AFFINITY PROPAGATION:
CLUSTERING DATA BY PASSING MESSAGES

Delbert Dueck

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Electrical & Computer Engineering
University of Toronto

Copyright(© 2009 by Delbert Dueck

Abstract

AFFINITY PROPAGATION: CLUSTERING DATA BY PASSING MESSAGES

Delbert Dueck
Doctor of Philosophy
Graduate Department of Electrical & Computer Engineering
University of Toronto

2009

Clustering data by identifying a subset of representative examples is important for detect-
ing patterns in data and in processing sensory signals. Such “exemplars” can be found by
randomly choosing an initial subset of data points as exemplars and then iteratively refining it,
but this works well only if that initial choice is close to a good solution. This thesis describes a
method called “affinity propagation” that simultaneously considers all data points as potential
exemplars, exchanging real-valued messages between data points until a high-quality set of
exemplars and corresponding clusters gradually emerges.

Affinity propagation takes as input a set of pairwise similarities between data points and
finds clusters on the basis of maximizing the total similarity between data points and their ex-
emplars. Similarity can be simply defined as negative squared Euclidean distance for com-
patibility with other algorithms, or it can incorporate richer domain-specific moaets, (
translation-invariant distances for comparing images). Affinity propagation’s computational
and memory requirements scale linearly with the number of similarities input; for non-sparse
problems where all possible similarities are computed, these requirements scale quadratically
with the number of data points. Affinity propagation is demonstrated on several applications
from areas such as computer vision and bioinformatics, and it typically finds better clustering

solutions than other methods in less time.

Acknowledgements

| would first like to acknowledge and thank my wife, Candice, for her support and encour-
agement through my educational journey. I'd also like to thank my family for their backing,
and more practically, my father for spending many hours carefully proofreading this thesis.

| have had many valuable experiences at the University of Toronto during my graduate
studies, so | would like to acknowledge some of the people who helped me along. | would
like to thank my Ph.D. supervisor, Brendan Frey, for guiding me through graduate studies and
helpful discussions that spawned much of my research — most notably, affinity propagation.
| would also like to thank the members of my Doctoral Supervisory Committee from both the
Electrical/Computer Engineering and Computer Science departments, namely Frank Kschis-
chang, Sam Roweis, Geoff Hinton, and Wei Yu. I've appreciated the insights and ideas they
shared with me which have no doubt led to a better finished product. | would also like to thank
John Winn of Microsoft Research (Cambridge, UK) who agreed to be my external examiner in
spite of facing many other commitments at the time.

| would like to thank my fellow members of Brendan Frey’s Probabilistic and Statistical In-
ference group for being a valuable sounding board for ideas, specifically Ofer Shai for reading
and marking up early drafts of this thesis. Finally, | would like to thank the funding agencies
that made this research possible: the Natural Sciences and Engineering Council of Canada and

the Government of Ontario for their Ontario Graduate Scholarships in Science and Technology.

Contents

1 Introduction

2.5 The Facility L ocation Problem

2.6 Factor Graphs and the Sum-Product Algodthm

2.6.1 FactorGrapns

3__Affinity Propagation 31
3.1 Sum-Product Affinity Propagation 33
3.2 Max-Product Affinity Propagation 38
3.2.1 Max-Product vs. Sum-Product Affinity Propagation. 42
3.2.2 Dynamics of Affinity Propagation 42

5.2 _Affinity Propagation and Sparsity: Exon Detegtion

5.3 Treatment Portfolio Design via Affinity Propagation

3.3 Alternate Factor Graph for Affinity Propaga.]ion 49

QA_QLhﬁLalggﬂthus_tQLduiLeﬂnnga_b_eﬂ_eLumuathion 53
3.4.1 Affinity propagation with added non-empty cluster constraint 53
3.4.2 Alternate factor graphV binary nodes 54
3.4.3 Alternate factor grapif’ N-arynodes 56
3.4.4 Alternate factor graph: ternarynades 58
| i fini : 60

4.1 Olivetti faces: Clusteringa smalldataset 60
4.1.1 Exactclusteringsolutians L. 61
4.1.2 Performance of Affinity Propagallon 63
4.1.3 Performance of other clustering techniques 65
4.1.4 Affinity Propagation and Mixture of Gaussians mddels 81

4.2 Affinity Propagation and Large Datasets 83
42,1 Mushroomdata\(=8124) 85
4.2.2 USPSigits/ =11000)o i 91
4.2.3 NetflixmoviestV=17770) o v v v v i 97

licat { Affini : 107

5.1 Affinity Propagation and Computer Vision: Image categorization. 107

5.1.1 Augmenting the Olivettidataset 108

5.3.2 Application to HIV vaccine cocktaildesign 120
6 Conclusions and Future Direction 125
The Bethe free energy approximation 129
Bibliography! 131

Vi

List of Figures

1.1 Unconventional datasets for clustering .

1.2 Greedyk-medoids clustering algorithm .

1.3 Affinity propagation clustering algoritihhm

2.1 Mixture of three Gaussians dat

2.2 _The discrete facility location probl

2.3 Sample factor graph

3.8 Alternate factor graph” N-ary nodes
3.9

Alternate factor graph: ternary nodes

4.1 Olivetti faces datasefM = 400)

4.2 Olivetti faces: exact solution times by CP

4.3 Net similarity and data similarity

Vil

4.8 Olivetti facesk-medoids clustering 74

4.9 Olivetti facesk-medoids clustering withk -log(k) heuristic 74
4.10 Olivetti facesk-means clustering (by partitions) 75
4.11 Olivetti facesk-means clustering with-log(k) heuristic (by partitions) 75
lvetti k- ' S) i e 76
4.13 Olivetti facesk-means clustering with-log(k) heuristic (by means) 76
4.14 Olivetti faces: EM for mixture of diagonal Gaussians (by partitions) 77
4.15 Olivetti faces: EM for mixture of diagonal Gaussians (by means) 77
Wﬂmjmmmmu&mmwm]ons) 78
4.17 Olivetti faces: EM for mixture of isotropic Gaussians (by means) 78

4.20 Olivetti faces: Convex clustering (Lashkari-Golland) 80
4.21 Olivetti faces: Markov clustering algorithm (MCL) 80
4.22 Olivetti faces: Spectfral clustening 81
4.23 Parametric clustering and Olivettifdces 82
4.24 MushroomsdataseW(=8124) o v i i 86
4.25 Mushrooms: 3D performanceplot 87
4.26 _Mushrooms: Performance comparison after minutes of computation 88
4.27 Mushrooms: Performance comparison after hours of computation 89
4.28 Mushrooms: Performance comparison after days of computation 90

4,29 Mushrooms: Affinity propagation and the

4.31 USPS digits: Performance comparison after minutes of computation 94

4.32 USPS digits: Performance comparison after hours of computation 95
4.33 USPS digits: Performance comparison after days of computation 96
4.34 USPS: Affinity propa ristic 98
4.35 Netflixdataset =17770) o o o e e 99

4.38 Netflix movies: Performance comparison after days of computation 103

4.39 Netflix: Affinity propagation and the vertex substitution heuristic 105
4.40 Netflix: Memory requirememts oo 106
5.1 Unsupervised classification performance on Olivettitaces 109
5.2 Unsupervised classification performance using non-metric similarities 112
imilarities for detecting putative exons 113

Protein fragments and recognized epitopes of HIV-infected patients 122

Caravaggio’s/ocazione di san Mattg@ he Calling of St. Matthew, [20]) is an artistic depiction
of identifying exemplars based on the direction of gestures, gazes, and even lighting in the
painting. This interpretation was suggested in [77].

Chapter 1

Introduction

Clustering or discovering meaningful partitions of data based on a measure of similarity is
a critical step in scientific data analysis and a fundamental problem in computer science. A
common approach within the machine learning community involves unsupervised learning of
parameters that describe clusteesg(the location and scale/shape of the cluster) and par-
titioning the data by associating every point or region with one or more clusters. In many
situations, data is better and more easily characterized by a measure of pairwise similarities
rather than defaulting to negative squared Euclidean distance, and in this case, clusters can in-
stead be represented by an “exemplar” data point rather than domain-specific parameters. This
thesis introduces a novel algorithm, affinity propagation, that uses belief propagation methods

to achieve outstanding results for exemplar-based clustering.

Identifying exemplars is advantageous because user-specified similarities offer a large amount
of flexibility and allow the clustering algorithm to be decoupled from the details of how similar-
ities between data points are computed. Unlike many algorithms that operate in vector space,
there is no need for similarity to be based on squared Euclidean distance, or for the data space
to be metric or continuous, or even ordinal; see Figure 1.1 for examples. Additionally, there
is potential for significant improvement on existing algorithms, both in terms of solution time

and solution quality.

CHAPTER 1. INTRODUCTION

EXEMPLAR-BASED
CLUSTERING

Figure 1.1: Several datasets are shown for which negativareduEuclidean distance would

be an inappropriate measure of similarity. In (A), faces are clustered using translation-invariant
comparisons (see Sectibn 5]1.3 for details). In (B), North American cities are clustered with
similarity defined as flight time, which depends on airline schedules, headwinds, earth curva-
ture, etc. The dataset in (C) appears to contain two unconventional clusters that are shaped
like two-dimensional “plus-signs”. There are many realistic physical situations from which
data such as this could have arisergy. where a subset of sensors (in this case, one of two)
are unreliable for each measurement. Conventional clustering algorithms would need special
tuning or re-deriving to accommodate such a model; exemplar-based clustering algorithms that
rely on pairwise similarities could just use a slightly different definition of similarity such as a
Gaussian likelihood with two possible variances switched in for each dimension. The result of

such clustering is shown in (D).

CHAPTER 1. INTRODUCTION 3

The task of exemplar-based clustering is to identify a subset aVthata points as exem-
plars and assign every other data point to one of those exemplars. The only inputs are a set
of real-valued pairwise similarities between data poiftg;, k£)}, and the number of exem-
plars to find <) or a real-valued exemplar cost to balance against similarities. A simple and
fast algorithm for finding clustering solutions is themedoids algorithm [70], which begins
by randomly selecting a set éf data points as initial exemplars and then refines these in al-
ternating steps as shown in Figlre]1.2. The algorithm monotonically maximizes the sum of
similarities between data points and exemplars but considers only a fixed set of exemplars, and
thus is quite sensitive to the initial selection of exemplars. For this reasmedoids cluster-
ing needs to be run with many different random initializations—it works well only when the
number of clusters is small and chances are good that at least one restart lies close to a good

clustering solution.

In contrast tok-medoids, affinity propagation simultaneously considers all data points as
potential exemplars. By viewing each data point in a network, it recursively transmits real-
valued messages along edges of the network until a good set of exemplars and corresponding
clusters emerge; see Figure]1.3 for an illustration of these dynamics. Affinity propagation
sends two types of message between data points: responsibilities are sent from data points to
candidate exemplars and reflect the evidence of how well-suited the message-receiving point is
to serve as an exemplar for the sending point. Availabilities are sent from candidate exemplars
to data points and reflect the evidence for how appropriate it would be for the message-sending
point to be the exemplar for the message-receiving point (see Figure 1.3). All data points can
be considered to be either cluster members or candidate exemplars, depending on whether they

are sending or receiving availability or responsibility messages.

Affinity propagation is outlined in the box below, with scalar responsibility and availability
message updates shown in equatfon|(1.1). At any time, a current estimate of cluster assign-

ments can be obtained by adding responsibility and availability messages together.

CHAPTER 1. INTRODUCTION 4

(A) (B) (©)
'] . .
L] T T
- L] . . ."
® /e . e
° o - \\ \ .
. . ° . .
* 4
Randomly®thoose .
initial exemplar, ® _
(data centers) e o Assigndata e /
. . pointsto @
|n|t|a| 2D data Set ™ . nearest centers ¢ .
(D) (E) (F)
4
L @ *~— g
. b niiil = r . . B » . o
.‘ . o/ : \ ., . o/ - ' o/ =
. - e, . II'. ;,:}'
\'. ~ ‘» @ -
For each cluster, ' |) ' Clunvergence: I
pick best new, . .. A5?|gn data s // Final set of P vy
center . 7 pointsto ¢ 2 exemplars ¢ 7/
._-' L] nearest centers / . (centers) v .

Figure 1.2: Thek-medoids clustering algorithm is a simple algorithm that finds a greedy so-
lution. Given the initial toy dataset in (A), the algorithm randomly chooses an initial set of
exemplars (B), and assigns the remaining non-exemplar data points to the “closest” exemplar
based on similarity (C). New exemplars are found for each cluster (D) to minimize the total sum
of intra-cluster similarities, and the process is repeated (E) until convergence to the solution in

(F).

CHAPTER 1.

INTRODUCTION

(A)
L] L] 2 9_
£ * * et i
%) .3 ® » s e wit o e, o
= " ® (] & * L) @ s _-_ (el o & :_ = - @ : @
b @ 8 0 & > & = a
INITIALIZATION ITERATION 10 ITERATION 20 ITERATION 50
(CONVERGENCE)
(B) (©)
candidate exemplar k data point i supporting
data point 7/
) competing candidate

exem@%r K alik)

data point J

(i k)
O T

candidate’ exemplar k

Figure 1.3: The affinity propagation clustering algorithniilmies messages that are exchanged
between data points indicating the ‘affinity’ each point has for another to act as its exemplar.
The toy exemplar above (A) shows a solution gradually emerging, with uncertainty in the tenth
iteration (shown as faded blue messages) being resolved to a good clustering solution shown at
the final iteration. Two messages are passed between data points: (B) “responsibjlities”

are sent from data pointo candidate exempldt, and (C) “availabilities’a(i, k) are sent from
candidate exemplarto data point.

CHAPTER 1. INTRODUCTION 6

AFFINITY PROPAGATION

indicates how well-suited data poikts as an exerﬁﬁlar for data point
e.g,s(i, k) = — ||x; — xx||*, i#k (squared Euclidean distance)
For each data point, a real numbes(k, k) indicating thea priori preference
(negative cost of adding a cluster) that it be chosen as an exemplar.
e.g.s(k,k)=p Vke{l,...,N} (global preference)

INITIALIZATION : set availabilities to zero7i, k: a(i, k) =0.

REPEAT: responsibility and availability updates until convergence
Vi k: r(i, k) = s(i, k) — hax [s(i, k") + a(i, k)]
. .
Vi k: alik) = > inis; max[0, (i k)], for k=i (1.1)
, : min [0, P (ky k)3 iy max[O, 7 (7, /{;)]}, for k1

OuTPUT: assignmentg = (¢4, ..., ¢y), Whereé; = argmax, [a(i, k)+7r(i, k)]
and¢; indexes the cluster’'s exemplar to which paig assigned. Specifically, if
point: is in a cluster with poinkt serving as the exemplar, thép=k andé, =k.
Note: one run ok-medoids may be needed to resolve contradictory solutions.

Affinity propagation achieves outstanding results by employing “loopy belief propaga-
tion” techniques (see Sectibn P.6) that have previously been used to approach Shannon’s limit
in error-correcting decoding [5] and solve random satisfiability problems with an order-of-
magnitude increase in size [76]. The objective function it maximizes is the net similgyity,
which is the sum of the similarities of non-exemplar data points to their exemplars plus the sum
of exemplar preferences (negative costs of adding exemplars).

The affinity propagation algorithm is simple to implement and customize; it is also compu-
tationally efficient, scaling linearly in the number of similarities or quadratically in the number
of data points if all possible pairwise similarities are used. Computing pairwise similarities typ-
ically takes more computation than does clustering them; the example described in[Settion 5.2
involves clustering 75,066 data points with roughly 15,000,000 similarities—this requires sev-
eral minutes of computation on a typical notebook computer (as of 2008).

A background to parametric approaches to clustering, the facility location problem, and

CHAPTER 1. INTRODUCTION 7

belief propagation algorithms is given in Chagter 2. This leads into a derivation and discussion
of the affinity propagation algorithm in Chapiér 3 followed by thorough benchmarking of the
methods in Chaptdrl 4. Affinity propagation is applicable to a wide variety of applications
spanning most areas of science and engineering. This thesis explores several application areas
within computer vision and bioinformatics in Chapfiér 5. For interested readers, all software

and data is available at http://www.psi.toronto.edu/affinitypropagation

Chapter 2

Background

Clustering is the unsupervised learning task of organizing or partitioning data into meaningful
groupings. For data embedded in a vector space, a common way to accomplish this is to view
clusters as ‘clumps’ of data that are a certain [Euclidean] distance away from a center—in two
dimensions, these ‘clumps’ would be circular or elliptical. Though not necessarily the most
appropriate way to cluster (see Figlrel 1.1 for a counter-example), clustering such data based
on squared Euclidean distance is widespread in the machine learning literature and provides an

easy path to introducing affinity propagation.

2.1 k-means clustering

GivenN column-vector data points;, x», . . ., xy Where eack; cR”, the clustering task is to
assign each of them to one Afclasses labelet 2, . . ., K. These assignments are denoted by
latent class variables, zs, . .., zy Wwhere each; € {1,2, ..., K'}. With thek-means clustering
algorithm [70], each class is characterized by a cluster cemterhich can be interpreted as
the mean vector for a unit-covariance spherical Gaussiantfe covariance matrix is given

by the identity matrix]). Given that data point; belongs to class, its distribution is given

CHAPTER 2. BACKGROUND 9

by:

P(xilzi=k, py) = N(xi; ., Ip) = (;W)D €xp (—%(Xz —) (xi — Hk))

Class labelqz;}¥ , are hidden (latent) variables so overall the data is distributed according to
a mixture of spherical Gaussians distribution,
= 1

P(x;) :ZP(Xi|Zi:k)'P(Zi=k) :ZN(Xi;Hk>ID) K

k=1 k=1

as illustrated in Figure2.1(A). Note that thepriori probabilities of data point class assign-

ments are assumed to be uniform (for now8, Vk: P(z;=k)=.

An appropriate class assignment for tffedata point involves maximizing the posterior
probability P(z; = k|x;, u,) which by Bayes’ rule is equivalent to maximizing(x;|z; =
k, w,.)P(z;=k)/P(x;) with respect td:. As shown aboveP(x;) does not depend on the class

assignments$z; }, so it is appropriate to write in this case:

1
argmax P(z;=k|x;, u,) = argmax —-P(x;|z;=Fk, ;)
ke{1,2,...K} ke{1,2,....K}

and thus each class label is assigned as follows:

z; «— argmax N (x;; g, Ip) = argmin ||x; — || (2.1)
ke{l,..,K} ke{l,.. K}

This assignment, however, depends on the choiceigfpfi_,, and for computational rea-
sons it is typically optimized separately while holding value$mf} constant. The likelihood
of the entire dataset given all class assignment¥igz, u) = ﬁ N (x; p, Ip) so the Gaus-
sian parameters are optimized by maximizing this Iikelihlgcl)d (or rather, the log-likelihood,

which is equivalent). Setting partial derivativeslog P(x|z, u) with respect to eaclu, to

CHAPTER 2. BACKGROUND 10

.@ MpoLy)
@ M, L)

(B) ©) A

N
) i

\4

Figure 2.1: Datasets fit tb-means (A) and EM for mixture of Gaussians (C) are shown in

two dimensions. A mixture of three spherical Gaussians are shown in (A) with mpeaps,

and u,; these could have been fit lymeans §2.1). A different mixture of three Gaussians
distribution more suited to the EM algorithriX3) is shown in (B); the contour plot is for the
distribution: P(x) = 327 _, N'(x; u;,, Zx). The plot displays the orientation of the Gaussians

in (C), where the first Gaussian is shown in red and parameterizégy:,; }. The second
Gaussian is shown in blue and parameterized iy, 3, }—this covariance is diagonal as the
Gaussian is axis-aligned. The third Gaussian is shown in green and parametefzeddy},

where the Gaussian is isotropic/spherical (same variance in all dimensions) and the covariance
matrix is thus a scalar multiple of the identity matrix.

CHAPTER 2. BACKGROUND 11

zero leads to the following update equation:

0= 5o o0 log N (x5 p., 1) o 3000 [0 = k(s — pay)

(2.2)
sop = X, =i [, [si =

where[-] denotes Iverson notation witlirue] = 1 and [false] = 0. Essentially, the update
equation sets eagh, to be the vector mean of all data points in #iclass, hence the name

k-means.

K-MEANS CLUSTERING ALGORITHM
INPUT: {x;}¥, (data),K (number of clusters)
INITIALIZE : Set eachu, to a random data point
REPEAT UNTIL CONVERGENCE

Vi: z; « argmin ||x; — p.|| = argmax N (x;; ., Ip)
ke{l,..,K} ke{l,.. K} (2_3)

Wk mean {xi},, = Y0 [i=kxi/ YL (=]

OuTPUT: {z}¥, (cluster assignments)u, <, (cluster centers)

2.2 k-medians clustering

A variant of k-means in occasional use fismedians clustering, wherein the median is used

instead of the mean when updating the cluster center parameters. This algorithm is summarized

in equation[(2.4).

K-MEDIANS CLUSTERING ALGORITHM
INPUT: {x;}Y, (data),K (number of clusters)
INITIALIZE : set eachm,, to a random data point
REPEAT UNTIL CONVERGENCE

z; «— argmin ||x; — my||
ke{l,... K} (2.4)

my « median {x;}, _,

OuTPUT: {z}¥, (cluster assignments)m,, } X, (cluster centers)

CHAPTER 2. BACKGROUND 12

2.3 EM algorithm for Mixtures of Gaussians

The k-means algorithm makes all-or-nothing assignments of data points to clusters, and these
hard decisions can often lead to poor solutions corresponding to local miniféxia,).

A common refinement involves learning the covariances (instead of fixing tleenvrk :

Y. = Ip; see Figuré2]1(B—C)), learning mixing weights on class priors (instead of assuming
Vk: m = %), and to account for cluster assignment uncertainty by using the Expectation-
Maximization (EM) algorithm [23] and representing it with a simple distribut@fz) =

T, T, ql[zl‘k] Cluster assignments can be determined by minimizing the Kullback-Leibler

divergence [18] betweeq(z) andP(z|x), D (Q(z) || P(z[x)) = [, Q(z)-log 7. Finding a
workable expression for the denominatB(z|x) = P(x|z)P(z)/P(x), is not usually possible

so the following is minimized instead:

constant w.r.t. Q(z)

. Q) ——= |_ Q(z)
ar%gun /Q(z)-log P(Z|X)—logP(x) ar%gnn /Q x.2) (2.5)

The joint distribution become®(x,z) = P(x|z)P(z) = Hi]ilN(Xi;Mzi, 3.,) m.,, and the

expression to minimize—referred to as the free enefgysbecomes:

N
JQ(=z) logp = [H H g (Z E[v=k']-log g — > log 7., N (xir; 1., E))

z 1=1 k=1 1k'= =1

Zizl Ekzl ik - 10g qit, — ElNzl Eff:l ik - log TN (%55 pay,, L)

After adding the constrainti: >+ | ¢;, = 1 to ensure(z) is a valid distribution, we can

optimize(z) by setting its partial derivative (plus the Lagrange constraint) to zero:

O[F+x: (1= 4, ain)]
ik,

0= =1+log gsr. —log MmN (X3 py, Br) — N = Qi = TN (X4 p, Zp) €71

TN (X315, 5k)
Ef,:l T N (X5 s,)

SOk

CHAPTER 2. BACKGROUND 13

Mean and covariance parameters for the Gaussians can be found similarly:

O|F+A(1-K 7,
[7+A(aﬂ%k_l K] — _L Ele Gk — N\ = T, = _% 25:1 ik
= oun Ez 1 Ek 1 9ik log WkN(Xw Mg, Ek) OCEZ 1 qm<xz Nk)
0= ﬁkzizl Zk:l Gir log TN (x5 py,, i) OCZizl Qikzk +Zi:1 Qi (X5 — g,) (X5 — gy,) T

N N oox N oo (x— T
SO T «— M’ l’l’k w’ and El;r — zz:l qu(XLN /"’k.)(xl IJ‘k)
Ei:l ik Ei:1 ik

0=

where{m; } X, is constrained to be a valid probability distribution through Lagrange multiplier
A, which enforce$™ 1 | m, = 1.

For high-dimensional input data, learning the full covariance mzﬁ)r,jﬁnvolves@
scalar parameters, which can be cumbersome and potentially be a cause of overfitting. For this
reason the Gaussians are often assumed to have diagonal covariance matrices (in which case
the off-diagonal elements df, are zeroed during updates) or even isotropic covariahces.

