracting means across both dimensions:

s(i, k) = m(i, k) − 1
n

∑n

j=1
m(i, j) − 1

n

∑n

j=1
m(j, k)

Note that this similarity function is non-metric due to s(i, k)
not being equal to s(k, i).

We selected 20 of the 101 classes that represented a wide

range of objects; they are as follows (with numbers in paren-

thesis representing the number of images in each class):

faces (435), leopards (200), motorbikes (798), binocular

(33), brain (98), camera (50), car side (123), dollar bill

(52), ferry (67), garfield (34), hedgehog (54), pagoda (47),

rhino (59), snoopy (35), stapler (45), stop sign (64), wa-

ter lilly (37), windsor chair (56), wrench (39), yin yang

(60). Some classes contained a very large number of images

(e.g. faces, leopards, motorbikes, car side), so for those

classes we used only the first 100 images in each, yielding

a total dataset of 1230 images.

We computed s(i, k) similarity values between all pos-

sible image pairings and ran affinity propagation and k-

centers clustering (best of 100 restarts) on the resulting

set of similarities. Fig. 5 shows an example of a category

learned by affinity propagation.

We report classification rates as a function of K, the

number of clusters, in Fig. 6. (See section 4.2 for a de-

scription of how unsupervised classification rates are com-

puted.) The number of exemplars (clusters) is varied in
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Figure 6. Performance of unsupervised classification on Cal-

tech101 images. The correct classification rate is plotted against

the number of categories learned (clusters). Affinity propagation

achieves consistently better classification rates than the best of 100

k-centers runs for a dataset of 20 image classes. Affinity propaga-

tion’s classification rate is also shown for a different subset of the

data containing 7 image classes.

affinity propagation by adjusting the preference i.e. s(i, i)
over a range of values. For almost all values of K, affin-

ity propagation outperforms k-centers clustering, usually

achieving correct classification rates around 7% higher than

k-centers clustering. Both setups (affinity propagation and

100 k-centers runs) take roughly the same amount of com-

putation time, 1–2 minutes depending on the number of ex-

emplars identified.

We also ran affinity propagation on a smaller 7-category

subset of the data (faces, motorbikes, dollar bill, garfield,

snoopy, stop sign, windsor chair) and achieved correct clas-

sification rates in the 60%-70% range, as shown.

6. Conclusions

Many vision tasks such as categorization can benefit

from the identification of a set of exemplars in images or

image fragments. Most methods, including the k-centers

clustering technique, keep track of a fixed set of K exem-

plars while iteratively refining this set. The affinity prop-

agation algorithm [18], [15] takes a conceptually novel

approach by simultaneously considering all training cases

as candidate exemplars and using a probabilistic message-

passing procedure to gradually identify a good set of ex-

emplars. Our objectives in this paper were to demonstrate

how affinity propagation can be used to achieve high classi-

fication rates for unsupervised image categorization, to de-



velop non-metric similarity functions based on translation-

invariance and SIFT features, and to compare the two pub-

lished versions of the algorithm.

Using the Olivetti face database, we compared affin-

ity propagation to k-centers clustering and found that even

when the latter algorithm was re-run tens of thousands to

millions of times, affinity propagation achieved higher fit-

ness values (lower reconstruction error) and higher true pos-

itive classification rates. We also find that using a non-

metric similarity function that accounts for image transla-

tion significantly increases classification rates.

In addition, we perform unsupervised categorization on

images from the Caltech101 dataset and again demonstrate

that, with a non-metric similarity function based on the

number of matching SIFT features in two images, affinity

propagation is able to identify meaningful categories and

achieves competitive classification rates, which are higher

than those found using k-centers clustering.
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