Class assignments can be easily read frongikdistributioni.e. Vi : z; «— argmax ¢;.
k

EM ALGORITHM FOR A MIXTURE OF GAUSSIANS

INPUT: {x;}¥, (data),K (number of clusters)

INITIALIZE : set{yu,} to random data points/: 1 < + and X «—var({x;})
REPEAT UNTIL CONVERGENCE

Vi, k: gy — — 5
ik Zk/ Tt N (X35 1430, 34,1 (26)
SN g SN qixi T, SN qie(ei—py) (xi—py) |
«— ¢ ==L 7 —
Vk: m, N Mk SN an Ek SN qir

OUTPUT: {z;«argmax ¢}, (assignments)u,, 3; £ | (Gaussians)
ke{l,...,K}

Another item of interest is that setting the covariance matricéy;te- -1, wheree — 0,

polarizes the)-distribution (nax @(z) — 1) to reflect hard decisions and reduces the EM

update equations tb-means.

in which casez;, — Ip - T o "[()"i “k()z k(’“ :) whereD is the dimension of eack;.
=1

CHAPTER 2. BACKGROUND 14

2.3.1 Heuristics for clustering

The clustering algorithms described previously monotonically increase objective functions (via
coordinate ascent) and are thus prone to land in local minima. Various heuristics have been

devised that assist in overcoming this.

Furthest-first traversal

Parametric clustering algorithms are sensitive to the initial set of cluster ceptérsso a
common initialization that often lies near a good solution (see [49] for theory) is to construct
an initial set of centers with a furthest-first traversal. Specifically, the ceuﬁ’éris a ran-

dom data pointk;,, and subsequent centenss,io), are set to the “furthest” data point from
{9 1l %} where distance is between a point and set of centers is defined as:

0
X; — I’I’Ig’)

. 0 (0 0 .
distance [xi, {,A 2;15 2 e M;(@_)l}] = k’e{lrgln 1y)

Random restarts

Another effective and commonly-used tactic to counteract sensitivity to the initialization of an
exemplar set is to re-run clustering with many different initializations or random restarts. The

final result can then be chosen as the restart achieving the best optimization.

Split-and-Merge

During clustering, centers can occasionally become poorly-dispersed in comparison to the data,
with many centers describing a few tightly-bunched data points and relatively few centers de-
scribing more-dispersed data. In order for centers to migrate evenly to the proper regions, it
often entails them traveling through low-likelihood intermediate solutions that will not occur
due to the update equations monotonically optimizing their objective. This can be addressed by
introducing a heuristic that merges cluster pa@g{ where centers occupy roughly the same

space, and combining their data into one cluster does not dramatically decrease the likelihood)

CHAPTER 2. BACKGROUND 15

or splits clusters€.g, the center describing data with the lowest probability). The specifics of

split-and-merge criteria are described in [98].

k-log(k) heuristic

Dasguptaet al. show in [21, 22] for high-dimensional Gaussians (where dimengios-
In K) that the EM algorithm for a mixture of Gaussians can avoid many poor local minima by
initializing the algorithm withO(K In K') Gaussians and then pruning this backifausing

heuristics. They describe a two-round variant of the EM algorithm which is summarized here:

e Pick L data points (wheré = O(K In K)) from {x,} and use them as the initial centers,
(). . Initialize covariance matrices W : £\ = 15 min,; || p; — g |

for isotropic/spherical Gaussians.

Run one iteration of the EM algorithm to estimdie’") =" }-_ andvi: {q!))}£_,.

Automatically prune away clusters whose mixing Weig@gll qir, fall belowi + %

Prune away any further surplus clusters by seleclingeans from the remaining means

via a furthest-first traversal.

Run an additional EM update to obtain final estimates{fef’}, {=\”} and{q./’}.

A more thorough treatment of this heuristic can be found in [21].

2.4 Exemplar-based clustering and thé&-medoids algorithm

The clustering methods in the previous section were based on assigning data to clusters char-
acterized by location and shape parameters such as means, variances, and even medians. The
k-medians clustering algorithm shown in equation](2.7) provides a natural segue to an alterna-
tive cluster representation—by actual data points calenplarsFor high-dimensional data,

it is slightly more efficient to store a pointer to a data point, rather than the full cluster data

CHAPTER 2. BACKGROUND 16

median,m;. This changes the-medians update equations4p«— argmin ||x; — x,,, || and
ke{l,...K}

My %argmikn Dot =i X = Xal|-
If thé z, andm, updates are iterated, there are numerous needlessly repeated distance
computations in both steps—these could be efficiently pre-computed as {1,..., N} :
d(i, j) = ||x;—x;]|| or equivalently, similaritiess(i, j) = —d(i, j). To complete the transition,
a final notation switch is storing the index of each data point’s exemplar i-any variable
cii ;€ KCA{1,..., N}, instead of storing & -ary index to a cluster number,e {1, ..., K}.
Here, the set of exemplargq,, valid assignments fot;) is £ C {1,..., N}, indicated by

Vk €K, ¢ =k) and the set of non-exemplarskis= {1, ..., N}\K. Thek-medoids algorithm

is summarized below in equatidn (P.7).

K-MEDOIDS CLUSTERING ALGORITHM

INPUT: {S(ivj)}i,je{l,...,zv} (data similarities) /< (number of clusters)
INITIALIZE : setK to a random subset dfl, ..., N} where|K| = K.
REPEAT UNTIL CONVERGENCE

Vi¢ K: ¢; « argmax s(i, k) and V€ KC: ¢ «— k
kek
N
VEeK: k« argmax Y. s(i,j)

jicj=k i=1
T ci=k but i#j

2.7)

OuTPUT: {¢;} ¥, (cluster assignmentsf; (exemplars)

The k-medoids algorithm [8] greedily maximizes a quantity referred to as the data similar-
ity, Sqata = Ziez s(i,¢;). There is no longer any reason for enforcing similarity to be defined
ass(i,j) = —||xi—x;||; for example, with expression data in bioinformatics it is often more
convenient to use(i, j) = x, x;. There is no need for similarities to form a valid metric:
symmetry is optionals(i, j) # s(j,)), as is the triangle inequality (i, k) £ s(, j) +s(j, k)).

A more general objective function, henceforth referred to as the net similarity, is obtained

2To be comparable with-means and EM for mixture of Gaussians and optimize the same objective, similari-
ties should be re-defined as negatgeared.? distance, unliké-medoids which uses negativé Histance.

CHAPTER 2. BACKGROUND 17

by including a model complexity term:

S = Z@s(i, ¢)— MK (2.8)

where)\ is a user-specified regularization parameter. If the number of clugtees,

K| is

not specified in advance, it may seem at first glance that the net similarity is maximized by
making all data points exemplars, but this is not the case because ofitheenalty term. For
example, if the similarity of one data point to another were greater-thgrthe net similarity

would be higher if the first point were not an exemplar but instead assigned to the second point.
Some data points could be knowrpriori to be more or less suitable as exemplars, in which
case the model complexity term can depend on which data points are exerhplagsi(k).

We incorporate this into the framework by denoting these as self-similasities) = —\(k)

or, for the constant-preference casé,: s(k, k) = p = —A\. This simplifies the net similarity

objective to:
N
S= Zi:l s(i,¢;) = Ziezs(i,)+ Zke/c s(k, k) (2.9)

In addition to similarities, thé&-medoids algorithm takes as input the number of exemplars,

K=K

, and monotonically optimizes the data similari$y,... The algorithm is quite sensi-
tive to its initial exemplar set, and is thus typically re-run with maag(hundreds of) random
initializations in order to find a solution with high net similarity and thus avoid more unfortu-
nate restarts that find poor local maxima&f This is typically not computationally burden-
some in the larger contextk-medoids clustering requirg§(N?) binary operations whereas
pre-computing a similarity matrix from data can requi?éN2D) operations (or worse), de-

pending on the similarity definition in use.

If the preference regularization parametér; p=s(k, k) is specified with no value ok,
the net similarity in equatioi (2.9) can be maximized by intelligergarching over net simi-

larities resulting from multiple runs df~-medoids clustering initialized with different values of

3e.g, binary search, interpolation search

CHAPTER 2. BACKGROUND 18

K.

2.4.1 Linear Programming Relaxation

Maximizing the net similarity objective function in equatidn_(2.9)—or ev&sn;. for that
matter—has been shown to BéP-hard in general [56]. Linear programming relaxations
can, however, be employed to find optimal solutions in small problems wketd 000; this

is outlined in the 0-1 integer program of equatidns (A.1042.11).

0-1 INTEGER PROGRAM FOR K-MEDIANS PROBLEM

.....

VARIABLES: b;; € {0,1} wherei,j =1,...,N

MAXIMIZE :

S — ZiNzl ijl bow-s(i, k) (2.10)

SUBJECT TQO

Vi: Zivzl by, = 1 (always in exactly one cluster)
Vi, k#i: bgr > by (each cluster has an exemplar) (2.11)

SV b = K (optional total number of clusters)

OuUTPUT: {¢;} ¥, (cluster assignments),
whereb;, =1 = ¢;=k and Vj#k: b;; =0

The 0-1 integer program rephrases the previous setiypiofeger-valued variable{s:z-}fv:)
as N2 binary-valued variablegb;. } wherec; =k impliesb;, = 1. The constraints in equation
(2.11) ensure the consistent mappingge=1 for only onek-value and that ifli £k : b;, =1

then pointk must be an exemplab,, = 1). Finally, a constraint on the number of clusters

CHAPTER 2. BACKGROUND 19

can be includedX:]k,V:1 by, = K) if the net similarity,S, is being minimized and not just the
data-point similaritySg.s..

A common approach is to solve a linear program relaxation [55, 57] wigere: Bij €
Rand 0 < Bij <1 or implemented in optimization software packages such as CPLEX [19]. If
the resulting solution is non-integer, stochastic rounding techniques or heuristics [69] have been
shown to produce satisfactory results. With current computing technology, such approaches are
feasible for problems up to aboid00 data points containing millions of constraints. For the
exact solutions shown in Sectibn 4.1, CPLEX 7.1 software was utilized which takes advantage
of branch-and-bound techniques and Gomory’s cutting-plane method [42].

Other possible approaches to exemplar-based clustering borrow from techniques employed
for minimizing the sum of cut weights while partitioning graphs (graph cuts) or its dual for-
mulation, maximizing network flow [31, 32]. The optimal two-way (binary) graph-cut can
be found in polynomial time [43], which corresponds to findingla= 2 clustering solution
whose search space is orffyf N?). There are many approximate techniques for finding gen-
eral K-way graph cuts, such as simulated annealing [13, 62, 75], Gibbs sampling [41], and
iterated conditional modes [6], but more recent techniques such as using expansion moves
and swap moves [9] have shown greatly improved performance. For exampigansion
moves involve iteratively solving binary subproblems constructed by choosing one class label
and lumping the remainder in the other classj-swap moves involve finding swaps of two
class labels that improve the objective similar to the vertex substitution heuristic described in

Sectior 2.b. A useful overview of these formulations can be found in [64].

2.5 The Facility Location Problem

Facility location is an important area of operations research. Simply stated, it is concerned
with finding facility locations to be matched with subsets of customers so as to minimize a

delivery cost. If the task involves selecting a subset of possible facility locations to be utilized

CHAPTER 2. BACKGROUND 20

3 % \ o i~ . \ \\\ % % nybroo .
\ Down w \ -
o d‘x}:\l\\"\ T ‘ i\ @\ T 23 %»i@““oﬁ = T ﬁ'&
- \ \ %
X\ r@ o i > AW /
\ o R | easide
Tl i .. i A @ w o
& \ — o oo or
i N\ el SN 2
o o f o i e 3
\ / T Ave W *“}'/ \ 2 5\(;171“?‘ g {;
’~ o al b | 3
? ja § T T %)%9 s ~ \Nﬂti T % @ w \L\ GT’{'I-: T
\ : TE Dindas St w T % w %‘ T {F r 'TM T { % 635\‘\5" e %
%v B T % T 2 T] D“nou;‘(‘ z -
il 3 4 oS Vi B N &
\ . } g ICRE 5 N)
Burﬂ“ﬂmw)ibe % & ms’i‘ T To.rﬁ\nto 1 /73:/
w: e T i i, i »F,E fm,,ph 3
\ il % = o < "\\E\ 2§ W;«:“;VM Music Garden TO?)'“UDI
T w%\:‘ 7 Cbké ‘1"‘/‘:;8 o : - e &
IFJQ § //-f-’/ Cé;’:t?glgnr)ﬂt‘a %
BT # ;’;) T w rﬁiﬁfﬂ,ﬂ ey Eakm §
& f o svﬁj,; "T‘{ s \ T s Iy T g Gibraltar
ecpbe /f 2 ? ESE Toronto B
A° &é 4 3:7 New Toronto Istands
o g %

Figure 2.2: The discrete facility location problem is concerned with finding a subset of poten-
tial facility locations (shown as buildings with ‘?’) to open in order to best serve a population
of customers (stick-figures above). Note that the background image is a map of Toronto, sug-
gesting that ‘distance’ need not be defined as Euclidednhdistance. In fact, it could be
Manhattan (L)—or perhaps more aptly, Toronto'(k—distance to reflect road travel distance,

average driving time (to account for traffic congestion and expressway speeds), or even travel
time via public transit.

(i.e. discrete facility location) and the cost is the sum of customer distances from said facilities,
this is known as th@-median problem (PMP). Alternatively, the cost could be the maximum
distance between customers and facilities—known ag-ttenter problem—in which case the
objective function is of the minimax variety instead of minisum. The clustering framework

described in Sectidd 2 is closely related to phmedian problem.

The p-median problem was formally defined and investigated in literature from the early
1960s with notable contributions from Cooper ([15],[17],[16]) and Hakimi ([45],[46]); for a
more recent survey of approaches to the problem see [78]. It is defined as follows: given a

set,V, of possible facility locations and a se¥{, of customers to be serviced, select a subset

CHAPTER 2. BACKGROUND 21

L C M of those facilities to open (whege= | £|) such that the sum of distances from customers
to their closest open facility is minimized. Matrixe RV, whereM =| M| is the number of
customers and/ = | \V/| is the number of facility locations, contains distances such that element

d., >0 is the distance from customer to potential facilityn.

In purely mathematical terms, the task is to sefecblumns of matrixD such that the sum
of the smallest element of each row is minimized. The cost function is

D(L) = me L (2.12)

The search space for this problem is of s(fpé) and finding the optimal subsef,*, has
been shown to b&/P-hard in general [56]. An exact solution is possible for many problems
with hundreds of facilities based on linear programming relaxations of the integer programming
problem [11,86].M N binary variableqb,,,, } are introduced to indicate which facilities serve
each customei.g., b,,, =1 if customerm is served by facilityn, andb,,,, =0 otherwise), and
N binary variableqa, } indicate which facilities are openedd, a,, =1 facility n is open, and

a, =0 otherwise).

CHAPTER 2. BACKGROUND 22

0-1 INTEGER PROGRAM FOR P-MEDIAN PROBLEM
INPUT: distanceqd,,, } whereme{1,...,M}andne{l,..., N}
number of open facilitieg

VARIABLES: b,,,, €{0,1} anda,, €{0,1} wherem=1,..., M andn=1,..., N
MINIMIZE :

D= Z;V:l Zi; B (2.13)

SUBJECT TQO

Vm: ZnN:1 bmn = 1 (demand of each customer must be met)
Ym,n: by, < a, (unopened facilities cannot service customers)

25:1 ap =p (number of opened facilities)
(2.14)

The p-median formulation in equations (2113=2.14) is the same-m&dians from equa-
tions [2.I0E2.111) if the customer and location sets are identiealM =N .

For problems containing larger number of facilitiégé £ 1000), exact solutions via linear
programming relaxations are usually unavailable with current computing technology so the

task is left to heuristics. Standard facility-location heuristics include:

Greedy Heuristic [66]: Initialize the set of open facilities(?), to be the empty set. Perform
p rounds during which an unopened facility € M\ £ is opened during thé" round
(LY = £ED U n,) so that the cost decrease between routB$L£") —D(L7V), is

maximized.

Stingy Heuristic [29]: Initialize the set of open facilitie(*) to be /. Perform) —p rounds
during which one open facility,, € £ is closed so that the cost increase between

rounds,|D(L")—D(L7V)[, is minimized.

Alternating Heuristic [72]: The alternating heuristic is identical tsmedoids clustering in

equation [(2.]7), whereby there are alternating phases of assigning users to the closest

CHAPTER 2. BACKGROUND 23

opened facility and open facilities are replaced by new facilities nearest to median of

their customers’ location.

Vertex Substitution Heuristic (VSH) [96]: Randomly initialize£ to containp facilities. For
each unopened facility e M\ L, find the open facility/ € £ to substitute with it so as to
most-improve the cost function if possibles. max, [D(L£)—D(LUn\¢)]. This process

is repeated until convergence, when no cost-reducing substitutions are possible.

Some algorithms have provable worst-case guaranéeg$14]), whereby their solution’s

costD(L) is related to the optimal cogt(£*) by a constant factor as follows?) 2=

<e.

Values ofe are rarely small and often much larger than the typical error, so this may be a

poor guide to selecting an algorithm [78]. The vertex substitution heuristic [96] has been the

standard for comparison for four decades and provides the basis for the variable neighborhood

search meta-heuristic [47] that was compared with affinity propagation in [10, 35].
Variable-neighborhood search utilizes speedups to the original vertex substitution heuristic

by storing all nearest and second-nearest open facilities for each customer and only recomput-

ing certain elements in these lists when necessary [1@6]4 pertinent substitution is made).

It also restructures the N —p) possible interchanges to involve fewer comparisons with early

exit conditions, and randomly chooses higher-ordary interchangésto escape local min-

ima.

2.6 Factor Graphs and the Sum-Product Algorithm

Many physical systems involve complex interactions among large numbers of variables, which
can be realistically approximated by relationships between small subsets of variables. For

example, an image’s pixels may all be interrelated, however, for some applications this is ap-

“The m-ary interchange search space for each iteration has(4j4€'_”), which grows impractically large
for interesting problems wher® > 1000 andp is non-trivial 6 < p < N —5). Experiments forr = 2 have been
conducted [28] but only foV <30.

CHAPTER 2. BACKGROUND 24

Figure 2.3: A sample factor graph showing a relationship between three varigh)es;, and
X3, and two connecting function node§,and f5.

proximated as a regular network of correlations between neighboring pixels. Graphical models
are a useful device for succinctly expressing and visualizing the structure and dependencies

present in networks of variables.

2.6.1 Factor Graphs

Standard graphical models such as Bayesian networks [83] and Markov random fields [60]
have long been used for modeling hierarchical dependencies and energy-based models, respec-
tively. A more recent innovation is the factor graph [65], a graphical model that provides a
natural way of representing global functions or probability distributions that can be factored
into simpler local functions. A factor graph is a bi-partite graph consisting of a Sétraides
representing random variablés = { X7, X,..., Xy} (from domainx; x Xy x -+ x A&},)

and M nodes representing a set of functidns= { f1, f2, ..., fu}. Each function nodef,,,
represents a function with codomain co) that depends only on the subset of variable nodes,
neighborsN(m) C {1, ..., N}, directly connected to it. The factor graph represents a global
function, customarily taken to be proportional to the joint probability of each configuration

{X1=x1, Xo=x9, ..., X,,=1, }, that is the product of all its function nodes:

M

FX=x) =] _ fm(xnem)

m=1

wherex v,y denotes the argument of functigh, {,, }nenim) -

CHAPTER 2. BACKGROUND 25

For example, the factor graph in Figlirel2.3 shows an interconnection bef\wegrandom
variables, X, X5, and X3, each of which can take on values € X, 2, € X,, andas €
A3, respectively. The factor graph shows a topology with=2 function nodes wherg¢; is
connected toY; andX; (soN(1)={1, 3}), andf, is connected td, and X3 (SO N(2)={2, 3}).

This implies a global function that can be factorized in the following way:

f(w1, 9, 23) = fi(21,23) - fo(we, 23) .

Interpreting the global function as proportional to the configuration probabilities, the marginal
probability distributions{p; (x1), p2(x2), ps(z3)} can be found by summing over all configu-

rations of the other variables:

P(Xi=z)oc Y, > fle,me,23) = > > filwn,23) - fa(w, 23) ,

roE€X2 x3€AX3 roEXs 3€X3

P(Xo=m)oc 3o > flrn,azxs)= > > filwr,23) fa(we,23) , (2.15)
r1E€X] T3€EX3 r1E€X] 3€X3

P(Xz=wx3)oc 3. > flrn,azas)= > > filwr,23) fa(w2,23) .
r1E€EX] T2E€XS r1EX] T2EX2

Using the distributive law

>, [factors independent of y| - [factors dependent on y]

= [factors independent of y] - > [factors dependent on y]

the computation can be simplified to:

f(w1,22,23)
P(Xy=r1) o< 3 > filwy,ws)-fa(zo, x3) = D0 fi(wn, @3) - D0, e, fo(22, 73)
T2€XD T3EXS T3E€X3
f(x1ﬁ2,x3)
P(Xo=w3) o< > > filwy,w3)-fa(zo, 23) = D folwa, w3) - D0, cn fi(21, 73)
T1€X T3EXS T3E€X3
f(z1,22,23)

PN x 5 Filow o dalen) = | S flonan)| | S flonan)]

T1€AX1 T2E€X: T1EX] T2EX>
(2.16)

CHAPTER 2. BACKGROUND 26

(B) .@

. lvwﬂ,,,(x;v)

um_%)(ﬁn)
=)
V,

Figure 2.4: Belief propagation on a factor graph. The fumctmvariable node message,
shown in (A), is computed from incoming variable-to-function node messages along other
edges. Likewise, the variable-to-function node message in (B) is computed from incoming
function-to-variable node messages. The marginals for a variable (C) can be computed from
all incoming function-to-variable messages.

In effect, the brute-force approach of summing together all possible products (equation
(2.18)) can be simplified by intelligently organizing the factors into sum-product-sum-product

form (equation[(Z2.16)). Theum-product algorithpdescribed below, represents a computationally-

efficient rearrangement of these sums and products.

2.6.2 Sum-Product Algorithm

A notable formulation of the sum-product algorithm is Judea Pearl’s use of it as “belief propa-
gation” in [84] for marginalizing variables in Bayesian networks. The algorithm is a series of
rules—framed as passing messages between factor graph nodes—that organize and automate
the application of the distributive property. For example, in equafion](2.16) where marginal
P(X; =) is computed, if the inner sum is considered a functioncof(i.e., uo(z3) =
> wmen, J2(2,73)), the expression becoméy X, =x1) = > . fi(z1,23)- po(z3) Where
1o IS @ "message” from the inner summation to the outer.

The sum-product algorithm involves the propagation of messages from variable nodes to
function nodes in Figure[2.4 (A)) and from function nodes to variable nodesn Fig-
ure[2.4 (B)). The message sent by a variable nédg to a function nodg,, is a function of

r, € X, and reflects the current probability distribution (‘beliefs’) abdit given evidence

CHAPTER 2. BACKGROUND 27

from all its other neighborsy(n)\m. Itis an element-wise product:

Vnom(Tn) = Hm’eN(n)\m fmt—n(Tn) - (2.17)

The message a function nodg,, sends to variable nod&,, is a function ofz, € A}, and

reflects the current beliefs abaiit, given the function and its other neighbofgyn)\n:

fnn(Tm) = D fon (X)) - Hn,eN(m)\n Vs (Tn) - (2.18)
XN(m)\n
Note the shorthand use &y, for {z,, }nenim) @NAXNEmN\n TOr {20 Fre Nm)\n
Finally, the current beliefs about any variablé,, can be computed any time by fusing

incoming function-to-variable messages:

(X =1,) = HmEN(n) Lo (T7) (2.19)

These are known as pseudo-marginals, though for singly-connected graplreé-structured
graphs that contain no loops), these converge to the true marginAls pin a finite number

of message-update iterations [84].

2.6.3 Loopy Belief Propagation

Pearl [84] shows that belief propagation converges to the true marginals in a finite number of
message-update iterations for singly-connected graphs. With respect to the general case, he

states:

When loops are present, the network is no longer singly-cdedeand local propagation
schemes will invariably run into trouble ... If we ignore the existence of loops and per-
mit the nodes to continue communicating with each other as if the network were singly-
connected, messages may circulate indefinitely around the loops and the process may not
converge to a stable equilibrium ... (even if it does) this asymptotic equilibrium is not co-
herent, in the sense that it does not represent the posterior probabilities of all the nodes of
the network. (p. 195)

CHAPTER 2. BACKGROUND 28

Previous impressive empirical results from the area of coding theory [5] were shown to be
a special case of belief propagation in this loopy case [73]. Additional factor graphs (involving
applications such as medical diagnostics [79] and phase-unwrapping [63]) were investigated at
the time; positive results gave additional credence to the idea that pseudo-marginals provided
useful enough approximations thagmax, ¢(z,) = argmax, P(z,)for many nodes (val-
ues ofn). Theoretical justification for loopy belief propagation was later shown [111], where
update equationk (Z1[7=2]19) were related to minimizing a KL-divergence [18] computed using

Bethe’s free energy approximation [7] from 1935.

Given a factor graph describing a probability densityk) o [],, fm(Xn@m)), ONE can
search for a simpler approximating distributi@p(x), such that the KL-divergence between
them, D(Q(x) || P(x)) = 3, Q(x)-log 32, is minimized. WhereP(x) o< [T, fn(Xx(m)),

this expands to:

D(Q(x) || P(x)) + constant = Y Q(x)-log Q(x) = Y Q(x) Y 108 fon(Xntm))

If it is assumed that the approximating distributiQfx) can be factorized into single-node
marginalsg, (x,,) for each variable node, and function-node or clique margipg(S) for

each function noddike this:

Q(X) - Hi:;l qn(l’n)‘N(n)‘_l) (220)

then the Bethe approximation to the free energy is obtained:

Fhethe = 2. 2 Gm(Xnem)) 108 @m(Xnem) — 20 > @m(Xnm)) 108 frn (Xn(m))
XN XN (2.21)

— L (INM)I=1) 2 gn(n) 10g ga(an) -

Tn

SFor example, in the factor graph from Figdrel2.3, the single-node marginats,arér;), ¢,—2(z2), and
qn—3(x3); the clique marginals arg,—1 (1, r3) andg,,—a(x2, x3).

CHAPTER 2. BACKGROUND 29

It is useful to perform coordinate descent minimization on the Bethe free energy subject to

the valid distribution constraints theitr: » . g,(z,)=1andvm:) gm(XnGmy) =1, and

XN(m)
the constraint that single-node marginals are consistent with clique marginaisc N (m):
qn(x,) = Exmm)\n dm(Xn@m)). The complete derivation is shown in AppendiX A, however,

the end-result yields familiar-looking update equations as follows:

Vn—»m(xn) X H ,um’—m(xn) and ,Um—m(xn) X Z fm(XN(m)) : H Vn’—»m(xn’) ,

m’€N(n)\m XN(m)\n n/€N(m)\n

qn(xn) X H Mm—»n(l’n) and C]ﬂ”L(XN(m)) X fm(XN(m)> : H Vn—»m(xn> y
meN(n) neN(m)

(2.22)
where they, (x,,) are pseudo-marginals from earlier. It should be noted that for singly-connected
graphs the factorization in equatidn (2.20) is exact and the algorithm converges to the exact

marginals.

2.6.4 Max-Product Algorithm

As described in [1], the idea behind the sum-product algorithm and factor graphs can be applied
to any commutative semirifigIn many cases it is more desirable or efficient to use the max-

product algorithm, whose messages are updated as follows:

Vp—m(Tn) H P/ —n () and gy () X max fin (X)) - H Vs —m ()
m! €N(n)\m NmAn n/eN(m)\n

(2.23)
For the max-product algorithm, the computationgfr,,) andg,, (xxu»)) pPseudo-marginals
is intended for estimating the best configuratiah, of the variablesx, which can be per-

formed as follows:

6A semiring is an algebraic structure which generalizes the additive and multiplicative properties of the set
of natural number#! (including zero); unlike rings, there is no requirement that each element have an additive
inverse.

CHAPTER 2. BACKGROUND 30

* J—
x, = argmaXH

Tn

: Lo (T (2.24)

meN(n

These quantities are closely related to evaluations of best-path configurations in the Viterbi
algorithm more so than the probabilistic interpretation in Se¢fion]2.6.2. Note that for reasons
of numerical stability, much of the work in this thesis is performed in the max-sum semiring,

which is isomorphic to max-product via the mapping- log(z), assuming: > 0.

Chapter 3

Affinity Propagation

The exemplar-based clustering algorithms described in Se¢tidris 2.4-2.5 operate by iteratively
refining a randomly-chosen initial set of exemplatsC {1,2,..., N}, but this works well

only if that initial subset of data points is close to a good solution. Affinity propagation simul-
taneously considers all data points as possible exemplars, exchanging real-valued messages
between them until a high-quality set of exemplars (and corresponding clusters) emerges. Mes-
sages are updated on the basis of simple formulae that reflect sum-product or max-product up-
date rules and, at any point in time, the magnitude in each message reflects the current affinity
that one point has for choosing another data point as its exemplar, hence the name “affinity

propagation”.

Affinity propagation takes as input a collection of real-valued similarities between data
points,{s(i, k)}, where each similarity(i, k) indicates how well the data point with indéx
is suited to be the exemplar for data painEach data point is paired with a variable node,
in a factor graph (Sectidn 2.6) as shown in Figuré 3.1. A value efk for i # k indicates
that data point is assigned to a cluster with poikhtas its exemplarg, = k indicates that
data pointk serves as a cluster exemplar. The graph’s function is a constrained net similarity

(exponentiated, so the function is non-negative), defined as follows:

31

CHAPTER 3. AFFINITY PROPAGATION 32

(A)

file) file) f5(c) cCy) fule)

<C1 & €3

s(1,¢,) s(2,¢,) s(3,¢5) s(i,c;) s(N,cy)
(B) (C)
candidate exemplar k data point supporting
data point /'

competing candidate
exemplar k’

a(ik")

data point i candidate exemplar k

Figure 3.1: Affinity propagation is an exemplar-based chistealgorithm that performs be-

lief propagation on the factor graph shown in (A). Two kinds of message are passed in the
graph;responsibilitiegB) are passed from variable nodes to function nodes (lata points

to candidate exemplarsfvailabilitiesare passed from function nodes to variable nodes (C),

interpreted as candidate exemplars to data points..

CHAPTER 3. AFFINITY PROPAGATION 33

S from [29) coherence constraint
N -

7

S (i) =30 log file) :

) - i S\, C;) + B og Ji(C - N s(i,es) ‘ N —_—

F(c; s) = e4—i=1 k=1 =II_ eI _ m@Eres"en) 31
Note that the first term in the exponent involves the net similafityfrom thek-median

problem, except that similarities are exponentiated to ensijtes) always evaluates to a

positive function. The second term contains a coherence constraint defined as follows:

0, if ¢, #k but Ji: ¢; =k (disallow clusters without an exemplar)
fi(c) = (3.2)
1, otherwise
which causes the function to evaluate to zero for the incoherent configuration of a cluster
without an exemplat,.e., a data point has chosert as its exemplard, = k) with k& having
been incorrectly labeled as a non-exemplae4 k).

Each component of'(c; s) is represented by a function node and each lap& repre-
sented by a variable node. Ea¢f(c) term appearing in equation (8.1) has a corresponding
function node that is connected to all variables:, . . ., cy. In addition, eacl (i, ¢;) term has
a corresponding function node that is connected to the single variaflbae log of the global
function F'(c; s)—in this caseS(c) (previously referred to as net similarit§)—is given by

the sum of all the log-functions represented by function nodes.

3.1 Sum-Product Affinity Propagation

The sum-product algorithm can be used to search over configurations of vadabthe factor

graph to maximize(c; s), which also maximizes®(© (andS(c)) subject to the coherency
constraint. The sum-product algorithm for this particular graph topology can be derived in a
straightforward fashion and consists of sending messages from variables to functions and from

functions to variables in a recursive fashion (see Settion|2.6.2).

CHAPTER 3. AFFINITY PROPAGATION 34

O(N™) vector message updates

The message sent from variable nadéo function nodef,(c) consists of N non-negative
real numbers—one for each possible valyef c,—and can be denoted ., (j) as shown in
Figure[3.1(B). A later simplification reduces thi&vector to a scalar value, making affinity
propagation scale linearly in time and memory with the number of similarities. The message
sent from function nodg¢;(c) to variable node; also consists oV real numbers and can be
denotedv;. () as shown in Figure3.1(C). At any time, the valuecptan be estimated by
multiplying together all incoming messages.
Since thep-messages are outgoing from variables, they are computed as the element-wise
multiplication of all incoming messages:
N
pik(ci) =) T aep(c) (3.3)

k/'=1,
k'K

Messages sent from functions to variables are computed by multiplying incoming messages and
then summing over all variables except the variable the message is being sent to. Because all
function nodes are connected to Alivariable nodes, this nominally involvés-1 summations

over NV possible configurations—for each &f function nodes.

O(N?) vector message updates

Fortunately, all functiong f;.(c)}._, are binary-valued constraints that are completely factor-

izable giverc;, as follows:

N

[1 [ci#k], for cp #k
fule) = ¢
1, for e, =k .
If the two casesg, = k and ¢, # k, are handled with separate expressions, the functions

can be absorbed into the summations by changing limits, and incoming messages can be inde-

pendently summed (sum and product operators change places). Accordingly, the message sent

CHAPTER 3. AFFINITY PROPAGATION 35

from function nodef;, to variable node; is:

sum over all conﬁgurations satisfying fx given ¢;

az<—k Cz ZZ ZZ Z fk]17]27 - '7ji—laci7ji+17 - 'ajN) : H pz’ﬂk(]z’)

Ji J2 —1 Jit1 ihi'#£0
(all Conﬁguratlons with or without cluster k
.

Hi’-i’;éi Zj pi—k(j) , fori=kand cp=k;

all configurations without cluster k
N\

Hi’:i’;ﬁi Z]ﬁﬁk pl,ﬁk(]) ’ for i=Fk and Ck # k ;

all configurations, with or without cluster k&
7\

k is an exemplar

——
o8] - T Do, pemili) o forizkand e =k

all Conﬁgurations with no cluster k all Conﬁguratlons with a cluster k
E () H E pi—k(J + pqu H E pi—k(j), fori#k and ¢; #k .
\ J: 77k iti'¢{i,k} Ji£k thi'¢{ik} J

These vector messages are easier to interpret if we view them as the product of constant and
variable (with respect to;) components as followsy; .« (¢;) = pi—k - pi—r(c;) @anda,x(c;) =

@k Q;i(c;). This changes the messages to:

pi—k(ci) = estie) . Hk’:k’;ﬁk Q! Hk’:k’;ﬁk Qi () (3.4)
and
(~ . .
[Tivici P~k - Tliniess D25 i (4), fori=k and ¢y =k ;
() Hi’:i’;ﬁi Pir—k Hi':i';éz’ Zj:j;ék pik(j), fori=Fk and ¢, #k ;
Qi \Ci) =

[Liizi Pt - Po—sre(B) - TLinig iy 225 Pr—(d), for ik and ¢;=k ;
[Tpimr IT 32 pii(G) + T Pt Pr—ie(B) - TT 32 P (), for ci# ki

\¢"1'#0 il a g #£k 1" i’ {i,k} J
(3.5)

For convenience, if we lgt;, ., = > p;—x(j) then>_ p,x(j) =1 and thusz Pi—rk(J) =
JiiFk Jii#k
1+ pi—i(k). Also note that in the update for.._,(c;) (equation[(3.5)), none of the expressions

CHAPTER 3. AFFINITY PROPAGATION 36

explicitly contain ¢;—only the choice of expression depends @n Consequently, thev-

vector of messages,. (c;) has only two unique values: one far=k and another foe; # k.

Settinga;r = a;k(c; : ¢; # k) makesa,;.x(c;) = 1 for all ¢; # k. This also means that
[&iw (i) = qie,(c;) for all ¢; # k and [[&;p(c;) = 1 for ¢; = k, leading to further

k:k'2k K k2
simplification:

S(ivk) . H Y / f ; — k
(& ket kit Yi—k', 10 G ’
prn(cr) = | # (3.6)
e*ei) - Gy (c;) - Hk’:k’;ﬁk Qi fore; 7k,

and

H,-/:i,# Pir—k * Hi,:i,# 1, fori=k and ¢, #k ;
Hi’:i’;&i Pt - Pr—k(K) - Hi’:i’gﬁ{i,k} 1+ py—r(k)], fori#kand ¢;=k;

[pii - ITL+IT piro - oosre(K) - IT [L + pi—i(k)], for ik and ¢; #k .
i%ili ik ik il Lk}
(3.7)

Qe f (Cz) =

Next, solve forﬁi_%(ci =]{7) = pi_qf(ci = k))/ﬁl_qf and&ﬁ_k(ci =]{3) = ozi<_k(ci =]{3)/0_42'<_k

to obtain simple update equations where gl@da terms cancel:

pii(ci=k) = pior(ci=k) _ pisk(k) R | POROee oy
AT SRR} R S SN PR 1) B
(3.8)
and
Mni’:i’jéi [1+ﬁilﬁk(k)]7 for k=i (3.9)

_ JU
B TP ok (6) Tl irg 1,0y O+ (0)] ,
= bRk it ik s , for k41 .
itz L Pr—k (k) Tlinirg i oy [L+Pir—i (K)]

CHAPTER 3. AFFINITY PROPAGATION 37
O(N?) scalar message updates

Noting thatp; .. (c;) anda;(c;) for ¢; # k are not used in the updates (specifically, because
a;_1(ci#k)=1), messages can be considered to be scalar instesieboy vectors. Working in
the log-domain for numerical range reasons, scalar variable-to-function messages are defined

ase’"F) = 5; (k) and scalar function-to-variable messages™ds’ = a;._ (k)

II [1 + er(i/’k)}, for k=1 ;

‘ s(i,k)) il
r(i,k) _ € a(i,k) __ _
T Y [k ealik)] and €7 = . y1—1 1 .
o e (k:k) 11 [H—e"“’)] +1], for ki .
ki {i,k}

(3.10)

Message- (i, k) is referred to as the “responsibility” sent from data paitd candidate ex-
emplar pointk, reflecting the accumulated evidence for how well-suited poistto serve as
the exemplar for point, taking into account other potential exemplars for pointhe “avail-
ability” a(i, k), sent from candidate exemplar pointo data point, reflects the accumulated
evidence for how appropriate it would be for poirtb choose poink as its exemplar, taking
into account the support from others that pdirghould be an exemplar. All data points can
be considered to be either cluster members or candidate exemplars, depending on whether they

are sending or receiving availability or responsibility messages.

To estimate the value of a variahlgafter any iteration, multiply (fuse) together all incom-

ing messages to variable nodeand use the valug that maximizes the product:

6 = argma, [T 0 4()] = avgma [0 T as e T, i ()

= argmax; [¢*).e*:)] = argmax; [s(i, j) + a(i, j)] .
(3.11)

An alternative form that includes availabilities and responsibilities but not input similarities
can be obtained by including an additional term insidedhgnax |- | that leaves the result

unchanged as follows:

CHAPTER 3. AFFINITY PROPAGATION 38

er(:F) from (310)

A a(ik) fs(i,k)/ (s(i k') a(i,k’)>\ B a(ik) . r(ik)
C; argmax | e € (& € = argmax |e €
) 2 i gma | | (3.12)

= argmaxy, [a(i, k) + (i, k)] .

O(N?) scalar message updates

Each iteration involves computiny? availability and responsibility messages (from All
points to allN points), and each message expression in equafiod (3.10) in@(Vé§ binary
operations which yields af() algorithm. If intermediate expressiofgi) = r,_, es(i-#)+alir)
and A(k) =T, [1 + e'"P] are defined—which can be calculated at the start of each itera-

tion in O(N?) time—each message can be compute@(m) time as follows:

_) _ AW for k=i ;
k) = — —— and ¢"(F) = o o1\ 1
R(i) — esR+atin) (1 L+ gmrthgy [1er® jo[:;e ,])7 for ot .

which makes an entire iteration possibleN?) space and time (using a parallel message-
passing schedule).

In practice, this approach leads to numerical instability due to limited machine precision
when correctingR(i) = Y-, et into 37, e*CFITalR) by subtractingss(-F) ek,
To overcome this, it is necessary to store cumulative sums and manipulate expressions to com-

pute R(k) and A(k) accordingly.

3.2 Max-Product Affinity Propagation

Applying the max-product algorithm to the factor graph in Fiduré 3.1 overcomes some of the

numerical precision difficulties described previously and also produces clustering results that

CHAPTER 3. AFFINITY PROPAGATION 39

are invariant not only to similarities with arbitrary additive constanisit also to multiplicative
constants (the ‘units’ similarities are expressed in). The variable-to-function messages are
unchanged from sum-producg. p; . (c;) = e*@).T] a;_(c;) but the sums in the function-

k" k'£k
to-variable messages are replaced by max operators:

best possible configuration satisfying fi given ¢;
-’ -

;r(c;) =max max- - -max max- - -max | f.(j1, Jo, - - -, Ji—1, Ciy Jit1s- -+ JN) | | pir—1(Jir)
J1 J2 Ji—1 Jit1 IN Iy
ihi'#£q
(best configuration with or without cluster k&
o\
7 N

H,,. i maX] pz’—»kj() fOI' Z—k and Ck—]{j

best configuration without cluster k

N
7 N\

H-/«/#- max; iz, pi—k(j) , fori=k and ¢, #k ;

- k is an exemplar best conﬁguratlani with or without cluster k

—N— .)
pr—k(k) - Hi,:i%{i’k} max; pii(j) , fori#kand ¢;=k;

best Conﬁguratlon with no cluster £ best conﬁguratlon with a cluster k

max max Pr—k(J H Ir1a}<;p2_,/LC , Pre—rk(k H max pi—k(g) |, fori#k and ¢; #k .
it {i, k ihi'd{i, k}

As with sum-product, representing theSevector messages as the product of constant and

variable components changes the messages to:

pi—i(ci) = esther) . Hk’:k’;ﬁk Qs Hk’:k’;ﬁk it (C3)

1For sum-product affinity propagation, similarities appear only in responsibility equations and solutions are in-
variantto additive constante., s'(i, k) = s(i, k Hconstant because” %) =es(:h) /57 [es(i-rk’)e“(ivk’)} =

S(’L k)Jrconstant/ Z s(i,k')+constantea(i,k'):|
k/

k' £k {

CHAPTER 3. AFFINITY PROPAGATION 40

and
)
[Livines it - Tlining max pii(j), fori=k and cp =k
HM# Pir—k Hi’:i’;&i max; iz pi—i(Jj), fori=kand ¢, #k ;
i n(c)= [Livizi Pt Pt (R) - Tlining i gy max; pii(4), for ik and ¢; =4k ;

ol ﬁ’—>k iy s TNAK G5 kﬁ’—df,])
max Hz.z;ﬁz v Hz.z;éz FjFk Pi () : fOI'CZ%k%Z

[Lieiess Pt - Pr—n(E) - TLingregi gy M85 pirie(4)
¢{i,k}

\

Let pj—r = max p;.x(j) SO max p;.,(j) = 0 andmax p;;(j) = max[0, p;—r(k)]. For
7i#k Fi#k j
availabilities, leta;, = a;x(c;: ¢ # k) which makesa;. x(c;) = 1 for all ¢; # k and

[ieper Girr (i) = Qie,(c;) fOr ¢; # k and][, dicss (k) = 1 otherwise. This leads to

simplification:
s(i,k).H Ain 1r. T ko
€ krkrtk Qie—k' s 10T Gy)
pi—k(ci) = ' ’
es(isci) dr—ci(ci) . Hk’:k’;ﬁk Qo for¢;#£k
and
4
H’i/:i’;ﬁ’i pi’—ﬂg : Hi’:i’;ﬁi max []., ﬁfl/_)k(k)], fOl" 'l: k and Ck; — k ,
H,-/:i,# Pir—k * Hi,:i,# 1, fori=k and ¢, #k ;
O‘z%—k(ci) = _

Hi’:i’;ﬁi ﬁi’—>k . ,51@_4@(/{3) . Hi’:i’%{i,k} max [1, ﬁll_)k(k):l7 for ’l#k and Ci:k ,

x| [T v TT L TT pr-premi(k) - TT max[L, o (R)] |, for c; £k

ikl it ikt iti'¢ {ik}

Solving for p; ., (c;=k) = pi_r(ci=k)/pi—r @and &;_r(c;=k) = o _x(ci=k) /a; s, yields

further cancelation:

Srn(omt) = PP k)) - i
pi—>k‘ Zj:j;ék pz—>k(]) Zj:#k[es("vj)- d“_j(])] W

(3.13)

CHAPTER 3. AFFINITY PROPAGATION 41

and

Gii(ci=k) = aii(ci=k) /i = aii(ci=k) [ot (j: J7k)

Mg ILin i1z max[l, py_y,(k ..
: ’kH’,’¢7 (1, By k()],fork’:Z,
_ JUP
e 71’~>kﬁkg’k(k)nz/z/€{l,k} max[l, ﬁllﬂk(k’)] f k .
- —— - , for k#1 .
max“m it Pk Ph— e (K) T 140 £,y max(, Pigk(k)]]

(3.14)
Finally, messages are definedds, k) = log p,—.(k) anda(i, k) = log &; (k) to ob-
tain simple update equations shown[in (3.15), where the final expressiofifé) is due to

log oty = min(0, log x) and the estimaté is as before[(3.12).

AFFINITY PROPAGATION

.....

INITIALIZE : set ‘availabilities’ to zera.e. Vi, k: a(i, k) =0

REPEAT: responsibility and availability updates until convergence

Vi k: r(i, k) = s(i, k) — max [s(i, k') + a(i,)]

KKk
> iing; max[0, r(é, k)], for k=i 3.15
vik: ali k) = {min [O r(k k)jz max|[0, (i’ k)]] for l{;;«é(z)
’) ihi'g{ik})))

OuUTPUT: cluster assignments= (¢4, . .., ¢y), ¢ =argmax, [a(i, k)+r(i, k)]

Note:c may violate{ f;} constraints, so initializé-medoids withc and run to
convergence for a coherent solution.

The simplicity and effectiveness of these update equations have made it the standard incar-

nation of affinity propagation since its initial 2007 publicatiorsiciencd38]. All experiments

in Chapter§ 435 use this form of the algorithm.

It is interesting to note that the greeélymedoids clustering algorithm can be rewritten to

use responsibilities and thus more closely resemble affinity propagation:

Vie{l,...,N} keK:r(i,k)=s(i, k) — max s(i, k') and ¢;=argmaxr(i, k)
Ktk ek

VkeK: k«argmax > s(i,§)

j:Cj:k ﬁci:k

CHAPTER 3. AFFINITY PROPAGATION 42

The major difference is that in computing responsibilities, there are no availabilities to modu-
late similarities and hard decisions are made. Instead, the refinements are performed on a fixed

set of exemplarsg.

3.2.1 Max-Product vs. Sum-Product Affinity Propagation

Replacing the summations with max operators eliminates the numerical precision issues from
sum-product affinity propagation; findi%% can be done cleanly in linear time by holding

the cumulative largest and next-largest array elements in memory. Another advantage is that
additive constants in the similarities are canceled out in the responsibility update equation and
multiplicative constantsi.e., s'(i,k) = s(i, k) - constant scale both the responsibilities and
availabilities but leaves cluster assignmentsnchanged (as long as numerical issues are kept

in check).

3.2.2 Dynamics of Affinity Propagation

Availabilities are initialized to zero for the first iteration, 8@, k) is set to the input similarity
between point and pointk minus the largest competing similarity between peiahd other
potential exemplars.e. r(i, k) = s(i, k) ~ max s(i, k). This competitive update does not take
into account how many other points favor each candidate exemplar, though in later iterations
when some points are effectively assigned to other exemplars, their availabilities will drop
below zero. This decreases the effective value of the corresponding similarity to which it is
added and gradually withdraws them from the competition to be an exemplari #dr,

the “self-responsibility”r(k, k) is set to the input preference(k, k), minus the largest of

the similarities between poiritand all other candidate exemplars. This reflects accumulated
evidence that point is an exemplar, based on its input preference tempered by how ill-suited
it is to be assigned to another cluster's exemplar.

The responsibility update lets all candidate exemplars compete for ownership of a data

CHAPTER 3. AFFINITY PROPAGATION 43

point so accordingly, availability updates gather evidence from data points indicating whether
each candidate exemplar would make a good exemplar. The availability of/pmirgerve
as an exemplar for poirt, a(i, k), is set to the self-responsibility(k, k&) plus the sum of
positive responsibilities candidate exemplkareceives from other points (not including
the message destination). Only the positive portions of incoming responsibilities are added
(max]0, -] term), because it is only necessary for a good exemplar to explain some data points
well (those with positive responsibilities) regardless of how poorly it explains other extremely-
dissimilar data points (those with negative responsibilities). If the self-responsikikity:)
is negative—indicating that poirit is currently better suited as belonging to a cluster rather
than being an exemplar itself—the availability of pointo serve as an exemplar could be
increased if some other points have positive responsibilities toward poifio limit the in-
fluence of unjustifiably-strong incoming positive responsibilities—which could arise from a
pair of extremely-similar ‘twin’ data points—the total sum is thresholded so that it cannot rise
above zero due to thein|0, -] operation. The “self-availability%(k, k) is updated by adding
positive components of incoming responsibilities but without the final threshold.

The message-passing dynamics of affinity propagation applied to a toy dataset of 27 two-

dimensional points are shown in Figlirel3.2.

3.2.3 Preferences for Affinity Propagation

A global shared preferengewherevVic {1,..., N}: s(i,i) =p, is often used as a control knob
to govern the number of clusters found by affinity propagation. As shown in Higdre 3.3, lower
values ofp penalize the use of data points as exemplars more heavily and lead to fewer clusters,

while the effect with higher preference values is the oppasithis is an advantage in that the

2Further intuition is obtained by imagining an algorithm that has currently identifiegikemplars and is
considering labeling another data point as an additional exemplar. By switching away from their old exemplars
and choosing the new exemplar, some data points will cause an increase in the net similarity. However, creating
the additional exemplar will cause its preference to be added to the net similarity and, since it will no longer be
assigned to one of the old exemplars, the net similarity will decrease by that similarity value. Since the preference
is usually low compared to similarities, the difference is usually large and the additional exemplar will be created
only if the total gain in similarity exceeds this negative value. This intuition shows that the preferences have

CHAPTER 3. AFFINITY PROPAGATION

44

L]
0 a
[5 (]
® - ®
)
LI S s L
& & L] 4
é)
INITIALIZATION
L2
o o
L & L
® 2 @
L]
LI - Lt
& O] L] .
& 0
ITERATION 5
°
wiTy L.
L -. L]
.
T g E
& _:- ".
ITERATION 25

Figure 3.2: The dynamics of affinity propagation are shown for a hand-crafted dataset of
N =27 two-dimensional points. Negative squared Euclidean distance is used as a measure of
similarity and a global preferengeis set to the minimum similarity which yields the natural-
looking three clusters (see Figure]3.3 for further analysis). Messages are depicted as chevrons
pointed towards candidate exemplars; the blue intensity is in proportion to the responsibility
plus availability,r (¢, k) +a(i, k), which is used in clustering decisions (see equafion {3.15)).
Note that messages are weak and uniform in all directions for early iterations, but clusters be-
gin to emerge by iteration 15, with corner points far more certain of their exemplar than central
points. The algorithm is fully-converged by iteration 50, though faint probabilities of alternate

é)
ITERATION 2
L]
L] L3
L) & °
® 3 °
L]
L1 & .
e @ L] .
é)
ITERATION 10
°
i e
L —. @
.,
EE . T
......._-'.I...ao 3
& _:- "'.
ITERATION 30

é)
ITERATION 3
L]
L) L
° s ®
L) = @
L
L 1 & ke
[L L] ¥
L]
ITERATION 15
°
il e
L —. L]
.,
B e .
- ._.._-'._. (ite e
& _:- "'.
ITERATION 40

configurations remain visible near the center of the plot.

ITERATION 50

(CONVERGENCE)

CHAPTER 3. AFFINITY PROPAGATION 45

N
2]
T

N
o
T

pZ mins(i, k)

=
o
T

K (number of clusters)
[
[8)]

(¢)]
T

O 1 1 J
-100 -10 -1 -0.1
p (shared preference)

Figure 3.3: A shared preference valge,can be used as a control knob to vary the number

of clusters, K, found by affinity propagation in the toy example from Figurd 3.2. Notice that

a relatively wide range of preference values, between roughty—10 andp = —3, lead

to the natural-looking three clusters € min; 4, s(i, k) ~ —5.2 from Figure[3.2 is marked)
compared to a narrow range leading to an apparently unnatural two clusters. The dynamics
tend to become quite unstable and non-monotonic past 10 clusters, which is sensible
given that there are onlly =27 data points.

number of exemplars need not be specified beforehand, enabling automatic model selection
based on a prior specification of how preferaladep(iori log-probability) each point is as an
exemplar. Note that a relatively wide range of preference values lead to the natural-looking

configuration with three clusters as opposed to a narrow range leading to two clusters.

3.2.4 Implementation Details

A MATLAB implementationapcl ust er . mis available for download at http://www.psi.toronto.edu

and has been downloaded several hundred times to date. Part of affinity propagation’s appeal is
the fact that the simple update equations can be easily implemented as shown in the following

~20 lines of MATLAB source code:

the same ‘units’ as the similarities, since similarities and preferences are traded when deciding whether or not to
create exemplars.

CHAPTER 3. AFFINITY PROPAGATION 46

N=si ze(S,1); A=zeros(N,N); R=zeros(N,N); %initialize nessages
S=S+le- 12xrandn(N, N)*(max(S(:))-mn(S(:))); %renove degeneracies
| anbda=0.9; % set danpening factor
for iter=1:100,
Rol d=R; % NOW COVPUTE RESPONSI BI LI TI ES
AS=A+S; [V, I]=max(AS[], 2);
for i=1:N, AS(i,l(i))=-inf; end; [Y2,12]=max(AS,[], 2);
R=S-repmat (Y,[1,N]);
for 1=L:NR(i,I1(i))=S(i,I(i))-Y2(i); end;
R=(1- | anbda) * R+l anbda* Rol d; % danpeni ng responsibilities
Aol d=A; % NOW COVPUTE AVAI LABI LI TI ES
Rp=max(R, 0); for k=1:N, Rp(k, k)=R(k,k); end;
A=repmat (sun{Rp, 1), [N, 1]) - Rp;
dA=di ag(A); A=min(A 0); for k=1:N, A(k, k)=dA(k); end;
A=(1-1 anbda) * A+l ambdax Aol d; % danpening availabilities
end;
E=R+A; % pseudomargi nal s
I =fi nd(diag(E)>0); K=length(l); % i ndices of exenplars
[trp c]l=max(S(:,1),[],2); c(l)=1:K;, idx=l(c); % assignnments

Several implementation details should be noted. First, random noise on the order of ma-
chine precisiof should be added to input similarities (li®2) in order to remove possible
degeneracies. For example, if similarities are symmetric and two data points are isolated from
the rest, there may be indecision as to which one of them should be the exemplar and that can
lead to oscillations. Another example is if multiple clustering solutions have the same opti-
mal net similarityS—especially common when similarities belong to a finiteesgtrange of
integers—the algorithm may oscillate between optima. For most datasets, however, this is not

necessary and the solution is invariant to the added hoise

As described in Sectidn 2.6.1, belief propagation methods converge to exact solutions in a
finite number of iterations when the factor graph topology is singly-linked (no cycles). Be-

havior is generally reported as less-stable and more prone to oscillation as the number of

3This can also be seen as randomly flipping the least significant bits of the floating-point mantissa for each
input similarity value.

4For example, affinity propagation was input the 400-point Olivetti faces dataset (see $edtion 4.1) with a
typical preference gb = —60 and over the course of 1000 trials with different random noise additions, there was
no consequential variation in the algorithms’s behavior (exemplar set at each iteration was identical). On the other
hand, randomly-initializing availabilities to non-zero values can lead to slightly better solutions.

CHAPTER 3. AFFINITY PROPAGATION 47

—-7000

—-7500F;

-8000

© © 00 N O WN PP

e

-8500

net similarity
> > > >
T T T Tt T T TR TR TR

>
|

©

N

-9000

1
© © © ©
o R W

¥

A=.97

>
i

©
©

-9500

A=.99

-10000)
0 100 200 300 400 500

iteration

Figure 3.4: The net similarityy, is shown as a function of iteration for runs of affinity propaga-
tion with different dampening factors, The higher values of unsurprisingly lead to slower
convergence rates but often lead to more stable maximization\(se&3 for an example of
non-monotonic oscillatory behavior that ultimately converges).

tight cycles increase. Affinity propagation’s [potentially] completely-connected factor graph
is an extreme case, and thus the implementation containing parallel message updates—where
Vik: r(i, k) is computed and thewi k: a(i, k)—necessitates that messages be dampened,

which is done as follows:

(o) =X) (1) ") and al-,) = A-a®) 4 (1-0) @™)

setting the dampening factorto 0.9 has been sufficient in almost all cases to ensure con-
vergence. For the 400 Olivetti faces dataset examined in Séctibn 4.1, a dampening factor of
A=0.4 is sufficient for convergence with no oscillation; this is shown with other valugsrof

Figure[3.4.

CHAPTER 3. AFFINITY PROPAGATION 48

At any stage in the message-passing procedure, intermediate clustering solutions can be es-
timated from¢; = argmax [a(i, k) +7 (4, k)]. This often produce§f;. } constraint-violating solu-
tions which can be fesolved by defining the set of exemplakSasd the set of non-exemplars
K={1,2,...,N}\K such thatvk € K : ¢, =k andVi € K : ¢; #i. Then run a half-iteration
of k-medoids to properly assign the non-exemplaes,Vi € K : ¢; < argmax s(i, k). Affinity
propagation is considered converged if, for some constamii t s itergfiltc)ns, exemplar sét
remains unchanged. The number of iterations should also be bounded by camistants (in
case)\~1 leading to no exemplat&’| = 0 for many iterations initially while self-availabilities
a(k, k) slowly rise) andnaxi t s (in case of non-convergence, perhaps due to degeneracies).

For final results, performance can be slightly enhanced by runmimgdoids to convergence

and not just the half-iteration to satisfy constraints.

3.2.5 Sparse Similarities and Affinity Propagation

Affinity propagation is well-suited to take advantage of sparsity in data. When similarities are
computed between each data point, the algorithm shown in equifioh (3@H)Nis). Some
problems are structured in such a way that many data points cannot possibly be represented

by many others as exemplai. 3i, k : s(i, k) = —oco. In this caser(i, k) is automatically

— 00

—oo anda(i, k) is inconsequential because it is overpowereanix [;_(;,?)+a(i,k)]. For

such a sparsSedataset withV data points but only\/ < N? values of(i, k) € {1,2,..., N}?
wheres(i, k) > —oo, only M responsibility and availability messages need to be computed
and exchanged. In terms of storage, the sparseness structure can be stored for quick traversal
using2M 2- or 4-byte integersi! for eachi-value, M for eachk-value), and\/ similarities,
responsibilities, and availabilities need to be stored as 4-byte or 8-byte floating-point values.

This results in memory requirements betwaén)/ and32- M bytes®

5The data is only sparse in the sense that a matrixpfsimilarities) has zero entries; in the log-domain the
missing similarities become co.

5There is no need to store values ofa(°'Y) or r(°19) | as there is no advantage to dampening messames
masse

CHAPTER 3. AFFINITY PROPAGATION 49

3.3 Alternate Factor Graph for Affinity Propagation

An equivalent formulation of affinity propagation can be derived by usiddpinary variable
nodes (orM/<N? for sparse situations) armV constraint function nodes more in line with the
0-1 integer programming formulations from Section 2.4.1. As before, varidhles{0, 1}
indicate cluster assignments whégg= 1 for i # k indicates that data poiritis in a cluster
characterized by exemplar data pointandb,, = 1 indicates that poinkt is an exemplar.
Function nodeg f5.(b1x, bax, - - -, bai) 12, enforce a similar constraint as before (disallowing
clusters without an exemplar), and additional function ndde&;1, b, . . ., bin)}, enforce

that all data points are in exactly one cluster (possibly as an exemplar):

Je(big, bogs .. bng) = [bkk:max bik] = (3.16)
' 1, otherwise ,

and

1| = (3.17)

N b :| 0, if Z]]fvzlbzk%l ;
1, otherwise .

gi(bz’h 52‘27 ceey bz’N)

[
[
ol
Il
i
s
o
[

The global function is:

=
—=

] N N
F(ba S) - 6bik'8(2’k) : H fk(blk’vb2k7"'ab]\”€) : ng(bzlab2277bZN) ;
i k=1 =

=1

Mzi
ol
M=l

N N
bik-s(i,k)+ 3 log fr(big,bak,--sbnk)+ D log gi(bi1,biz,....biN)
1 k=1 =1

I

o
D
]
I
ol
I

Four types of messages are passed between variable nodes and function nodes as shown in
Figure[3.b. Messages outgoing from variable nodes are the element-wise product of all other

incoming messages as shown here:

CHAPTER 3. AFFINITY PROPAGATION 50

s(1,1) s(1,2) 5(1,3) s(LN)
1 [— G1(b11,b1ebin)
b,) (blj (blj @%{
s(2,1) s(2,2) 5(2,3) s(2,N))
l I — | gz(bzybzz;-wbz/v)
bZ bZ bZ bZ
5(3,1) 5(3,2) 5(3,3) s(3,N)
l | e —— = 03(b31,b35,...,b3y)
bs bs bs e bs
' stik) T '
ik
Gz‘kl = = 0;(bj1,bp, - byy)
—
eee b’. Bik
a .
Al
s(N,1) s(N,2) s(N,3) ‘ \p ik S(N,N)
l I J In(bp1 by)
b N b N b N eee ces N

fl (b11'b21""'bN1) fZ (b12'b22""'bN2) f3 (b13'b23""'bN3) fk(blk'bzk""'ka) fN (blN'bZNl"'leN)

Figure 3.5: An alternate grid-topology factor graph can be used to derive affinity propaga-
tion. N-state variable; is divided into N binary variabled;;, b;», . .., b;x under additional
constrainty; that >0 by, =1.

CHAPTER 3. AFFINITY PROPAGATION 51

0i(0)- ik (0), for b, =0; 0i,(0)- Bix(0), for by, =0;
oik(1)- (1), for by, =1 oi(1)- B (1), for by, =1

These binary messages can be ‘normalized’ and instead represented by a scatar=atio

M0 = SiOrantm = owouw andpy = DG = SEGIEGE = 0w Likewise, messages

outgoing from the similarity function nodes can be interpreted ;a&;.) = e**+*("¥) so the

normalized ratio would be;;, = Z’“Eég = ebis(bk) - Messages outgoing from theconstraint

nodes differ for sum-product and max-product message-passing; they are as follows:

CTEDIDDEED IO DEE Z [9:(]17327 oo Tt Oy Jiets - N T Tik’(jk’)}

Ji g2 Jk=1Jk+1

Dkt [Tik’(l) Mg iy Tik”(o)]7 for by =0;
Hk’:k";ﬁk Tik! (0), for bzk =1 ;

MP, _ . .) .)
ik (b2k> = Inaxmax:- - -maxmax- - -max 9z’(]17]2, ey Jh=15 Uik Jrg1s - - 7]N)' HTik’(]k’)
J1 J2 Jk—1 Jk+1 IN k" k'#k

]:’1}6%22 |:Tzk/(1) . Hk”k”%{k,k’} Tzk//<0)i| y fOI‘ blkzo ’

Hk’:k’;ﬁk Tik/(O), fOl" bzkzl .

These can be expressed in terms of the scalar ratios, (99 is replaced withl andr;;(1)

with 7;, to yield simple sum- and max-product update equatjgjis= 22{28 =1/ i and
ik Kk'#k

MP _ Byt () .
ik T ,B%P(O) 1/&%Tzk

Messages outgoing from the othfrconstraint function nodes are somewhat more compli-

cated:

CHAPTER 3. AFFINITY PROPAGATION 52

agy (bir) =220 30 D0 E fl(.]17.]27'"7ji—17bik7ji+17"'7jN)'Hi’;i’;éipi’k(ji’)]

J1 J2 Ji—1 Jit+1
(

Hi,:i/# pie(0) =1, fori=Fk and by, =0
Hi’:i’;ﬁi [pir(0)+pirie(1)] = Hw;y;si [L+pir], fori=Fk and by, =1;

Pre(1) TT [0irk (0)+pirk (1) 4+ prr(0) T T pirk(0) = pre- T T [1+pirk] +1, for ik, bip=0;
i k) i {i) i (i)

L e (D) T oy [P (0) - pii(1)] = ok Tining s gy [1+ i), for ik and by =1,

s0 P = _ iz [L+ pin], fori=Fk;
X = aSP(0)

-1
(1 + ok [y [1+ Pz”k]) , forizk,

and for the max-product algorithm,

gy’ (by) =max max - - "Mmaxmax - - - max [fi(jh]éa ey Jim1s biky Jig1s -5 g)T pi’k(ji’)]
2 Jim1 o Jitt JN il

([Livinzi piri(0) = 1, for i=k and by, =0

[Linings max [pirr(0), pirg(1)] = [Lini; max [1, pirg], for i=k and by, =1;

= max (pua(1) - ooy 0% [o0w(0), pik (1] p1a(0) - Tl pik(0))

= max (1, Pk * [Tinirge iy max [1, p,-/k]) , for ik and b, =0

pkk(l) H max [plfk(O), pyk(l)] = Pkk" H max [1, pi’k]a for Z;’él{? and blkzl)

L itirg{ik} itifg {ik}
so aMP — 2 (1) _ [L5z max[1, pys], fori=k;
oG = 1\I£P (0) -

min (0, Pk Hi,:i,gé{i7k} max[l,p,-/k]) , fori#£k .

Because;, = o;,a, andp;, = oGk, We can absorb the-updates into the-updates by re-

L b b
writing it aspf = o850 =03/ > Tiw =0/ Y. oaw i andpllt = o, BN —U,k/ max Tij =
k:k'2k Ktk kFk

Uik/ﬁ% oy . Then, the standard affinity propagation formulation from Secfiods 311-3.2
can be recovered by labeling responsibilitiés k) =log p5F °* MP and availabilities: (i, k) =

lOg aSP or MP

CHAPTER 3. AFFINITY PROPAGATION 53

3.4 Other algorithms for clustering via belief propagation

Several additional algorithms that employ belief propagation for exemplar-based clustering are
possible and have been explored. The following section describes several possibilities; they are
more tightly-constrained (Sectibn 3.4.1) or have higher computational complexity[(3.4.2-3.4.4)

than affinity propagation and are thus not developed further.

3.4.1 Affinity propagation with added non-empty cluster constraint

In its earliest formulation [34], affinity propagation clustering employed a factor graph with
identical topology but more stringent constraint functiof&,(c)}2_,. Not only did this func-

tion disallow exemplar-less clusters (as is the case Yjilic)}), but also clusters without

any non-exemplar members. This was coupled with a sequential message-passing schedule
to prevent periodic swings where all data points were considered exemplars (heading empty

clusters). The constraint is as follows:

0, if ¢ #k but Ji: ¢; =k (disallow clusters without an exemplar) ;
fr(€) = {0, if ¢ =k and Vitk: ¢; #k (disallow clusters lacking non-exemplar members) ;

1, otherwise .

The second line inf/(c) does not appear itfy(c) and is shown in red. This leads to

significantly-more complicated update equatidns (3.19) landl(3.20), that are less intuitive:

Sum-product formulation:
(k) — es(i,k)/zk,:k/#k [es(i,k’)ea(i,k’)}

Hi’:i’;ﬁi |:1 + 6T(i,’k):| *1, for k=1 ;

([6—7"(16,/6)71} ,Hi/:i%{i’k} [1 + 67‘(1"7’*3)} -1 + 1>_,1for ki .

(3.19)

6a(i,k) —

CHAPTER 3. AFFINITY PROPAGATION 54

Max-product formulation:
SNl ., .,
T(l7k)_s(27k) k%%ﬁ [S(Z7k) +&(Z,]{?)]

max min [0, 7 (¢, k)] + 3 sy max [0, 7 (i k)], for k=1 ;

O <—12?Xk in [0, K, (5, 8) + S 0, (2 k)D for ki .
(3.20)

This algorithm, while stillO(N?), was shown in [25] to have quite inferior performance
due to the extra constraint unnecessarily preventing the algorithm from moving through regions
of the search space on the way to better solutions. To compare the two algorithms, the task
of clustering image patches described in [34] was examin®atches were clustered using
both versions of affinity propagation and the resulting likelihood was compared to 100,000
restarts of.-medoids clustering (requiring roughly 1000 times the computation as both affinity

propagation algorithms), and tiseienceversion of affinity propagation achieves better results

for a wide variety of parameters, as shown in Figuré 3.6.

3.4.2 Alternate factor graph: N binary nodes

Instead of having variables, ¢, . . ., cy that makeN-ary assignments of each data point to
clusters, it is possible to us€ binary variables that only indicate whether or not each point
is an exemplar. For each binary variab{é;}Y,, b;=1 indicates that data poiritserves as
an exemplar and,=0 that it is a non-exemplar—implicitly belonging in the cluster to which
it has highest similarityargmax;., _, s(i, k). This setup is reflected in the factor graph from

Figure[3.7, with constraint functions absorbing similarities as follows:

"Briefly (see [34] for details), a tiling 024 x 24 non-overlapping patches was extracted from the image and
translation-invariant similarities were computed by comparing smafier16 windows within each patch. The
lowest squared error between windows (over all possible translations) was chosen as a similarity measure.

CHAPTER 3. AFFINITY PROPAGATION 55

100,000th ¢
(of 100002} “~ & A

10,000th ¢
(of 100,002) o

1,000th } A
(of 100,002)

100th
(of 100,002)

10th ¢ o
(of 100,002) °

1st o— ' : : : : : ——©0
(besy 2 3 4 5 6 7 8 9 10 11 12
K (number of clusters)

A Affinity Propagation (NIPS, 2006)
® Affinity Propagation (Science, 2007)

Figure 3.6: Performance (measured by ranking within 100,000 restakttsnefdoids cluster-

ing plus one run of each version of max-product affinity propagation) for various numbers of
clusters on a patch clustering task. A common value for the exemplar preferences was tuned
to producek = {2,3,...,12} clusters and the result was compared to that obtained from
100 000 random initializations df-medoids. In most cases, tiszienceversion of affinity
propagation [38] finds a configuration at or near the best of the miamgdoids initializa-

tions, while the oldeNIPSversion [34] performs comparatively worse. For few clusterg.(

K ={3,4,5}), the clustering task is trivial (search spaces of §i2¢= 41664, (°) =635376,

and (654) =7624512, respectively), so 100 000 restartskemedoids works well. Larger search
spaces (e.gk =9 has(‘,) ~3x10'°) show a clearer benefit for affinity propagation.

CHAPTER 3. AFFINITY PROPAGATION 56

h,(b;s) h,(b;s) hs(b;s)

N NS \\

hN(b;S)

7

Figure 3.7: An alternate factor graph for exemplar-based clusteringMWiltlinary variables,

b, b, ..., by, Wwhereb, = 1 indicates that data poiritis an exemplar. Non-exemplars (indi-
cated byb, = 0) are implicitly assigned to the exemplar most-similar to them; this is incorpo-
rated into constraint®;, hs, ..., hy.

(> by >0] - maxy, 3R b=l for b, =0 (i is a non-exemplar) ;
hi(bl, bg, cey bN, S) =
e*9) forb;=1 (iis an exemplar) .

Note that the initia[) . b, > 0] multiplier ensures that the degenerate case where there are

no exemplarg,e. Vi: b; =0, is not allowed. The global function is:

no-exemplar exemplar non-exemplars belong to cluster
case not allowed preferences with most-similar exemplar
N — N .

~

N N 2 N .
F(b’ S) - Hi:l hl(b7 S) - [Zi’bil} . Hi:bi=1 68(272) . Hi:bizo mk’ax |i65(l’k).[bk:1}} (321)

The algorithm isO(N?) after some optimization, and preliminary experimentation with small
problems has shown it to be even slower than exact (linear programming) methods with worse

results than affinity propagation.

3.4.3 Alternate factor graph: K N-ary nodes

It is possible to re-write the exemplar-based clustering problem explicitly in terms of fidding

clusters usings N-ary variables, each of which indicate an exemplar suchdghat indicates

CHAPTER 3. AFFINITY PROPAGATION 57

Yy(c) Y,(c) Ys(c) Yilcycypenn

SN \\%é\'
N\

b,(c1,6,) lc1,Cpe0Ch) bilcyenCy)

Figure 3.8: An alternate factor graph for exemplar-based clustering Singary variables,
c1,09,. .., Ck, €ach of which index an exemplar. Non-exemplars are implicitly assigned to
the exemplar most-similar to them; this is incorporated into constraints,, ...,y y. Con-
straintsg,, ¢, . . ., ¢ ensure that no points are duplicated in the set of exemplars.

that data point is an exemplar. The factor graph topology is shown in Figure 3.8. Ther¥ are
function nodes{v;}% ,, each of which computes tfi& non-exemplar data point’s contribution

to the net similarity by choosing the most-similar cluster. In addition, thergsafenction
nodes{¢:}X_,, that include exemplar preferences in the global function and also enforce the
tedious constraint that there are no duplicate or repeated exemplars. These functions are defined

as follows:

K

N ‘
Yi(cr, e, o0 0x) = Hizl (maxkze{l,Q K} eslier) . H (&% 7&2]) ;

k'=1

N NI e
%(01702,---,0}():1_[(max es(“k)) :

K k—1
Or(cr, ey o) = I_LC 1<es(ck’ck) H » [c;ﬁéck/]), k>1.

CHAPTER 3. AFFINITY PROPAGATION 58

They lead to the following global function:

F<Clac27 <o CK; S):Hle ¢k(01702, .. -7Ck) : Hf\il 1%'(01,027 .- -7CK>

preferences o duplicates) in most-similar cluster only non-exemplar:
K [mA~— k=1 N - — K ——
= II| e -TT lew#ew] |- 11 max e T [ep #1]
h=1 =1 i=1| k€{1,2,...K} k=1

Computation of sum-product and max-product messages can be done in polynomial time
(in particular, theg-constraints can be efficiently absorbed into theonstraints for max-

product), but this is not explored further in this thesis.

3.4.4 Alternate factor graph: ternary nodes

A final factor graph worth brief mention is shown in Figlre]3.9. It involves ternary vari-
ables{tix} (i xef1.2,...N}2 and i<k fOr indicating cluster membership, whetg = 1 indicates
that data point is in a cluster whose exemplar is data pointt;, = —1 that data point

k is in a cluster whose exemplar is data paintandt¢;, = 0 otherwise. There aré/ bi-
nary variables{b; }~ , indicating whether each data point,is an exemplari = 1) or non-
exemplar §; = 0). Function nodes enforce the usual constraints With;, ..., b;,...,tin) =

{bl- > max tki] -{bi > max —tik} -[1 :i_zl [tri=—1] + b; + év: [tix=1]| acting similar to equa-

k€{172 ’i—l} k:E{’H—l N} k=1 k=i+1

tions (3.16) and (3.17) in Sectién B.3.

CHAPTER 3. AFFINITY PROPAGATION 59

Gy tigstiysnnsty)

gz(tmbz’tl:x‘tzw“” 2N

gx(tm’t’z.;'rb:x’t.n’“"t.w)

Figure 3.9: This factor graph for exemplar-based clustering involves ternary variables
{tie} i p)eq1,2,... N2 and i<k fOr indicating cluster membership wherg = 1 indicates that data
pointi is in a cluster whose exemplar is data pdint;, = —1 that data point is in a cluster
whose exemplar is data poiitandt;, =0 otherwise.

Chapter 4

Benchmarking Affinity Propagation

The affinity propagation algorithm for exemplar-based clustering performs well at finding clus-
tering solutions that optimize net similarity. This chapter benchmarks affinity propagation
alongside 15 other clustering methods for a range of smak: (1000) and large {V > 5000)

datasets.

4.1 Olivetti faces: Clustering a small dataset

The Olivetti faces dataset [87] is a collectiordof) 64x64 greyscale images of human faces (10
from each of 40 people) with varying facial expressions and lighting conditions. The complete

dataset is available at http://www.cs.toronto.edaiveis/data.htmnd shown in Figure 4.1.

Figure 4.1: The Olivetti dataset [87] consistsiof) 64 x 64 greyscale images of human faces.

60

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 61

I
10000 exact ;olu;ion (CPLEX 7.1)]
g approximation (CPLEX 7.1) |

““““““““““““““““““ ~onehour---- - S]

1000 .

100 E
Foorrer S O W g ONE MINUEE v E

time (seconds)

10:’ E

1 | | | | | | |
0 50 100 150 200 250 300 350 400

number of clusters (K)

Figure 4.2: The exact (CPLEX 7.1) solution time is plotted as a functioA’ ¢humber of
clusters). The curve is thin in cases where only an approximate solution was ficeind (
bound to several decimal places); for mastvalues the optimal solution was found along
with the set of exemplars that yields it. Most interesting solutions take minutes to find, with
some in thel < 50 range requiring several hours.

To lessen the effects of the background, only the cebtral0 pixel window (normalized to
have mean intensity zero and standard deviatidhis used to compute pairwise similarities.
The similarity s(i, k) of face image to face image: was set to the negative sum of squared

pixel differences between these two images.

4.1.1 Exact clustering solutions

This dataset was of particular interest because it has a large enough search space to challenge
approximate algorithmse(g, for N = 400 points andK = 40 clusters,(ﬁ) ~ 10°® possible
exemplar sets) but is small enough for the linear programming relaxaof.1) to feasibly
find exact solutions for most parameter settings.

CPLEX 7.1 optimization software was used to compute optimal clusterings of the Olivetti
data for all possible numbers of clusters,, K = 1,2,..., N using the linear programming

formulation from Sectio 2.411. In most interesting cases, K < 100, several minutes of

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 62

‘Sc’iata + p K - (5’
(similarity of data to exemplars) (total preference of exemplars) (net similarity)
0 0 — - o
— e
2000 2000} 2000 —
K -
-4000 -4000 b /—;_;?—/
6000 6000 6000 | é —
-8000 -8000 ¢/ E L 5 7 —
-10000 -10000 ,"’ E S 7 //
/ g
-12000 - -12000 [+ -
7/
-16000 |- 16000 | E / ”,r’
-18000 18000 £ -18000 £ £ £ L
1000 -100 -10 -1 -1000 100 -10 1 1000 -100 -10 -1
shared preference (p) shared preference (shared preference (p)

-3461.585
K=188

-3461.606

®H
\(’1 ,/»\%%

4

Ao &

1 \(\’/'\ /X%Q)

-3461.585| ! ¥ |
p=-10.8877 p=-10.8876 p=-10.8875

Figure 4.3: The contributions (and tradeoffs) of data similariti&g{) and exemplar pref-
erences to net similarityy) are shown for exact CPLEX solutions. Increasing the exemplar
preference) monotonically increases the optimal number of clustéfy, (out the zoomed-

in region illustrates that not al-values é.g. K € {186, 187}) have associated preference
ranges. Note that - K is linear but appears logarithmic due to the horizontal axis using a log
scale.

computation time were required for CPLEX to find a solution as shown in Figure 4.2. Exact
solutions were found fo366 K -values; bounds (though not solutions with exemplar sets) that
were tight to several digits of precision were found for the remaisihdy-values and are
shown as thin lines in the figure.

Closer examination of the exact linear programming results provide several valuable in-
sights into the exemplar-based clustering problem setup. Higure 4.3 shows the similarity of
data to exemplarsS.:»), the total preference of exemplars-(K), and their sum, the net
similarity (S). Separate curves are shown for different numbers of clusters, and each quantity

is shown as a function of the globally-shared preferepcé,.;. is constant with respect o

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 63

so it is shown as an ensemble of horizontal lines; eacti is linear with slopek’. Noting

that all similarities and preferences are negative, the curves are ordered differently in both of
the component plots: faf..., the curves are parallel and sorted according to ascenfding
becauseS,... is highest where there are the fewest non-exemplar data points £Rigfihe

total preference of exemplars has the reverse situation, where curves with increasing slope are
sorted in order of descendirfg because solutions with few clusters contain the smallest pref-
erence contributions/penalties. The sum, net similafity Sq...+p - K, is also plotted and
illustrates the tradeoff between the two terms and how the optimal number of clusters increases
as the preference is increased.

The optimal number of clusters increases monotonically with the preference, however, not
every K-value has an associated interval of preference values for which it is optimal—for
this problem the set oK € {20, 21, 23,28, 34,46, 62,100, 101, 118, 129, 186, 187} falls into
this category. Apparently, CPLEX has difficulty optimizing in regions specifically around
these missing<-values and with the only exceptions being néak {129,186, 187}. The
situation aroundx” € [185,189] is illustrated in the highly zoomed-in Section aroumd:
[—10.8877, —10.8875]. At the point where thek’ = 185 and K’ = 188 curves intersect, the
K = 186 and theK = 187 curves are both below; because their slopes are higher than the
K = 185 curve they are never greater for lower preferences nor are they ever higher for greater
preferences than the more-slop€d= 188. The intuition is that the preference cost of adding
an extra exemplar in the area aroynd —10.8876 (whereK =185 is optimal) never outweighs
the savings of a bette$,.;. solution, and it only becomes worthwhile (the net similarity im-

proves) when three additional exemplars are added.

4.1.2 Performance of Affinity Propagation

Next, affinity propagation was run usifng00 different global preference values logarithmi-
cally sampled between 1200 and—0.7 (randomly sampled from the horizontal axis of Fig-

urel4.4), each requiring less than one minute of computation time. An important consideration

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 64

(A)
400 L i e
300

200 —

100

number of clusters (K)
N
o
T —rrr1irm

T T T TTTTT

5

4

3

2 r exact solution (CPLEX 7.1)

Y affinity propagation

1ok, ., o, . [. [. I

-1000 -100 -10 -1
shared preference (p)

(B)

B o

1

20s

=
o
7]

CPU time (seconds)

o

-1000 -100 -10 -1
shared preference (p)

Figure 4.4: Affinity propagation was run on the Olivetti fackgaset withl 000 global prefer-
ences) sampled randomly from the horizontal axis shown above. The number of clusters,
found is plotted as a function @fin (A) and superimposed over the exact solution found by
CPLEX. There is little divergence between the two curves, and it mostly takes plakef6r

The CPU time required for affinity propagation is shown in (B); it typically requires seconds
whereas CPLEX requires minutes or even hours. With—10, the solutions split into two
regions because many runs oscillate; this represents less-interesting solution&wher@)

for N = 400.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 65

is whether affinity propagation finds the ‘correct’ number of clusters; the resulting number
found are shown in Figufe 4.4 alongside optimal values found by CPLEX. For a large range of
preferences (untpp > —10 i.e. K > 300), affinity propagation finds solutions quite close to the
optimal K. The net similaritiesS, achieved by affinity propagation are shown in Figurée 4.5
as well as optimal values derived from CPLEX (computed using Sq.i. + K -p). In addi-

tion, Figure[4.b shows the total similarity of non-exemplar points to their exemgass, as

a function of K for both algorithms.

Finding a suitable preference using cross-validation

For datasets such as the0 Olivetti faces where negative squared Euclidean distance is used
as the similarity measure, a suitable choice of preference can be made by employing ten-fold
cross-validation. This was attempted by running affinity propagation for the $600flobal
preference values described in Secfion 4.1.2 on ten diffé¥ent360-sized training sets with

10% of the data held out for validation. Using the clustering solutions found by affinity prop-
agation, mixtures of isotropic Gaussians were found (one M-step from EM) and the likelihood
of the validation sets under the mixture was computed. This is shown in the plot of total vali-
dation log-likelihood as a function of preferengg {n Figure[4.6. The preference value with

the highest log-likelihoody* ~ —31.5082, corresponds to affinity propagation finding= 58
exemplars as shown in Figure U.4(A).

4.1.3 Performance of other clustering techniques

Results were computed for 15 additional clustering algorithms and are shown in Eiglirds 4.V to 4.22.
They were computed using a 64-node computing clisted involved roughly a year of total

single-node processing time inAILAB 7.5 (R2007b). Random restarts (where applicable)

1The information processing lab at the University of Toronto, a joint effort between Profs. B. Frey, F. Kschis-
chang, and W. Yu, consists of a Linux-based computing cluster of 64 computing nodes, each with 12 GB of RAM
and two dual-core AMD Opteron 2220 CPUs running at 2.8 GHz.

net similarity (S)

similarity of data to exemplars (S)

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 66

(A)

-2000 —

-4000

-6000

-8000

T

-10000

T

- exact solution (CPLEX 7.1)
7% affinity propagation

I S 1 i L N S S TR TERS 1 s i | RO ST S

Il

-1000 -100 -10 -1
shared preference (p)

-1000

-2000

-3000

-4000 -

-5000

\

-6000

%

-7000

-8000 - 8‘ '

exact solution (CPLEX 7.1)
-9000 E approximation (CPLEX 7.1)
o @ affinity propagation

-10000 | I 1 L1 1 1 11 1 1 | I (T [L L]
1 2 3 4 5 6 7 88910 20 30 40 50 60 70809000 200 300 400

number of clusters (K)

I
L

Figure 4.5: The quality of affinity propagation’s solutios the Olivetti faces data are shown

as a function of the preference (A) and number of clusters (B). These two different setups
lead to different cost functions as shown in the vertical axes; when the number of clusters is
controlled by a global preferencg, as in (A), the net similarityS, is maximized reflecting

the tradeoff between exemplar preferences and data point similarities. When the number of
clusters is explicitly defined as in (B), the similarity between data points and their exemplars,

Sdatas IS Maximized.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 67

x 10
"3
z *
9 *
c
g =
o
*
T e
™ Or
>
S
o
°
S 05
[=]
=
2 “r
= ¥
=]
o *
= .
151 ﬁ'
_2 i La : Lo - ** 1
-1000 -100 p=315 -10 -1

shared preference (p)

Figure 4.6: A suitable choice of preference for tt# Olivetti faces dataset using ten-fold
cross-validation is shown. Affinity propagation was run on training set$fa® shared pref-
erence values, and Gaussian mixture distributions were learned for each clustering solution
found. The validation log-likelihoods are shown, with the best preferepice; —31.5082,
corresponding to a solution with' =58 exemplars.

are shown (shaded) as described in the legend, with median best and worst of 10, 100, 1000,
etc. runs demarcating boundaries where shading is lightened; specifically, the median best and
worst runs oft restarts are defined as the median result of as many samyierials as avail-

able. Performance after one second, one minute, and one hour of CPU time are also shown
to better illustrate the tradeoff between running time and quality of solution. To facilitate eas-
ier comparison, all algorithms are shown on plots with the same scales on both axes and, in
contrast with Figuré 4]5(B), the horizontal axis (number of clust&jsis shown with a linear

scale, and the vertical axis is shown relative to CPLEX'’s optifijal,.

The algorithms examined includemeans and the EM algorithm for a mixture of Gaus-

sians, which is suitable because similarity is defined as the negative sum-of-squared-differences

2The sample median best and worst runs@starts are thé).5)/ and1—(0.5)'/* quantile results of" >> ¢
restarts. This can be seen by considering the median maximananflom variabled/,, Us, .. ., U,, distributed
uniformly on [0, 1]. Defining M) = median[max(U;, Uy, ..., U;)], thenP[U; < M® Uy < MWD ... U, <
MW] = (P[U<M(t>])t = 0.5s0M® = (0.5)"/t. For example, if a total of’ = 10° random restarts are
computed, the median best of ten restarts igthe)!/1° ~ 0.933" quantilei.e., the66700"-best restart.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 68

betweenb0 x 50 pixel windows, &500-dimensional data space. These algorithms were all run
until convergence or 100 iterations, whichever came first. For algorithms that find only a par-
titioning of data points but no exemplars, the resulting partition is ‘quantized’ by initializing

a single restart ok-medoids to find the locally-optimal set of exemplars for the partition (or

if means characterize cluster centers, quantized to exemplars). In more detail, the algorithms

examined are as follows:

Affinity Propagation

Affinity propagation was run with a dampening factor’ef 0.9 for a maximum of 1000 itera-

tions (where 100 consecutive iterations of no change in exemplar set qualifies as ‘convergence’)
and is shown on all plots for easier comparison. Running times are shown in Eigure 4.4; it is
typically several seconds. Performance noticeably degrades befieeib0 and K = 300,

where the solution search space is largest.

Vertex substitution heuristic (VSH) with variable neighbor search

The vertex substitution heuristic is shown alongside CPLEX and affinity propagation in Fig-
ure[4.7. This is by far the most competitive algorithm, achieving optimal results for this prob-
lem in a matter of minutes for alt’-values. It is implemented with variable neighbor search as

described in Sectidn 2.5 and [47]. For problems of this size, VSH is competitive with affinity
propagation in terms of computation time and Fiduré 4.7 shows that initializing VSH with the

output of affinity propagation usually achieves solutions far superior to the median VSH run.

k-medoids clustering (with or without k-log(k) heuristic)

k-medoids clustering is shown alongside CPLEX and affinity propagation in Higdre 4.8 with
several million random initializations computed gervalue. It is the simplest and fastest al-
gorithm available, and results from many restarts show wide variation. Affinity propagation

outperforms millions ofk-medoids runs beyonfl” = 10; interestingly, the number of restarts

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 69

typically required for an optimal solution roughly increases by a factor of ten for every addi-
tional cluster beyond< = 3 until 10 million restarts no longer finds an optimal solution for

K =11's search space (which is roughl9®° in size). k-medoids with thek -log(k) heuristic

is shown in Figuré 4]9. This is implemented as described in Sectiod 2.3.1 with the caveat for
extreme cases thatin (K -In(K'), N) is used as the initial number of clusters before pruning.
This algorithm is somewhat slower per restart than regkdaredoids but shows modest im-
provements given the same amount of time (apparent by comparing the one hour performance

curves).

k-means (with or without %-log(k) heuristic; exemplars from partitions or means)

k-means clustering is shown alongside CPLEX and affinity propagation in Figure$ 4.10-4.13.
This is implemented as described in Secfiod 2.1 and is run on 2500-dimensional data points
to convergence; exemplars are identified either by feeding the resulting cluster partition into
k-medoids or by initializingk-medoids with an exemplar set consisting of points closest to
each meah Due to the high dimensionality of the input data, only hundreds or thousands
of runs are typically feasible within a few hours. Thaneans algorithm with thé -log(K)
heuristic is also shown; it substantially improves the result when compatkecheans without

the heuristic.

EM for mixture of diagonal or isotropic Gaussians (exemplars from partitions or means)

The EM algorithm for mixtures of Gaussians is shown alongside CPLEX and affinity propa-
gation in Figure§ 4.14-4.118. Exemplars can be identified by partitions, in which case cluster
assignment is determined to be the Gaussian with the maximum resporfsibilithey can

be identified by data points closest to the means (as kvitteans). Runs with diagonal and

3If fewer than K exemplars are found due to two means being closest to the same exemplar, the run is dis-
carded.

“4In cases where a Gaussian has no member data points after thresholding (leading to feWepaintitions),
the run is discarded.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 70

runs with isotropic/spherical Gaussians are shown; the high dimensionality of the data makes
computation time per run quite high, negatively impacting results. Finally, to more-closely ap-
proximate the:-means results—which may be better because they optimize the net similarity
unadulterated by different covariances for each cluster—runs of the EM algorithm with spher-

ical Gaussians using a shared global variance annealed to near-zero are showninfFig. 4.18

Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering is shown alongside CPLEX and affinity propagation in
Figure[4.19. Hierarchical agglomerative clustering ([61, 93, 103]) involves creating a linkage
structure (easily visualized as a dendrogram) for a dataset containing a series of nested clusters,
beginning with NV clusters and ending with one large cluster. At eachVof 1 steps, two
subclusters are selected to be merged together using one of several possible critéria; a
clusters partitioning of the dataset can be realized by halting (or revisiting the result of the
(N — K)" agglomeration), akin to ‘chopping’ off the dendrogram tree at the height where it
hasK branches. The MrLAB statistics toolbox implementation of this algorithm wasdjse

with all implemented linkage methods attempted: single linkagk.4. nearest neighbor),
complete linkaged.k.a. furthest neighbor), average linkaga.K.a. unweighted pair group
method with arithmetic mean, UPGMA), weighted average distance, centroid linkage, median
linkage @.k.a.weighted center of mass distance, WPGMC), and Ward’s linkage (inner squared
distance). The resulting partitions for ea€hvalue were then fed intb-medoids clustering for
refinement and exemplar discovery. For this Olivetti dataset, Ward’s linkage method—which
combines clusters so as to minimize the increase in the total within-cluster sum of squares—

is the only method with competitive results; not surprising considering its cost function is

SFor these experiments, EM for a mixture of isotropic/spherical Guassians was employed with means ini-
tialized from data via a furthest-first traversal and a shared (global) varidneex,, = ¢%Ip whereo? =
N—lD Zf;l (Xi—uci)T(Xi—Nci)- Variances (or standard deviations) were gradually annealed to near-zero via
theoew =0.99-0,1q Update at each EM iteration. A total of 1000 iterations were run for each EM optimization,
meaningrgna = 0.99190.0; it 1a1 ~ .00004-01nit1a1. Als0, all N =400 possible furthest-first traversal initializations
were attempted for eadlki-value, resulting in the range of results shown in Figurel4.18.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 71

equivalent to the definition of similarity.

Convex Clustering (Lashkari-Golland, 2007)

The convex clustering method (Lashkari-Golland, 2007) [67] is shown alongside CPLEX and
affinity propagation in Figure 4.20. This algorithm is based on the idea that instead of max-
imizing a typical mixture-model log-likelihoog: ZiNzl log [Zle 7ka<Xi§/~Lk)] (wheref is

an exponential family distribution function), the problem can be reformulated to maximizing

LS log [E;.Vzl wje‘ﬁdw(%xj)] where mixture component densities are located at each data

point. Hered,(x;, z;) must be a Bregman divergence [&8{. d,(z;, z;) = —s(i,7)), and
N

so the latter likelihood is convex whose global optimum, subjeci tar; = 1, can be found
j=1

in polynomial time. Thes parameter is used to control the sharpness of the mixture com-
ponents, which turns out to be a multiplicative adjustment of the negative similarity for this
example; it controls the number of exemplars found by the algorithm. Consistent with other

experiments [82], the convex clustering algorithm seems to have poor performance in firactice

Markov Clustering Algorithm (van Dongen, 2000)

The Markov clustering algorithm [99] is a graph-based clustering algorithm based on simu-
lation of stochastic flow in graphs; results of the algorithm applied to the Olivetti faces are
shown alongside CPLEX and affinity propagation in Figure 4.21. The algorithm performs
competently for very large numbers of clusters, but is difficult to configure for finding small

K.

Spectral Clustering

Spectral Clustering is shown alongside CPLEX and affinity propagation in Higure 4.22. Spec-

tral clustering methods use the top eigenvectors of a matrix derived from the distance (nega-

Sperhaps the dimensionality of the Olivetti dataset plays a part in convex clustering’s poor performance; results
on two-dimensional toy datasets of various sizes yield more satisfactory results.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 72

tive similarity) between points to partition the dataset into clusters. For these simulations, a
spectral clustering algorithm [80] (based on [74, 104]) is used. Briefly/tHargest eigen-
vectors are computed (usingAviLAB’s svds command) for anV x N normalized distance
matrix with diagonal elements set to zero and stacked int®/ ank” matrix whose rows are
normalized (to have unit length) and then clustered ugimgeans. The cluster assignments

of the NV rows of the matrix of eigenvectors correspond to the assignments faV thata
points, which is fed intd:--medoids to refine the solution and identify locally-optimal exem-
plars. This formulation of spectral clustering is not invariant to the saade (nits) of the
pairwise similarities so the input pairwise distance is divided by a faet@uch that the nor-
malized distance between pointand; is defined asl;; = —s(i,j)/o. For each number of
exemplars, 36 normalization factors spanning four orders of magnitude were attempted, namely
0€{0.1,0.2,...,0.9,1,2,...,9,10,20,...,90,100, 200, ...,900}. Most trials require 10—20
seconds of CPU time; a few take longer than a minute but none longer than two minutes. Per-
formance is decent fa < 25 clusters, but it dramatically falls off for more clusters. Note that
spectral clustering algorithms operate without exemplars by partitioning along gaps in data
(i.e, minimizing ‘cut’ weights), which is an entirely different objective than exemplar-based
clustering. The algorithm is included in the comparison for the sake of completeness.

For applications involving computer vision and this Olivetti faces dataset, see Jection 5.1.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 73

(A OLIVETTI FACES: Affinity propagation, Vertex substitution heuristic

{
§
!
g

ere e from optimal

}VSH

exact solution (CPLEX 7.1)
% affinity propagation
* AP followed by VSH . e

K (number of clusters)

(®) OLIVETTI FACES: AP, VSH (same vertical scale as subsequent plots)

0
'..‘ '.... >

%

K (number of clusters)

Figure 4.7: Olivetti faces and affinity propagation, vertebositution heuristic. (A) shows

1000 runs of the vertex substitution heuristic alongside affinity propagation (red stars) and
affinity propagation followed by VSH (green stars). Affinity propagation alone performs some-
what worse than the median performance of VSH, but affinity propagation followed by the
vertex substitution heuristic performs significantly better than the median run of VSH alone.

(B) shows the same plot with a compressed vertical scale directly comparable to subsequent
plots.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 74

net similarity difference from optim

OLIVETTI FACES: k-medoids clustering

§ e o T W e S R YR ool e g

- ,..ta‘ .nn- »” i

N RS & N

s exact solution (CPLEX7.1]
% affinity propagation

~

> k-medoids

W

K (number of clusters)

Figure 4.8: Olivetti faces anktmedoids clustering

OLIVETTI FACES: k-medoids clustering with k-log(k) heuristic

- Wi o0 ¥ WIS R & A T L T

Teorty o "..i‘ K

s gxact solution (CPLEX 7.1}
% affinity propagation
N

> k-medoids

Voo o L

K (number of clusters)

Figure 4.9: Olivetti faces ank-medoids clustering witl -log(k) heuristic

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION

»m optimal

differt e from optii

75

OLIVETTI FACES: k-means clustering (partitions)

Ry 5T I A O G T 6 o, . g ﬁ
L] o9
T : et
=

= axact solution (CPLEX 7.1}

e s

k-means

Ny
K (number of clusters)
Figure 4.10: Olivetti faces andmeans clustering (by partitions)

OLIVETTI FACES: k-means clustering (partitions) with k-log(k) heuristic

¥ ey &% B T ek B T Rl T

e e T ,‘.00,. K
o s

IERATE % o

-2507

= axact solution (CPLEX 7.1}
W affinity propagation

k-means

\/\200 300 400
K (number of clusters)
Figure 4.11: Olivetti faces anttmeans clustering with-log(k) heuristic (by partitions)

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 76

m optimal

ference from opti

OLIVETTI FACES: k-means clustering (by means)

S— e - — = i -
ey o 6%, T, T, & P G sy W g R Y o Bao, s ﬁ
Te gV
L

“ exact solution (CPLEX 7.1}
® affinity propagation

}k—means

NA
. .] K (number of clusters) _
Figure 4.12: Olivetti faces andmeans clustering (by means)

OLIVETTI FACES: k-means clustering (by means) with k-log(k) heuristic

L e e ey &
Chlt WS

[

-]

- ."al

=

“ exact solution (CPLEX 7.1}
® affinity propagation

k-means

\/\200 300 400

K (number of clusters)

Figure 4.13: Olivetti faces andmeans clustering with-log(k) heuristic (by means)

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 77

OLIVETTI FACES: EM for mixture of diagonal Gaussians (partltlons)

.‘ et o Oty NS E, 1S fonate” RSO §EE R WO o [] "ﬁ . # ‘
- I-
-
> f‘,.'u' ‘;;' oy 5

e

“ exact solution (CPLEX 7.1}
® affinity propagation

}EM algorithm

y difference from optimal

1]

-1000} .

\/\200 300 400
K (number of clusters)
Figure 4.14: Olivetti faces and EM for mixture of diagonal Gaussians (by partitions)

OLIVETTI FACES: EM for mixture of diagonal Gaussmns (by means)

i .' m-““‘rl-“ AL T el '{'°¢’-‘ °°‘ .
L]

“ exact solution (CPLEX 7.1}
* affinity propagation

}EM algorithm

similarity difference from optimal

-1000 -

\/\200 300 400
])] K (number of _clusters)])
Figure 4.15: Olivetti faces and EM for mixture of diagonal Gaussians (by means)

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 78

OLIVETTI FACES: EM for mixture of isotropic Gaussians (partitions)

~ ."".“ o B Oy SRS, 5 WS SNy U ORSNNY N § G WO ol [] ,‘q

L ”e“\ o™ s

. “&:"l hﬁ e

“ exact solution (CPLEX 7.1}

® affinity propagation
} EM algorithm

imi ity difference from optimal

i |

\/\200 300 400
K (number of clusters)
Figure 4.16: Olivetti faces and EM for mixture of isotropic Gaussians (by partitions)

OLIVETTI FACES: EM for mixture of isotropic Gaussians (means)

of P e T e, T, o W SN I SN § A8 G N gl

b e .Q.u,. o o

() Fog

o

“ exact solution (CPLEX 7.1}
* affinity propagation

ty difference from optimal

EM algorithm

t simil

\/\200 300 400
K (number of clusters)

Figure 4.17: Olivetti faces and EM for mixture of isotropic Gaussians (by means)

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 79

OLIVETTI FACES: EM for mixture of spherical Gaussians

(variance annealed to zero)

¥ —.m oo U0y TSN &R Gt SO0 CINGS ORIGY G G0 SO g ool - .#n‘ = ’.- 0
N * A h
{ . '-r:_'ﬂg:\!"d.

"
%.
2 -
fss exact solution (CPLEX 7.1}
% affinity propagation
best of 400 runs,
best of 100 runs|
best of 10 runs|

5 1w median run EM algorithm
i worst of 10 runs

worst of 100 runs
worst of 400 runs

V'
K (number of clusters)
Figure 4.18: Olivetti faces and EM for mixture of spherical Gaussians (annealed variance)

OLIVETTI FACES: Hierarchical clustering algorithms
03"0"’;’-;.-- ST T SRS T W— W S L e, . e,

o ;

imilarity difference from optimal

amnn N -

exact solution (CPLEX 7.1)
& affinitv oropaaation

-1250}

a nierarcnical CIUsIenng (Vara's InKage)

WV

K (number of clusters)

Figure 4.19: Olivetti faces and hierarchical agglomerative clustering algorithms

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION

rer ptir

net similari

+ from optimal

net sil

OLIVETTI FACES: Convex clustering algorlthm
P S T T e VI, e ‘
" N

o e fx
M’

»® "’ *

snnk * s
At

¥
x
w
x
750 x x*®
Kx’ % x
* x
1000 i "
k3 " ’a(Vn
x x o =
=
* x M
= x . exact solution (CPLEX 7.1)
it % X x " = affinity propagation
-1250 - % Convex clustering algorithm

v
] .) K (number of clusters) .)
Figure 4.20: Olivetti faces and convex clustering (Lashkari-GollahBS

OLIVETTI FACES: Markov clustering algorlthm

S "~ gncoscey o0ty "SR, &, 5 P QE0A0 0N ONGH DN § G G WONG C gaa g ,.,.....

- ™1 .U . 2 °¢°.$ LI e
' m‘b - L] 1
° o o B%DD @ fog Y ‘: e Robediy
2 s
o
o @ »
o
2 -]
ud} o D&D o
uq-'h % -
500~ % o ® %
o
Du° oo%g 2 el] a .
] m&o&cpan B
1000} a~ SRR S T Rk 1

e affinity propagation
o Markov clustering algorithm (MCL)

\/\

K (number of clusters)
Figure 4.21: Olivetti faces and Markov clustering algorithm (van Dongen)

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 81

OLIVETTI FACES: Spectral clustering

L = o o' e & ok Gipeate G
"'i?.l'..ﬁ-.‘ 0y 5

Bk T L g’“ @ ’...% ...

-

t similarity difference from optimal

exact solution (CPLEX 7.1)
| = affinity propagation
-1280+ = speciral clustering

W
K (number of clusters)
Figure 4.22: Olivetti faces and spectral clustering

4.1.4 Affinity Propagation and Mixture of Gaussians models

The previous section demonstrates that, for the Olivetti faces dataset, affinity propagation per-
forms significantly better than parametric clustering methddsi¢ans, EM for mixture of
Gaussians) on the task of exemplar-based clustering. A question that naturally arises is: how
well does affinity propagation perform when the task is parametric clustering? For example,
if cluster centers were parameterized by means and not constrained to be actual data points,
means might better-describe high-dimensional Gaussian-distributed data, where the data would

tend to lie near a hollow hypersphere surrounding the mean.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 82

OLIVETTI FACES: DATA LOG-LIKELIHOOD

x10 ynder mixture of Gaussians models
34
D EM for mixture of s
32+ spherical Gaussians
- EM for mixture of ;
diagonal Gaussians B
30 % Affinity propagation s*
. P k/
28 ap: {Z,,...,.L} computed as @b &
| covariance of cluster members X / éq‘)f
26
(a]
o L
(@]
I 24f
|
L
X B
=
¢ 22F
o
| n
20+
1.8
16 A, 4
14 ; /’/ AP: {o,,...,0,} computed as
& & variance of cluster members
12

I Y [G S N W SN NS TR N N SN N S (N N W "
20 40 60 80 100 120 140 160 180 200

K (number of clusters)

Figure 4.23: Olivetti faces are clustered using parametric clustering methods (EM for mixture
of spherical, diagonal Gaussians) and data log-likelihoods are compared with corresponding
mixture of Gaussians models learned from affinity propagation’s clustering results.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 83

For the Olivetti faces data, EM for a mixtures of diagonal and spherical {sotropic)
Gaussians was run for a rangefofvalues and the resulting data log-likelihoods are shown in
Figurel4.28. The plot shows the performance range using all posaiblithest-first traver-
sals to initialize at each setting &f. Then, the previous results of affinity propagation are
compared by computing means and covariahtresn the clustering partition and evaluating
the data likelihood under the apppropriate mixture model. All algorithms use the same lower
bound for variancesl()~%), which is frequently invoked when computing variances from sin-
gleton clusters that consistly arise beyakid> 150 (due to the output partitioning of affinity
propagation containing hard assignments).

Notice that for this dataset, affinity propagation does a decent job at finding Gaussian mix-
ture models, even though it is optimizing an entirely different exemplar-based clustering cost
function more comparable to a set of spherical Gaussians with a single (global) variance. For
all values ofK, affinity propagation falls within the performance range of furthest-first traver-
sal initializations of the EM algorithm. Notably, for mixtures of diagonal Gaussians in the
range30 < K < 50, affinity propagation’s performance exceeds even the best inialization of

EM.

4.2 Affinity Propagation and Large Datasets

The results presented in the previous section and in [10] indicate that for small dafésets (
1000) such as the Olivetti faces, the vertex substitution heuristic frequently outperforms affinity
propagation. However, because CPLEX optimization software can be used to find exact solu-
tions for such small datasets, a question that naturally arises is: “how do affinity propagation
and the vertex substitution heuristic compare for larger problems, where exact clustering is not
practically feasible?”. In this section, affinity propagation is comprehensively compared to the

vertex substitution heuristié-medoids k-means, EM for mixtures of Gaussians, hierarchical

’The covariance matrices for affinity propagation are computed to be of the same daymd{agonal,
isotropic) as the mixture of Gaussians models to which comparisons are made.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 84

clustering, and spectral clustering on three datasets containing many thousands of data points.

In the case of larger datasets, comparison is less straightforward for two reasons:

e Affinity propagation (and CPLEX linear programming) use the input preference to find
a set of exemplars to maximize the net similarity. Other algorithms explicitly require
the number of exemplars as input and then attempt to maximize the similarity of the
data to an exemplar set of that size. With the exception of the computationally-infeasible
linear programming relaxation, the two optimizations are not interchangeable; many runs
of affinity propagation could be required in a possibly-fruitless bisection search for a
preference leading to a specifiéd-value. On the other hand, a similar search over
K-values (potentially with many restarts) would be required for other algoritlengs (
k-medoids) to minimizes if a preference is specified. This was not a problem with the
smaller Olivetti dataset, where algorithms could be run for all posgibl@lues or many

preferences (leading to most if not &ll-values).

e The exact solution is unavailable as a baseline for comparison so solution quality com-
parisons over a range &f- or p-values cannot be in absolute terms. Differences between
Saata OF S Vary across several orders of magnitude for different valués of p (see Fig-
ure[4.3), so performance differences between algorithms without perfectly-maiched
are not visible at a global scale without subtracting a nearby baseline such as the opti-
mal value (as in Figurds 4.7 fo 4122). For consistency, the figures in this section use an
approximate baseline equal to the median performance of 100 ruasnefdoids clus-
tering, which is easy enough to be computed for all [thousands of] possible values of

K.

Another issue with larger datasets is that computation time is a more important variable
in assessing algorithm performance and so plots need to reflect this extra dimension. Plotting
in three dimensions—as illustrated in Figlre 4.25—is cluttered and lacks perspective, so two-

dimensional slices across notable points on the time (one minute, one hour, one day, one week)

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 85

axis are shown instead. Each plot contains a smooth curve with several goaeq -values,

where the number of clusters varies approximately flgm= 10 to K = N/2, as shown on

the horizontal axes. Slices along the or p-axes were shown in [35] but require the number

of clusters to be consistent across all algorithms; this would be somewhat arbitrary, given that
affinity propagation’s solution only finds an approximation.

The datasets examined consist of measurements for 8124 mushrooms, 11,000 handwritten
digits, and customer ratings for 17,770 movies from Netflix. Similarities range from nega-
tive squared Euclidean-distance in a 64-dimensional data space for the handwritten digits, to
uniform-loss embeddable in 121-dimensional space for mushrooms, to extremely-high dimen-

sion as is the case for the sparse movie ratings data.

4.2.1 Mushroom data (V=_8124)

The mushroom dataset [90] is available at the UCI Machine Learning Resp8sitargntains

22 discrete, non-ordinal attributes for each of 8124 mushrooms as illustrated in [Eigure 4.24.

These attributes include color, shape, and surface characteristics of the mushrooms’ cap, gill,
and stalk—the stalk root attribute is ignored because it is more than 30% incomplete. The

similarity function uses the uniform loss as shown in equafiod (4.1) which counts the number

of matching attributes between each mushroom, meaning that similarities are integers in the

range0 < s(i, k) <21.

21
s(i, k) = [(#" mushroom'si" attributg) = (k" mushroom's" attributg| (4.1)
j=1
Simulations were carried out for the same set of clustering algorithms as in Seciion 4.1

and are shown in Figurés 4126-4.27. Simulations were carried out using algorithms such as

k-means (with and without thie-log (k) heuristic, finding exemplars by initializinggmedoids

8Located at http://mlearn.ics.uci.edu/MLRepository.html

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 86

P el)

N Rl BN xS

S \ 9\6\ k\"‘?’"\\“ \@e;\f‘aé*“ ‘\eg.'l\@‘*

S SRR et o9 ‘ﬁs&,
‘Q\e‘ \9\“\% “%9,\9 ‘%d\“\ R o('“;\\%?’?\’ oo
el o &Pt s oo oDlcedha®
QT AT o o el Cooootcetl st St
o 3 X of o A 1ol
oo™ e e \\6‘*3\@-‘\\3‘\\?‘\3‘2%2‘«0“‘ s
Oo® el 197 RIS G (ot oSt
\x\%‘\a*\s\«\?} et o x\‘\zu’“\\, AR e o
\ e W€ \O"
z,c*e\ ‘%s\“‘ SRR 0% 0«“\0«4% o ot
NS e AN IR IR APCINC AT RTINS
z<\\ v«\« AR e o O O e el e
QO Q‘\)K \‘“L O OyoarBiollcloe fu (\‘\"‘\‘\"\;“\‘l\o‘a AN
e\\\ v“’o@“ < 6\3‘\2& &\“ \‘ NN ‘g':vz\vo’*:z\o‘%\’%(o&&_“& NE 2
A DRI @ ook Qo 050t &
ge"vso“go\“ 25 \,,G%Q’b“ =\ \° s\“v{ R 2 dg‘c;\"‘\o:%v“\\%‘ v
9 29 29 ot 6 q;\ 9,\ X ‘\\\ G R R R L R 8 P
i o]
g =
N
N
> c
1%
>
3
8
| 1%}
N J
Y,

22 attributes

Figure 4.24: The mushrooms dataset contains 22 discrete, non-ordinal attributes for each of
8124 mushrooms, as illustrated above.
with the means and by the cluster partitions), EM for mixture of Gaussians (using diagonal
and isotropic/spherical Gaussians, finding exemplars by means and by partitions), hierarchical
clustering, and spectral clustering. These techniques rely on the data being embedded in a
relatively low-dimensional vector space which is accomplished by a one-hot representation of
each attribute; this expands the data to a set of 121-dimensional binary-valued vectors.
Hierarchical clustering required roughly an hour for each of the seven linkage methods to
form the linkage tree structure; then eaghvalue required several seconds to find the exem-
plars using:-medoids initialized with the cluster partitioning. The results were not competitive
and required several gigabytes of memory — more than other algorithqaffinity propaga-
tion required about 1.6 GB of RAM). As mentioned earlier, results for a range of computation

times andk - or p-values are shown in the 3D plot of Figlre 4.25.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 87

(relative to typical k-medoids)

S

“5‘9(514 /"/ " N=8124

\ =" 3000
ot ®
NW
f 00

o] k-medoids clustering

___fﬁ;i;;e“eﬁth

=
= 1d
’,..;“{.“5‘ ‘mhonlrsm‘I

=
o _4_\.--{“‘“ Thodeurs
5 o
S Smin S\
= o
_{-"\““ 1mi!?mm C?U u
<
o 10séc
10
e

Figure 4.25: Results fok-medoids with a range of computation times andor K-values
(preferences or number of exemplars) are shown in the 3D plot above. The plot is a useful
illustration of the parameters involved in the algorithm and the issues at play in visualizing the
results, but it is not informative for algorithm comparison (consider the appearance if additional
algorithms were shown). For this, 2D plots that are cut along noteworthy slices of the CPU
time-axis are shown in Figurés 4126-4.28.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 88

MUSHROOM DATA: Best result after ONE MINUTE of CPU time

4500
4000 (no results after only one minute {(* Affinity propagation \
© Vertex substitution heuristic
™ . O k-medoids
o 3500 = O klog(k)-medoids
'8 o k-means (partitions)
D 3000 _ o =) O klog(k)-means (partitions)
i,E : = k-means (by means)
x 0o 3 L
5 2500| o -~ s E:‘:g(ﬁq means (I?y means?‘
& o - (diag. Gaussians, partitions)
o o © o EM (diag. Gaussians, by means)
2 2000 Z8en -8 _ + EM (iso. Gaussians, partitions)
L - 6 e EM (iso. Gaussians, by means)
Q 1500} . B o'@%, 8 # Spectral Clustering
= ova 0o k Hiearachical agglom. clusteriny
O 0% o o
0] | x oo™ © u]
£ 1000 * ® o "‘OQ: =
= * = 6::‘:’%
VJ'U 500 o Vo¢ 00000
(o]
ok 00 ¢ 000
_500 sl 1 1 | 1 | Y O Y 1 | 1 S T T O W) Lt 111 | 1 1 | M |
10 20 50 100 200 500 1000 2000 8124

K (number of clusters)

MUSHROOM DATA: Best result after TEN MINUTES of CPU time

4500
o (ﬁ Affinity propagation \
4000 - © Vertex substitution heuristic
= = oo O k-medoids
%’ 3500 | . O klog(k)-medoids
S g o o O k-means (partitions)
o fo) o O klog(k)-means (partitions)
g 3000 - = o k-means (by means)
~x 3 o klog(k)-means (by means)
W™ 2500 ¥ ¢« 0 o x EM (diag. Gaussians, partitions)
% *% x - . EM (diag. Gaussians, by means)
2 2000 x ? B ¥ + EM (iso. Gaussians, partitions)
o o Qo0 EM (iso. Gaussians, by means)
© B - R g * Spectral Clustering
% 1500 - _ %O Oc-,n‘: 0 3 & & \ Hiearachical agglom. clusteriry
© o o e
— 1000 - O 2 o 0 o -
2 %« "o o:f:h_i_:- 2,
Cog 500 i %000 3 900%
o0o
of -©° ©0 o000
_500 al 1 1 1 1 {Ah Fs It L | I W R RN O ol oL 1 1 1 1 A]
10 20 50 100 200 500 1000 2000 8124
K (number of clusters)

Figure 4.26: Performance comparison for mushrooms dataset after minutes of computation.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 89

4500

4000

3500

3000

2500

2000

1500

1000

Sd s (relative to typical k-medoids)

500

-500

4500

4000

3500

3000

2500

2000

1500

1000

500

8,1, (relative to typical k-medoids)

-500

MUSHROOM DATA: Best result after ONE HOUR of CPU time

Affinity propagation \
Vertex substitution heuristic
k-medoids

k-log(k)-medoids

k-means (partitions)
k-log(k)-means (partitions)
k-means (by means)
k-log(k)-means (by means)

EM (diag. Gaussians, partitions)
o EM (diag. Gaussians, by means)
090 2 o + EM (iso. Gaussians, partitions)
Q

A

o
ol
o

o

- 00 ® O

T T
G0
c 0
Ilgo
o0

o
x

ﬂUOOOB

Cb EM (iso. Gaussians, by means)
0 * Spectral Clustering
= k Hiearachical agglom. clusteriny

T

-V"'i_.;_;h) Q00

Xy P & 5000 .
iy 00 [-
L e 2 ? 900

ol | | 1 1 L1 1 1t | Y Y N T T T T O Y | 1

1 L
10 20 50 100 200 500 1000 2000 8124
K (number of clusters)

MUSHROOM DATA: Best result after FIVE HOURS of CPU time

1

Affinity propagation \
Vertex substitution heuristic
k-medoids

k-log(k)-medoids

k-means (partitions)
k-log(k)-means (partitions)
k-means (by means)
k-log(k)-means (by means)

EM (diag. Gaussians, partitions)
EM (diag. Gaussians, by means)
EM (iso. Gaussians, partitions)
EM (iso. Gaussians, by means)
Spectral Clustering

Hiearachical agglom. ciusteriny

T

oo

il | 1 1 e [I e B SR (S S N U 1 I S A I | 1 11 i J

L
10 20 50 100 200 500 1000 2000 8124
K (number of clusters)

Figure 4.27: Performance comparison for mushrooms dataset after hours of computation.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 90

MUSHROOM DATA: Best result after ONE DAY of CPU time

4500 -
g 8 ? (& Affinity propagation \
4000 - e ® © Vertex substitution heuristic
. o Oa 92 0O O k-medoids
% 3500 - & © klog(k)-medoids
i) Q@ o O k-means (partitions)
E 3000 - o 5 o ﬁ-log(k)-n}gans {pan)i!ions)
-means (by means
x » k-log(k)-means (by means)
@ 2500 - EM (diag. Gaussians, partitions
S EM (diag. Gaussians, by means|
2 2000F EM (iso. Gaussians, partitions)
£2] EM (iso. Gaussians, by means)
() i Spectral Clustering
.% 1500 o : Hiearachical agglom. clusterm)g
2 1000} hie
E : b,
%% 500 - X % -
XX 8 02
of Pmg, 220 0 8ee
.500 1 | 1 1 1 | T 1 L L Lttt il | 1 | 1 1 J
10 20 50 100 200 500 1000 2000 8124
K (number of clusters)
MUSHROOM DATA: Best result after ONE WEEK of CPU time
4500 -
o a° , :)
4000 - o E & Affinity propagation
o - g Vertex substitution heuristic
— o L4 k-medoids
8 3500 g klog(k)-medoids
o k-means (partitions)
E 3000 - * k-log(k)-means (partitions)
7 = k-means (by means)
f 2500 - k-log(k)-means (by means)
8 EM (diag. Gaussians, partitions)
E EM (diag. Gaussians, by means)
& 2000+ EM (iso. Gaussians, partitions)
i) = EM (iso. Gaussians, by means)
Q 1500 Spectral Clustering
'ﬁ o g : T - . Hiearachical agglom. clusteriny
® 1000} Vi 305 Opgaohs
03% 500 AO% %0 % .
iy it Seon B
2 o -
o 5. %2 9 900
@ ¥,
.500 ol | | 1 1 | KO T I Y 1 RN N N S I T I o o | 1 | 11 L J
10 20 50 100 200 500 1000 2000 8124
K (number of clusters)

Figure 4.28: Performance comparison for mushrooms dataset after days of computation.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 91

After a total of 3 years of single-CPU computation time spent on the mushrooms dataset,
Figured 4.26-4.28 show that among the algorithms examined and under most circumsances,
only the vertex substitution heuristic achieves results that are competitive with affinity propaga-
tion. Spectral clustering achieves fairly good solutions, but requires many days of computation
time as it searches for appropriate values ofdlg@arameter.

Affinity propagation and the vertex substitution heuristic are examined more directly in
Figure[4.29, which displays results on the same axes as Flguré§ 4.26—4.28. Computation times
are also shown, and affinity propagation usually requires 40—60 minutes whereas the vertex
substitution heuristic requires several minutes for smiadt 50 and up to two hours for larger

K >500.

4.2.2 USPS digits IV = 11000)

The next-largest dataset examined consists of 11,000 handwritten digits originating from United
States Postal Service ZIP code scans from Buffalo?.Nis is in the form of 110® x 8
greyscale images of each handwritten digit ‘0’ through ‘9’, for a total of 11,000 images / data
points—the dataset in its entirety is shown in Figure ¥.30. The similarity between two images
was set to the negative sum of squared pixel differences, which, like the Olivetti data, implies
k-means and mixture of Gaussians parametric mazlslirectly minimize the similarity (al-

beit with means instead of exemplar data points). Note fhat 10 is not necessarily the
proper choice for clustering this data; even though a useful classifier might assign one of ten
possible labels if it classifies each digit image according to its associated numeral, clustering

as an earlier step in the analysis can very well find significantly more than ten digit exemplars.

Available at http://www.cs.toronto.edu/ roweis/data.html

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 92

MUSHROOM DATA: Solution Quality

o .0
—~ 4000F ® sg
o
2 8
5 e C L
ko] o
[} & 0
£ e
=< 3000
©
o
=%
2
o
—
2000
2 oy
® o&oc
£ o
©
$ 1000~ @& Affinity propagation
v © Vertex substitution heuristic
o
(o]
D'-nl] 1 1 L1 1t 31 { Y N Y S O) I I A R) S Y S] I?Q i 1
10 20 50 100 200 500 1000 2000 8124
K (number of clusters)
MUSHROOM DATA: CPU time for one run
5hr
4hr
e nbe opfeo
-
2hr - zﬁ)
“# o
o #® & o
1hr
= &
40min - g* -] g* - 0
v 30min - o 000
= 20min - o 0
= L
S o’
10min o
] o
o
5l'|"|!f| ~ o o
4min - o @ Affinity propagation
3min o © Vertex substitution heuristic
2min -
(o]
1min al 1 1 | 1 1 & &)y | N O I TN IS I I 9 Y)) IS | L 1 | O | i]
10 20 50 100 200 500 1000 2000 8124

K (number of clusters)

Figure 4.29: Performance comparison for mushrooms dataset between affinity propagation and
the vertex substitution heuristic.

93

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION

RS
INSNNINGNY

TR
TON SN SN domﬁﬂada

SORRRRANY
e

S

SRINVVAVRRLO0Y

)
OOWW@. SNINNNNNVGUNNINNAN) N &)
Nolafs)
NN

SR
RS

iRy ‘ SN NN mmo NS
AN) NNV NN am N QRO
03 Y Wmm 3 wa
O
N

SIS NNNN ROV

TSI

)
iz
4
.

27
5

AN sl 55
LS S
7,

Z

/
e
e
%

/-
o
G LA f S 5)
S
24
G
SAF A Y YT 7 H

N
)
2

7
L
7
1/

NN

N .

ING AR SRS Y
URRENAN
Q!

ONREARY
y 77/%/,

\ O NANARRRANNS NN NN
DR NIRRT SN AN NSNS NN NN NP NN\
NN NN ¢ e AN AN e N N AN\
A A A A R A R A
NN N P A AN S A S S R RN AR
WARNNNNESNNRA 2 NN AN NNANAAA NN NN SANNNAN NN NAZ~\N\ N
SINAARANRRIANRAUANNAR AN AN NSNS NN NN NS R N \#
N A N N AN NN AN AR NN
AR AR NN AN N NN AN NS ANRE NN NN NENANNSANNNN
AR AR TR RN RARY
V/).//////[/I'///////.///l,/.(ﬁﬂﬂﬂﬂ/
\ N
\ AN AR
N AN N N AN AN A NN AR AR -
NN NN e/ SN AN NN NN NN RN NN VAR A\ N
USROS NN OO AL AT SOOONNN

Figure 4.30: The USPS digits dataset consist$10f)0 8 x 8 images of digits scanned from

ZIP codes in the Buffalo

as shown above.

NY office,

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 94

P-S

«10° USPS DATA: Best result after ONE MINUTE of CPU time

Affinity propagation \

. o
(no results after only one minute (Vertex substitution heuristic
— O k-medoids
3 L O klog(k)-medoids
Fe) 2 = . - O k-means (partitions)
8 e O klog(k)-means (partitions)
£ = k-means (by means)
3 8 . =2 k-log(k)-means (by means)
E 15+ W e - g e x EM (diag. Gaussians, partitions)
a = 8 EM (diag. Gaussians, by means)
= e e 04 + EM (iso. Gaussians, partitions)
o o o - 0 Oy \ EM (iso. Gaussians, by meary
2 1to ° 200
5 o ©00°, 0 0 oo o
= 0 ooo
5 (o]
E ©00 °
oo%%
_“ (@] oo%
0 P | 1 1 | | s) e 1) 1 T N G T 1 O O Y O a
10 20 50 100 200 500 1000 2000 5000 11000
K (number of clusters)

«1o° USPS DATA: Best result after TEN MINUTES of CPU time

251 o
ﬁ Affinity propagation \
© Vertex substitution heuristic
~ g o O k-medoids
= ! = O klog(k)-medoids
L 2ro - - 0 k-means (partitions)
g - - O klog(k)-means (partitions)
i = = k-means (by means)
5 a _ i 7 k-log(k)-means (by means)
a 15 = W = % EM (diag. Gaussians, partitions)
=3 o 8 L 8 EM (diag. Gaussians, by means)
b= o o - 5. "n, + EM (iso. Gaussians, partitions)
*G-J' o Qo0 ; -1"7__9 \ EM (iso. Gaussians, by meaﬁy
= 1F % o °o°o o 2,
[7] (o] &
b‘u Opo qu\-
g L e (ol o]
vy 05 . % -
b © 0000 6
0 al L 1 1 T 1S L 0K 1 NS I A T 0 A O [| L ??9 Qoom
10 20 50 100 200 500 1000 2000 5000 11000
K (number of clusters)

Figure 4.31: Performance comparison for USPS dataset after minutes of computation.

95

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION
«10° USPS DATA: Best result after ONE HOUR of CPU time
25} o o o
. STy s
™ _ @ Affinity propagation
ﬁ 2l o o - c Vertex substitution heul‘is!ic\
9 P O k-medoids
@ L ~og O klog(k}-medoids
E = - = o k-means (partitions)
—= - s O klog(k)-means (partitions)
8 1519 e - k-means (by means)
g o = 2 k-log(k)-means (by means)
* 0 0p % EM (diag. Gaussians, partitions)
% % o o - EM (diag. Gaussians, by means)
= 1} o od,o _ + EM (iso. Gaussians, partitions)
E (o] <2 EM (iso. Gaussians, by means)
o Tz » %00 - = \ Hiearachical agglom. cluslew
‘TE % & oo
(Qg 05 w“éh
-]
0 i) | 1 1 Lt 1 11 1 | T T I O T Il ??9 qquill
10 20 50 100 200 500 1000 2000 5000 11000
K (number of clusters)
<1 USPS DATA: Best result after FIVE HOURS of CPU time
25f ® 0 0%00c°. 00
T o ewtR e Dﬁ%\%
) = = % Affinity propagation
8 2ro 6 'S e e, /o Vertex substitution heuristic\
b o . o 2 o O k-medoids
£ = ok e o O klog(k-medoids
f - o S 8 be o k-means (partitions)
3 15F bt | = 4 O klog(k)-means (partitions)
B & - 8 een o v k-means (by means)
= F %o T Oels D 8 klog(k)-means (by means)
o o © 000 o & Y % EM (diag. Gaussians, partitions)
o e o - - EM (diag. Gaussians, by means)
2 1r - OMQ = + EM (iso. Gaussians, partitions)
F“; x Qoo e o B0z o = \ EM (iso. Gaussians, by means)
& b o) g - Hiearachical agglom. clustering
% ’ 2 @ (o]s} ” /
co‘a 05+ [++M
J"_"ﬁ'!e.,, © 6000 "
@00 000
0 P 1 L I L L 1 1.1 1 Ll L L L1 a1 iaiiil L 1 11 1 '} 1 1 1 L L W: 1)
10 20 50 100 200 500 1000 2000 5000 11000
K (number of clusters)
Figure 4.32: Performance comparison for USPS dataset after hours of computation.

8,415 (relative to typical k-medoids)

S 41 (relative to typical k-medoids)

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 96
«10" USPS DATA: Best result after ONE DAY of CPU time
25 06 Ve &
_gwmt o 09\
o ee P = e ﬁ Affinity propagation \
&] e 00O © Vertex substitution heuristic
2 v - @moq 9 a° O kmedoids
2 ° 8.7 % %¢ .7 | © Klog(k-medoids
= ° ute - - "Po| o kmeans (partitions)
151 % - 5 8g 0% M @ | © kilog(k}-means (partitions)
o b ;__,:::’ - = - k-means (by means)
+ 0 8 oooo ol - & o . k-log(k)-means (by means)
% 00 = . - % EM (diag. Gaussians, partitions)
1k $3:0 o) OMQ = EM (diag. Gaussians, by means)
x 0O - - + EM (iso, Gaussians, partitions)
x50 0 ‘gﬁé g EM (iso. Gaussians, by means)
IR o o \ Hiearachical agglom. duslery
05+ TeEQ
5 ?0000 4
900 000
0 10 20 50 100 200 500 1000 2000 5000 11000
K (number of clusters)
0t USPS DATA: Best result after ONE WEEK of CPU time
25} 0 o o Og ocP o0
po0® ¥ @ rg\
o s
-0 w6 g o = *n ﬁ Affinity propagation \
. ® - -] aon © Oo © Vertex substitution heuristic
g) 8 - =] @ o O k-medoids
< Gos tia _Bu.| © Kiog(k-medoids
15 % : 8 oo s8g 9] o kmeans (partitions)
88 . = ¥| © Kkiog(k}-means (partitions)
§ 04 °n e k-means (by means)
R o ©Ogo “ma < - klog(k)-means (by means)
i ° mo = % EM (diag. Gaussians, partitions)
T %409 o ' EM (diag. Gaussians, by means)
*:-\-9 - e o + EM (iso. Gaussians, partitions)
+ X0 i [~] EM (iso. Gaussians, by means)
x Qg \ Hi hical agglom. clt y
+
05+ L8 :
E ??gmo i
900 00 00o
0 P | | 1 L L X 1 11 1 | N T 5 O s | 1 1 1 i | T Y I |
10 20 50 100 200 500 1000 2000 5000 11000
K (number of clusters)

Figure 4.33: Performance comparison for USPS dataset after days of computation.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 97

Simulations were carried out for the same set of clustering algorithms as in Section 4.2.1
and are shown in Figureés 4131-4.32, except for spectral clustering which did not produce results
within a week of CPU time. Some techniquésngeans, EM) rely on the original data in the
form of an11000 x 256 data matrix rather than the similarity matrix.

Hierarchical clustering required somewhat less than an hour of computation time for each
of the seven linkage methods to form the linkage tree structure; therféaelue required sev-
eral seconds to find the exemplars usingnedoids initialized with the cluster partitioning. The
results turn out to be competitive only for extremely large numbers of cluister&” > N/2.

After a total of ten years of single-CPU computation time spent analyzing the USPS dataset,
the main competitor for the affinity propagation algorithm is the vertex substitution heuristic.
After a few minutes of CPU time (before VSH and affinity propagation report results), the
k-means algorithm achieves quite competitive results that are even better than affinity propaga-
tion for small K’ < 50; this is most likely because it is directly minimizing squared Euclidean
distance which happens to be the definition of (negative) similarity for this problem.

As before, affinity propagation is compared directly with the vertex substitution heuristic
in Figure[4.34. Computation times are shown, and affinity propagation requires several hours
whereas one run of the vertex substitution heuristic requires a varying amount of time that
depends on search space size; ranging from several minutes for low valé&s<o?0 to
roughly a day for higher values df > 2000. VSH outperforms affinity propagation in terms
of both computation time and solution quality f&F < 60; affinity propagation outperforms
VSH in terms of speed (at times by a factor of 5), achieving solutions of similar quality beyond

K =200 or so.

4.2.3 Netflix movies (V=17770)

The largest dataset explored is a collection of Netflix customer ratings for 17,770 movies,
available at http://www.netflixprize.com and illustrated in Figure 4.35. The data consists of

~100 million ratings from 480,189 Netflix customers for 17,770 movies, so the data could be

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 98

s— USPS DATA: Solution Quality
25F
8B ggt gego% 00
oon®® ®
0)
0
£ ®OQ aoo
x
8 15f b
‘a
2
ke
® @ Affinity propagation
2 1+ O Vertex substitution heuristic
©
0
g
[
© 05
O.I | | I S I I T 1 s Iy I v | | 1 1 I N I I I
10 20 50 100 200 500 1000 2000 5000 11000
K (number of clusters)
USPS DATA: CPU time for one run
21)?“ - o 00 0o o
0 o
10hr OOO o
o® o o
Shr | W00 0 o @
4hr
3hr
o o
2hr - 4 (o)
a O (o] o
= O &
 hrp @ %**30’00 &
= 40min - o°
T 30min [0°
O 20min - e
O p ;
10min - @ Affinity propagation
o © Vertex substitution heuristic
5min
4min O
3min
2min
1min | | 1 I I 1 s Iy I v | | 11 1 I N I A T
10 20 50 100 200 500 1000 2000 5000 11000

K (number of clusters)

Figure 4.34: Performance comparison for USPS dataset between affinity propagation and the
vertex substitution heuristic.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 99

ot
oo
el
&
o
e
¢ «p S

e @

o5 o @‘“ N © \9@ a“ SN S5 o
TS SRR W edotys %@z e v‘°b o5
oo &’f S) \s N \\‘\ @

, SRt ’\Ns 5 v‘@zex,\,% oot WO SRt
A <«° « S5t ee] WA QA e Srefedl'

o
1)
o

[
| oo |

customer frequency

Y
SJaWO03ISNd 68TO8Y

1 10 100 1000 10000
number of movies rated by customer

>
17770 movies

1400~ 71500

30 million

1200

20 million

1000

rating frequency

-11000
10 million
800

600 * ok k dhkhkk hhkkkk

rating

movie frequency
number of movies

-1500
400

200

10 100 1000 10000 100000 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
number of customer ratings for a movie movie year

Figure 4.35: The Netflix dataset consistsdf00 million ratings of 17,770 movies by 480,000
Netflix customers, as shown above. Most movies are rated by hundreds of customers, and
likewise, most customers have rated hundreds of movies. Ratings are given in units of ‘stars’
ranging betweer andx x x x x, with thex x xx rating being the most common.

represented in &7770x 480189 matrix that is~98.8% sparse. Typically, customers have rated
roughly 100 movies and most movies have at least 100 customers ratings. Ratings are given as
one through five ‘stars’, with x x x x being the highest rating (used 23% of the time) and

being the lowest (used for 5% of ratings); ratings are most-efteror xxx*, with a frequency

of roughly 30% each.

Movies are clustered using a similarity function that accounts for users giving similar rat-
ings to similar movies; the similarity(i, k) between movié and moviek is set to the negative
mean-squared-difference between ratings for viewers common to both movies, denoted by set

C;. Ratings for customers who have viewed one movie but not the other are ignored; for

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 100

movies with very few or no common viewers, similarities are regularized as described in equa-
tion (4.2). Briefly, if there are fewer than five common user ratings then the expression is
regularized by padding with enough simulated rating differencestofequal five common

user ratings (this is required for 5.3% of movie pairings). Movie pairs with no common users

are assigned a similarity efoo (necessary for only 0.2% of cases).

—00, Ci =0 (0.2% of cases)

Tic—Tkc 2 2.(5— ik
s(i, k) = _ Zcecy k5) e Ick‘), 0 <|Ciu| <5 (5.3% of cases) (4.2)

Tic—Tke 2
_Zceciké—_k"‘)’ ICir| =5 (94.5% of cases)

Simulations were carried out for clustering algorithms that take similarities as infput—
medoids (including thé-log(k) heuristic), the vertex substitution heuristic, and affinity prop-
agation. Because the dataset consist$7af70 x 17770 inputs requiring roughly 2.5 GB of
memory (plus working space), the more memory-intensive algorithms such as hierarchical
clustering and spectral clustering were not feasible. Simulation results from 8 years of single-
node CPU time are shown in Figlire 4.86=4.38, with identical horizontal and vertical scales for

easy comparison.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 101

NETFLIX DATA: Best result after ONE MINUTE of CPU time

6000 -
@& Affinity propagation
© Vertex substitution heuristic
O k-medoids
) 5000 - O klog(k)-medoids
‘©
°
@
€ 4000+
x
©
o
o
2 3000 |
2 o
2 o ° 0040
& 2000 ® o0
— m
= o ° o
o © %
1000 © 0040 O0g o
o0 O
O o
0 1 1 1 | IR S T O ORI A N N _— Lt 1 11 (deﬂnggm e | B |
10 20 50 100 200 500 1000 2000 5000 10000 17770
K (number of clusters)
NETFLIX DATA: Best result after TEN MINUTES of CPU time
6000 -
@ Affinity propagation
© Vertex substitution heuristic
o k-medoids
) 5000 - © O Kklog(k-medoids
=)
o
[0]
£ 4000}
&
©
O
a o
2 3000 F [o]
52 e o
© 0040
= o ® 00
— 2000F
g o Oom
o O o
S %60 9 0
1] o
“ 1000 %00 o o, 00q, "
o0 C 0 o o
00000
0|I 1 1 L [rréerd 161104011 i of I Lig:14 Qoo
10 20 50 100 200 500 1000 2000 5000 10000 17770

K (number of clusters)

Figure 4.36: Performance comparison for Netflix dataset after minutes of computation.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 102

NETFLIX DATA: Best result after ONE HOUR of CPU time

6000
o @ Affinity propagation
o o] Vertex substitution heuristic
O k-medoids
‘g 5000 © © klog(k)-medoids
[e)
=}
o
£ 4000}
-
3 o
o
2 3000} . o o
o o
0] o °oo
= Qo
© o b
o 2000 oo
= o] (* <]
[o %o
) Co 00 0
“ 1000} ® o0 %00,
0000]
0 o o o
OO%
o.l 1 1 | I NN N T TN Y N N I | I N I T | ?Q°°
10 20 50 100 200 500 1000 2000 5000 10000 17770
K (number of clusters)
NETFLIX DATA: Best result after FIVE HOURS of CPU time
6000
o & Affinity propagation
o © Vertex substitution heuristic
e O k-medoids
» 5000F0© e O klog(k)-medoids
=] o
o EO
=}
¢ %
& 4000 . o,
8 °
[o% o
2 3000} ° o
e o %o
Q fo) mm
-_% oo
° 2000 o OQQ)
o ®oo ok
3 00 5 oo
W 1000 F 0 o5 O0qy
0 o o
o} o (o]
()c)(:><::0
o.l 1 1 | I SN Y O S Y O N A I | 1 1 1 1111 ?9?9
10 20 50 100 200 500 1000 2000 5000 10000 17770
K (number of clusters)

Figure 4.37: Performance comparison for Netflix dataset after hours of computation.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 103

NETFLIX DATA: Best result after ONE DAY of CPU time

6000 -
o % Affinity propagation
B © Vertex substitution heuristic
O k-medoids
7} 5000 - © %"o O klog(k)-medoids
S %o
o
[} %
€ 4000} %
x (o]
S o 35
a (o] %
2 3000 (o]
o (o] o0 7))
= &) 00
o [o] (o]
= R %
L - (o]
© 2000 00% o
e ©000 ° s
S ® o0 % ¢e 0,
X 1000 000 _ O0qy "
o o
(0] o 0%
oLt 1 1 OO (O N A NS AN 8 O 5 GO I (A O R G (5 ?9?99@_@_&@_.
10 20 50 100 200 500 1000 2000 5000 10000 17770

K (number of clusters)

NETFLIX DATA: Best result after ONE WEEK of CPU time

6000
o @& Affinity propagation
o © Vertex substitution heuristic
o k-medoids
m 5000 © %¢° O klog(k)-medoids
'3 8,
ko]
: .
I 4000F o qh
g g e
> 3000 o o %
b © ooc)o ®
o Q0
2 o 0 o"o
o It o0
o 2000 - % °°
o
“ 1000 g Oogy &
(o]
%o P o
0
OJI 1 1 | SN N SN A N Y O Y I I | Pt 1 1 irt |?99m Qma 1
10 20 50 100 200 500 1000 2000 5000 10000 17770
K (number of clusters)

Figure 4.38: Performance comparison for Netflix dataset after days of computation.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 104

As before, the only algorithm examined that was competitive with affinity propagation is
the vertex substitution heuristic (with the exception of some regiorisraedoids reporting
first results quicker than affinity propagation in the first few minutes). Another set of simu-
lations was conducted for a range of preferendésvélues) and, additionally, for a range of
N-values (number of data points) accomplished by clustering only the\firsbvies. Affinity
propagation is compared directly with 20 random restarts of {YSMth results shown in Fig-
ure[4.39. The plots show that for larger datasets contaiNirg6000 data points and finding
K > 50 exemplars, affinity propagation clearly comes out on top in terms of both solution
quality achieved and computation time. In terms of computation time, affinity propagation is
much less sensitive to the number of exemplars, and for larger problems is faster than a single
restart of VSH (by as much as a factor of ten for the full datasetzand00).

Varying the dataset size and number of clusters provides an opportunity to examine several
algorithms’ memory requirements. As shown in Fidure Wi4Medoids has the lowest memory
requirements, doing much of its computation in-place with negligble memory required beyond
that for storing the input similarities. The vertex substitution heuristic has modest memory
requirements that depend on the number of clusters (for keeping track of the swaps); for the
full Netflix dataset it ranges from 102% of the input similarity capacity (similat-toedoids)
to 136% using the range of preferences from Fidure]4.39. The affinity propagation algorithm
has much greater memory requirements in keeping soft information; it requires roughly 310%
of the input similarity capacity, mostly to keep equally-sized availabilities and responsibilities

in memory.

Brwenty restarts are recommended in [10] by operations research experts for a good solution.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 105

A . . B
() Solution quality: Affinity Propagation vs. VEH () TIMING: Afﬁrlity Propagation
17770 ey g
o R
12W0: ‘:—: wi: ::tt +* "t -:*
- * ok Ak TRk Rk Ak W kW
10000 - *mt dhkdk khk k ok * *
- - I t ookl 4 W La B o i & S B BN B 3
880 0O E0DN0e o *o@EB0C O% & @ dk W ki hok ke ek ok ok ok
B0 0 MONNSS Ge0BGE OO & & Wik ok kkkd kk ok ok k
- o8 0OF NMDDOOOD CO0DR OO &0 & & AP better - w kil & W ok kd hk ok ok ok
3 5000 o ® oWDO O oREECo *® % O Bthan all 20 - dobarieknr dd ke dok Wk ok b
‘§ 4000+ SESC OEmO00 0 CEOR O 00 & & E VSH runs * ww ki ThkE ek ko ok &
[m]
g % TROR. SR °°°°Xf>%e‘tt€rt‘han15.5
S of 20 VSH runs" | O
= 2000 Mes @IDOO & ST II R (]
3 |
g AP better than | CJ
2 10.0f 20 vsH runs 5
2 1000} 0O0 88 GEPOO o ooOEO8e D O] - ko
b s80 0O == C00 se0ee0®0 OO ol - . o Faaiafs
" O OEDOCDO eoOmocn 8 + . ok
- S8 0 EmOO eoooen o0 onDAP betterthan.E k- »
- s eso amwooeo soeee0 e 0 e Of 20VSHruns" I 51 L -
S00F @@ @ sememe coeccoss 00 B L P .
400 m=m anemo s Os (Eme 08 O AP worse than 1 01 +
all 20 VSH runsu
300 mean 3 i L PR S T o b ryaEn £ gy
© TIMING: Vertex Substitution Heuristic (1run) (D) TIMING: Vertex Substitution Heurtsttc (20 runs)

o S M il TN

- L . (1] L]
12000F = 8 . = E . . -' ..
10000 - T '] RN N E——— L]

- aew AEE B L L J - L

" WemmEE S ESEE SN E®R B N + EEE N AR SR AR AR R W
Smam=e = = EEES B =B & B = - EEE -——. . EEEN &8 58 & 8
L L N S EER ER B R B B > LL Nl L L& EE EE ER BN » -

?5000- —— & sEsEEE EE B ® - e e mmsme e EEEEEE RN ® W
'§m- LR - . SES BN AW = W o = aE . EEmEEs = B SEEE SN B R B ®
g 3000 - SR T S = e .. FEEEER EE W W
-
? 2000 + sEEEEEEE W ® + - a
2
5
£
= 1000 L e um ® ’ . .

L s um "um s s m

EEREmEEE &0
SEEEEE EE B

400 -

2 345 10 2030 50 100 200300 500 1000 2000 5000 2 3 45 10 20 30 50 100 200300 500 1000 2000 5000
K (number of clusters) K (number of clusters)

Timing: sconds [min

1sec 2 3 10 20 1min 2 10 20 1hr 2 3 10 1day 23 1wk 2 1mo 2 3

Figure 4.39: Performance comparison for Netflix dataset eetvaffinity propagation and the
vertex substitution heuristic, for a range of Netflix data siz€¥ &nd number of clustersx)).

For large datasets\{> 10000) and non-trivial numbers of cluster&’(> 100), (A) shows that
affinity propagation consistently finds better solutions than 20 runs of the vertex substitution
heuristic. The running times for the algorithms are shown for affinity propagation (B), one
run of the vertex substitution heuristic (C), and 20 runs of the vertex substitution heuristic (D).
Affinity propagation takes hours for the most complex problems, while one run of the vertex
substitution heuristic can take days, and 20 runs can take weeks.

CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION

memory requirements

7GB

6 GB

5GB

4GB

3GB

2GB

1GB

I k- medoids
[Affinity propagation

(hollow area indicates range depending on p)

] Vertex substitution heuristic
(hollow area indicates range depending on K)

[similarities (input)

1000 2000 3000 4000 5000 6000 7000 8000

106

9000 10000 11000 12000 13000 14000 15000 16000 17000 17770

N (number of data points)

Figure 4.40: The memory requirements fomedoids, affinity propagation, and the vertex
substitution are shown for various subsets of the Netflix dataset. Memory requirements were
tabulated from the resident process size (including code and data segments) using the UNIX
t op command and include roughly 72 MB overhead (insignificansaering the plot's scale)

for MATLAB’s toolbox cachesetc. The baseline input similarity memory requirements are
shown as wide bars in the background; thenedoids algorithm requires little beyond this.

The vertex substitution heuristic requires between 2% and 36% more, depending on the value
of K. Affinity propagation requires roughly 310% times the input similarities capacity, mostly

for storing availabilities and responsibilities.

Chapter 5

Applications of Affinity Propagation

A major benefit to affinity propagation is that it clusters data without having a specific model
of the data built into the method; this has lead to its use in a wide variety of problem domains
using rich application-specific similarity models. This chapter briefly explores several results

from the topics of computer vision and bioinformatics.

5.1 Affinity Propagation and Computer Vision:

Image categorization

Many computer vision tasks either produce a clustering of input features as output or require

it as a preprocessing step for subsequent analysis. Exemplars have been used with success in
a variety of vision tasks, including image synthesis [27, 101], super-resolution [33, 92], image
and video completion [52, 105], and combined tracking and object detection [40, 97].

The use of exemplars is attractive for several reasons. A relatively small number of repre-
sentative exemplars can capture high-order statistics, since each exemplar can simultaneously
express dependencies between a large number of image features. In contrast to general sta-
tistical methods for which many parameter configurations can correspond to unrealistic data,

each exemplar is an image or an image fragment so it naturally corresponds to realistic image

107

CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 108

data. For this reason, exemplars can be used to make realistic predictions for missing image
data and avoid the blurring that often occurs when parametric methods are applied. Exemplars
are represented efficiently as pointers into the training data (e.g., a subset of image features),
so the number of bits of information needing to be specified during exemplar learning is quite

small [48].

5.1.1 Augmenting the Olivetti dataset

The Olivetti datasetd.1) was modified for computer vision experiments as follows: to ex-
amine the effect of a wider range in image variation for each individual, the images of ten
individuals were extracted, and for each of the resulifg images, three in-plane rotations
and three scalings were applegroducing a dataset &0 images. Initially, the similar-

ity between image and imagek, s(i, k) was set to the negative of the sum of squared pixel

differences.

5.1.2 Performance on unsupervised image classification

In several vision tasks, such as image or video summarization, labels are unavailable and the
goal is to detect meaningful image categories in an unsupervised fashion. Even in supervised
tasks, it can be helpful to first perform unsupervised categorization of images or image parts
SO as to reduce the dimensionality of the input and simplify supervised learning. Here, the
performance of affinity propagation is explored in terms of unsupervised classification error of
the learned categories based on the true categories, where each learned category is associated
with the true category that accounts for the largest number of data points in the learned category.
The classification rate will approach 100% as the number of learned categories approaches the
number of training cases, so classification rates are reported as a function of the number of

learned categories.

1The rotations weré—10°, 0°, +10°} and the scaling factors wef@.9,1,1.1}.

CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 109

80%

70%
o L
o
c 60% r
©
T L
2
& 50%
8
o
40% | 9" O Affinity Propagation
o Vertex Substitution Heuristic
(best of 20 restarts)
i o k-medoids clustering
(best of 1000 restarts)
30% 1 1 1 J
0 25 50 75 100

K (number of clusters)

Figure 5.1: Performance on unsupervised classification error for the Olivetti face data. The
classification rate (fraction of images correctly classified where the learned category is associ-
ated with the true category that accounts for the largest number of data points in the learned
category) is plotted against the number of clusters or exemmar&esults for affinity prop-
agation, best of 1000 runs éfmedoids clustering, and the vertex substitution heuristic are
shown. For larger numbers of clusteesq, K > 25), k-medoids clustering typically achieves

a classification rate 3—5% worse than affinity propagation or the vertex substitution heuristic
(which both achieve similar results).

CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 110

Figure[5.1 plots the classification rate as a function of the number of cluséf@fer affinity
propagation, the best of 1000 runsiemedoids clustering, and the vertex subsitution heuristic
on the faces dataset containing 900 images. Affinity propagation achieves similar results to
the vertex substitution heuristic but typically achieves a classification rate 3-5% better than

k-medoids clustering, for the sanié

5.1.3 Performance using non-metric similarities

In the context of comparing two face images, squared Euclidean distance ignores the fact that
certain facial features may appear in different positions in each image. This section outlines
a non-metric similarity function that can be tailored toward matching face images, and shows

that it achieves higher classification rates.

Denoting the vector of pixel intensities for imagemndk by x; andx, the previous section

used the following definition of similarity:
s(iy k) = =[x — x|

Here, the similarity of image to imagek is computed by extracting a sub-image from the
center of image and finding its best match to all sub-images (not necessarily centered) in
imagek. Let T denote an operator that cuts a window of a fixed size out of the image it is
operating on. There will be many operators corresponding to different possible positions from
which the window may be extracted; [€t) denote the operator that cuts the window out of the

center of the image. The non-metric similarity used here is given by:
s(i, k) = — H}En | Tox; — Txy|?

The original Olivetti images of sizé4 x 64 are used here with a window size & x 50.

Figure[5.2(A) shows an example of an imagdgupper left) and the windows that achieve the

CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 111

minimum in the above expression for the other nine images in the same (true) category.
Figure[5.2(B) plots the classification rate against the number of clugi@réof affinity

propagation applied to this non-metric similarity function. Included for comparison is the
plot obtained using:-medoids clustering and the vertex substitution heuristic applied to the
same non-metric similarity function. Also included is the affinity propagation plot obtained
using the negative squared Euclidean distance similarities described in the previous section
(circles, as before). The non-metric similarity definition facilitates a significant increase in
the classification rate and affinity propagation achieves similar classification rates to the vertex

substitution heuristic and higher classification rates compargdnedoids clustering.

5.2 Affinity Propagation and Sparsity: Exon Detection

An important problem in current genomics research is the discovery of genes and gene variants
that are expressed as messenger RNAs (mRNAS) in normal tissues. In a recent study [37],
DNA-based technigues were used to identify more than 800,000 possible exons (‘putative ex-
ons’) in the mouse genome. For each putative exon, an Agilent microarray probe matching a
60-base long DNA segment was used to measure the amount of corresponding mRNA that was
present in each of twelve mouse tissues. Each twelve-dimensional vector, called an ‘expression
profile’ for the DNA, can be viewed as a feature vector indicating the putative exon’s function.
Also, when nearby segments of DNA undergo coordinated transcription across multiple tis-
sues, they are likely to come from transcribed regions of the same gene [36]. By grouping
together feature vectors for nearby probes, we can detect genes and variations of genes.
Figure[5.8(A) shows a normalized subset of the data and gives three examples of groups of
nearby feature vectors that are similar enough to provide evidence of gene units. The actual

data is generally much noisier [36], and includes:
e Multiplicative noise, because exon probe sensitivity can vary by two orders of magnitude.

e Correlated additive noise, because a probe can cross-hybridize in a tissue-independent

CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 112

(A) , (B)

r
_\l . N
i gt
e u;_, 0.

DY

80%

[«
-

L]
5
Sod

70%

—
y

60%

.

—

‘ AL
(3 (e

-
-
w

50% -

s

classification rate
T

Affinity Propagation
Vertex Substitution Heuristic
(best of 20 restarts)
k—medoids clustering
(best of 1000 restarts)
Affinity Propagation
(previous metric similarities)
1

v

'Q"! ‘
TP

40% -

8V

30% —a& : *
0 25 50 75 100

K (number of clusters)

Figure 5.2: Unsupervised image categorization using notmicremilarities. (A) The similar-

ity of an image (left) to each of the other images is determined by finding the best match (in
terms of squared error) between a window centered in the first image and all possible equally-
sized windows in the second image. (B) The classification rate is plotted against the number
of exemplars (shown as squares) for affinity propagation, the best of 1000 rénsedoids
clustering, and the vertex substitution heuristic using the non-metric similarity function. Also
shown (as circles) is the plot for affinity propagation applied using the metric similarity func-
tion described previously. Again, affinity propagation and the vertex substitution heuristic
achieve similar classification rates, which in turn are several percentage points better than affin-
ity propagation applied to the previously-examined metric similarities.

CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 113

(A) (B) .
intron
DNA segments
exemplar
o
Sa
1 | | s E (must be - - —o° e =D == —oo —oo
b A b s s W A e & emplar
My |) |
M .'hl'll. I'u"“"/\' Jll 'f' IhNr I\.\..-'“x '”-,l"°" MU log py(1) Iogpp:(l) s12) sL3) e - - - e
'| Mo I| p+ oo oo oo oo
) fﬁll f A.vﬁi W Mw MM / "\{L ;JL._. W" lIL A - e tog py(2) >3 A
p+ N N
ﬂ A \ll m{'l_L _L ‘f& '| fL‘ W *q;:; logpo(3) sB) s3.2)) B sG3S)
' Wy M Wil N
: 'l Cp : "I. e i.\ E logpy(4) - s(42) s(43) Iogpp0(4) s(45) s(46) oo -eo
| \ | \ (]
MY M AL W J A\ 2 logpls) cw e s53) ssA) logpys) S5E 57 -
Z = | e [== p+
o log py(6) - s(6,4) s(6,5) log o,6) s(6,7) s(6,8)
oo —oo —co —oo h
log po(7) = s(7,5) s(7,6) log py(7) 5(7,8)
log py(8) 0 —o0 =0 —oo —oo 5(86) s(87) |ogpp+0(8)

Figure 5.3: Exons can be detected by grouping together DNAneats with similar nor-
malized expression patterns across tissues, shown in (A). A sparse matrix of similarities is
constructed as shown in (B), where the zeroeth data point is an intron exemplar (background
model) and off-diagonal similarity entries are computed as in equafian (5.1). The probability of
each expression profile under the background model is placed in the first column and along the
diagonal (as preferences) along with a global preference additive petrsed for controlling

the false-positive rate.

CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 114

manner to background mRNA sources.

e Spurious additive noise, due to a noise measurement procedure and biological effects

such as alternative splicing.

To account for noise, false putative exons and the proximity of exons in the same gene, the

input similarity s(i, k) between DNA segment (data pointdnd DNA segment is:

(i-k) Bli—K| o327 S [= a2
e®\W = Be P max < p(y, z,0) - 5.1
e 2 (vV2mo?)12 (5.1)

wherez!™ is the expression level for the™ tissue in the™ probe (in genomic order). The pa-
rameterg, z, ando were assumed to be independent and uniformly distriBseg(y, z, o)
1 over the domain. To account for the non-transcribed regiemms¢ontaining introns), an ad-
ditional artificial data point was included (which is indexed as data poinanhd the similarity
of each other point to this ‘non-transcribed exemplar’ was determined by evaluating each point
under a mixture of Gaussians for the entire dataset; this background model likelihood is re-
ferred to ag(z;) soVi > 0: s(i,0) =log po(x;). The preference for the artificial data point
was set tos(0, 0) = +oo to guarantee its selection as an exemplar (this was also facilitated by
settingvi > 0: s(0, i) = —oc), whereas the preference for every other data point was set to the
background model log-likelihood plus a shared preference congtdhgt was used to control
the number of exemplars found and thus the sensitivity of the system.

A total of 75,066 DNA segments were all mined from the genome for mouse Chromosome
1, with a similarity matrix constructed as illustrated in Figurg 5.3(B). Not D66 + 1) ~
5.6 billion possible similarities were used or even computed; the exponehtidl’ "' prior
term and the assumption that genes on the same strand meant that similarjties:for 100

could be approximatédas —oco. This reduces the problem size to approximately 15 million

2Based on the experimental procedure and a set of previously-annotated genes (RefSeq), they were estimated
asf=0.05,y€[0.025,40], z € [- max z*, + max z!"], ando € (0, + max z]").

3According to ground truth (RefSeq), less than 1% of genes spanned a distance of more than 100 probes (none
spanned more than 165). The sparseness constraint can accomodate a span of 200 if the exemplar is centered.

CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 115

similarities and messages to exchange—99.73% sparse—or roughly the same difficulty as a
non-sparse problem witi15 x 106 ~ 3900 data points. Figure 5.4 illustrates the identification
of gene clusters and the assignment of some data points to the non-exon exemplar.

After clustering ther5067 x 75067 sparse matrix of similarities, DNA segments assigned
to exemplars other than the non-transcribed exemplar were considered to be parts of genes.
All DNA segments were separately mapped to the RefSeq database of annotated genes [85] to
produce labels used for reporting true positive and false positive rates. These results are com-
pared in Figuré5]5, where the true-positive (TP) rate is plotted against the false-positive (FP)
rate for affinity propagation ank-medoids clustering. For each number of clusters, affinity
propagation was run once and took roughly six minutes, whetegasdoids clustering was
run 10,000 times which required 208 hours. Affinity propagation achieves significantly higher
TP rates, especially at low FP rates which are most useful to biologists. At a FP rate of 3%,
affinity propagation achieved a TP rate of 39%, whereas theibastdoids clustering result
was 17%. For comparison, at the same FP rate, the engineering tool described in [36]—which

integrates additional biological knowledge—achieved a TP rate of 43%.

CHAPTERS5. APPLICATIONS OFAFFINITY PROPAGATION 116

INITIALIZATION

:” l|||' ' 1|||'

il hllllliullﬂ [

N2 ﬂfﬁﬂﬁf///ﬁ///fﬁfﬂf/f#ﬁ'fffﬁ’ﬁ'///?‘f‘f?’f#fﬂ//f#fmffﬁ"ff/ﬂf#/#fffﬁ'f/ﬁ#fffﬁf#ffﬂﬂﬁI

ITERATION #1

o

ITERATION #2

A nmn |.

”H!'lh“!h

|| lI

||l |
i u‘ |
A

//// //// L ///I/// LU,

ITERATION #3

i um,u::mnllll'lmmh,

lell III‘LII

ITERATION #5

*‘”l""“”"NIMHNIW imlmslhl

[

i

|1 m

ITERATION #4

FL i}

]

I'I,,,I' I -
S /ST o lnnwuw"un,!:::.w*'
H [}iIIlIUU, |

i
Nm i |h‘"||| i

I T T
Figure 5.4: Affinity propagation was used to detect putative exons (data points) comprising
genes from mouse chromosome 1. A small portion of the data and the emergence of clusters
during each iteration of affinity propagation are shown. In each frame, the 100 boxes outlined in
black correspond to 100 data points (from a total of 75,066 putative exons), and the 12 colored
blocks in each box indicate the transcription levels of the corresponding DNA segment in 12
tissue samples. The grey profile on the far left corresponds to an artificial dataipoiniith
infinite preference that is used to account for non-exon regmgs ifitrons). Lines connecting
data points indicate potential assignments, where gray lines indicate assignments that currently
have weak evidence and dark-colored lines indicate assignments that currently have strong
evidence.

Ill

i HIHNINH

///

Dlll'll

m h

il

II
i LSS

CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 117

Figure 5.5: Affinity propagation was used to detect putative exons (data points) comprising
genes from mouse chromosome 1. For each number of clusters, affinity propagation took six
minutes, whereas 10,000 runsiefmedoids clustering took 208 hours. The false positive rate
was adjusted via a constant added to the preference; this plot of the resulting true-positive rate
versus false-positive rate for detecting exons (using labels from RefSeq [85]) shows that affinity
propagation performs better at detecting biologically-verified exonskiraadoids clustering.

CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 118

5.3 Treatment Portfolio Design via Affinity Propagation

A central question for any computational research collaborating with a biologist or medical
researcher is in what form computational analyses should be communicated to the experimen-
talist or clinician. While application-specific predictions are often most appropriate, in many
cases what is needed is a selection of potential options available to the biologist/medical re-
searcher, so as to maximize the amount of information gleaned from an experiment (which can
often be viewed as consisting of independently-assayed targets). If the number of options is
not too large, these can be discussed and selected manually. On the other hand, if the num-
ber of possibilities is large, a computational approach may be needed to select the appropriate

options. Affinity propagation has been shown [26] to be an effective approach to this task.

5.3.1 Treatment Portfolio Design

For concreteness, the possible set of options is referred to as ‘treatments’ and the assays used to
measure the suitability of the treatments as ‘targets’. Every treatment has a utility for each tar-
get and the goal of what is referred to as treatment portfolio design (TPD) is to select a subset of
treatments (the portfolio) so as to maximize the net utility of the targets. The terms ‘treatment’,
‘target’, and ‘utility’ can take on quite different meanings, depending on the application. For
example, treatments may correspond to queries, probes, or experimental procedures. Examples
of targets include disease conditions, genes, and DNA binding events.

The input to TPD is a set of potential treatments or quefiea representative population
of targetsR, and a utility functionu : 7 x R — R, whereu(T, R) is the utility of applying
treatment’ € 7 to targetR € R. This utility may be based on a variety of factors, including
the benefit of the treatment, cost, time to application, time to response, estimatedxi$ke
goal of computational TPD is to select a subset of treatmBnts 7 (called the ‘portfolio’)
SO as to maximize their net utility for the target population. A defining aspect of the utility

function is that it is additivei(e., the total or net utility is a sum of component utilities); for

CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 119

portfolio P, the net utility is:

max u(7, R) .
TeP
RER

To account for the fact that some treatments are preferable to others regardless of their efficacy
for the targetsd.g, different setup costs), a treatment-specific cost functiod — R can be
used. The net utility, including the treatment cost is:

UP) =Y maxu(T,R)— Y oT)

TeP
ReR TeP

Provided with7', R, u andc, the computational task is to fingca%(U(P). Note that the number

of treatments in the portfolio will be determined by balancing the utility with the treatment cost.

In general, the treatment set does not equal the target set. Then, TPD can be viewed as a
facility location problem with treatments serving as potential facilities (exemplars) and targets
as customers. Affinity propagation can be adapted to address this: if p@antarget and point
k is a treatment, theg(:, k) can be set to the utility of that treatment for that target; if p&int

is a treatments(k, k) can be set to the negative cost for that treatment.

One important difference, however, between the problem statements for exemplar-based
clustering and TPD is the distinction between treatments and targets. The basic affinity prop-
agation algorithm treats all points as potential exemplars and every non-exemplar point must
be assigned to an exemplar. In TPD, only treatment can be selected as exemplars, and only
targets have utilities for being assigned to exemplars (treatments). Treatments that are not se-
lected for the portfolio (exemplar set) are neither exemplars nor assigned to another exemplar

(treatment).

To allow some treatments to not be selected for the portfolio and also not be assigned to any
other points, a special ‘garbage collector’ point is introduced and the similarities of treatments
to this point are set to zero. So, unless there is a net benefit in utility minus cost when including

a treatment in the portfolio (exemplar set), it will be assigned to the garbage collector point. In

CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 120

for unused

potential exemplars cluster members treatments
- N ~— " similarity
treatments targets matrix
T R garbage

(4]
5
£ T —oo 0
@©
g
s
v epea
o utilities,
w R —oo —oo
g u(1,R)
garbage —oco +oo

Figure 5.6: Treatment portfolio design can be rephrased in terms of similarities and preferences
for affinity propagation. Constraints on similarities for treatment portfolio design (TPD) are
outlined in equatior{5]2).

summary, the following similarity constraints account for the bipartite structure of TPD:

s(target treatment=u (treatmenttarge) and s(target target)=s(target garbagg¢=—o00

s(treatmentgarbagg=0 and s(treatmenttargey=s(treatmenttreatmerf)=—oc (5.2)

s(garbagetarge)=s(garbagetreatment=—o00
s(treatmenttreatment=—c(treatmeny, s(target targe)=—o00 and s(garbagegarbagé=+oo

The last constraints ensure that targets cannot be selected as exemplars and that the garbage
collection point is always available as an exemplar. The specific form of similarities under these
constraints is illustrated in Figute 5.6. Note that messages need only be exchanged between a
treatment and target if the ultility is netoo; this makes the algorithr®(|7|-|R|) instead of
O(|T+R|?).

5.3.2 Application to HIV vaccine cocktail design

The issue of HIV vaccine cocktail design can be nicely posed as a TPD problem. The idea

with this is to find a set of optimal HIV strains for the purpose of priming the immune sys-

CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 121

(A) treatments, are HIV strain sequences

- - MGARASVLSGGKLDKWEKIRLRPGGKKKYKLKHIVWASRELERF - - -
-+ MGARASVLSGGELDRWEKTIRLRPGGKKKYQLKHIVWASRELERF - - -
- MGARASVLSGGELDRWEKIRLRPGGKKKYRLKHIVWASRELERF - - -

(B) targets;R, are short subsequenceé that correspond to epitopes

KKYHF&RA?Y

KYQERHIVW S
KKKYREKHI AL CORKWE
KKYRLKHIV T o2 cyic FhUMﬁxwu\kk >
ﬁﬁﬁkﬁﬂ&&r:thanL’hllY Lwﬁ§5§LLPFLURWEKIRL
RLKHIVWAS CKKKYKLKH LKHIVWAS |1 PRIERERIR J

Figure 5.7: Treatment and target sets for HIV vaccine design. The treatrieat® thousands

of HIV strain sequences that differ slightly from each other due to mutations (shown in bold).
Sequences are shown as chains of amino acids (represented as text strings from an alphabet of
20 Latin letters). The target® are a set of short sequences that correspond to the epitopes

to which immune systems respond. For this application, all possible (overlapping) 9-mers
extracted from the HIV strain sequences are used.

tems of many patients. The treatmefitsare thousands of HIV strain sequences (available at
www.hiv.lanl.gov). The target® are a set of short sequences (patches, fragments) that corre-
spond to the epitopes to which immune systems respond (all 9-mers are used). Sele Bigure 5.7
for more details. The utility,(7', R) of a strainT’ for a fragmentR would ideally be set to its
potential for immunological protection, but following the approaches in [30,53,54,81], it is set

to the frequency of the fragment in the database of HIV sequences if fragimsrgresent in

strainT’, and zero otherwise, as in equatibn {5.3).

frequency of R in HIV sequence database, if 1" contains R ;
u(T,R) = (5.3)
0, otherwise .
The net utility is also referred to as ‘coverage’.

Figure[5.8 shows aligned pieces of HI\Gag protein from several different strains, with

two variable sites marked by arrows as well as known or predicted T-cell epitopes for the MHC

CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 122

MGARASVLSGGKLDKWEKIRLRPGGKKKYKLKHIVWASRELKRF

MGARASVLSGGELDRWEKIRLRPGGKKKYQLKHIVWASRELKRF

————————

MGARASVLSGGELDRWEKTIRLRPGGKKKYRLKHIVWASRELKRF

———————

MGARASVLSGGELDKWEKTIRLRPGGKKKYKLKHIVWASRELKRF

——————

MGARASVLSGGELDKWEKIRLRPGGKKKYQLKHIVWASRELKRF

MGARASVLSGGELDRWEKIRLRPGGKKKYQLKHIVWASRELKRF

——————

MGARASVLSGGELDRWEKIRLRPGGKKKYKLKHIVWASRELKRF
1 1

Figure 5.8: Fragments of Gag protein with epitopes recognized by several HIV-infected pa-
tients. Epitopes recognizable by a single patient are shown in a single color; mutations marked
by red arrows escape MHC | binding.

molecules of five different patients taken from the Western Australia cohort [71]. Epitopes
recognizable by a single patient are shown in a single color, and each patient is assigned a
different color. Some mutations (marked by red arrows) ‘escape’ MHC | binding. For example,
the red patient can react to the 9-mer epitope VLSGGKLDK in the first sequence, but not to
VLSGGKLDR in the second. On the other hand, other mutations do not affect MHC binding,
but may affect T-cell binding (a different set of T-cells will target different versions). The
white patient could be immunized against three forms of the same epitope: KKYKLKHIV,
KKYQLKHIV, KKYRLKHIV. In this small example, a vaccine can be designed consisting of
the following segments which epitomizes (in an immunological sense) the seven strains shown
in the figure: VLSGGKLDKWEKIRLRPGGKKKYKLKHIVWASRELERFLSGGKLDRW-
EKIRLRKKYQLKHIVWKKKYRLKHIVW.

Much discussion among HIV vaccine experts has been focused on the need for constraining

CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 123

vaccine constructs optimized for coverage to resemble naturally-occurring strains [30,81]. This
is motivated by several pieces of evidence suggesting that deviation from naturally-occurring
strains often reduces efficacy in animal models as well as in vaccine trials, both in terms of
the cellular and antibody responses. Thus, [81] proposes enrichment of the vaccine with a
sequence that sits in the center of the HIV phylogenetic tree, so that this single native-like
(but still artificially-derived) strain is used to provide coverage of immune targets in as natural
a way as possible, while the additional coverage is achieved with an epitome fragment(s).
In contrast, in their recent paper [30], Fisctetral. avoid the use of fragments altogether

and propose building the entire vaccine out of multiple strain-like constructs optimized by
simulated strain recombination, dubbed ‘mosaics’. A mosaic vaccine is therefore a cocktail of
artificially-derived strains, not existent among the observed strains of the virus, but achievable
by recombining the existing strains many times. These vaccine components resemble natural
strains, but have higher 9-mer coverage than would be expected from a cocktail of natural
strains. Mosaics can always achieve higher coverage than natural strains, so while they may

not be viable as vaccines, they provide an upper bound on potential coverage.

As the dataset of known HIV sequences is constantly growing, the potential for achieving
high coverage with a cocktail of true natural strains is growing as well. Newly-discovered
strains differ from existing ones mostly by the combination of previously-seen mutations rather
than by the presence of completely-new 9-mers. In fact, Fisehat. have increased the
Gag vaccine coverage with their use of mosaic by some 4-5% in comparison to natural strain
cocktails. As the problem i8/P-hard, the natural strain cocktails (treatment portfolios) in
their paper are found by a greedy technique analogous to the vertex substitution heuristic,
which may further decrease the perceived potential of natural strain cocktails, especially for
a larger number of components. For a large dataset consisting of 1755 Gag proteins from the
LANL database, a Gag sequence consisting of the best four natural strains affinity propagation
could find had only 3% lower coverage than the mosaic of the same size optimized on the same

data (69% vs. 66%). Obviously, as the dataset grows, the computational burden for finding the

CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 124

optimal cocktail grows exponentially, as is the case for the general TPD problem.

Furthermore, while potentially-important for the cellular arm of the immune system, the
closeness of vaccine components to natural strains is even more important for properly pre-
senting potential targets of the humoral (antibody) arm of the immune system. As opposed
to the T-cell epitopes, antibody epitopes are found on the surface of the folded proteins. It
has been shown that slight changes in HI¥Bv protein can cause it to mis-fold, and so
naturally-occurring HIV strains are more likely to function properly than artificially-derived
Env proteins.

In these experiments, the TPD problem for Gag vaccine cocktail optimization is performed
with larger cocktails, where the coverage approaches 80% or more and exhaustive search is
computationally infeasible. Affinity propagation is used to find an approximate solution, and its
achieved utility is compared with that of the greedy method and the mosaic upper bound [30].

Table[5.1 summarizes these results on 1755 strains.

Table 5.1: The utility (“epitope coverage”) of vaccine portfolios found by affinity propagation
and a greedy method, including an upper bound on utility (found using mosaics).

vaccine Natural strains Artificial mosaic straing
portfolio size | Affinity propagation Greedy Method (upper bound)

K =20 77.54% 77.34% 80.84%

K =30 80.92% 80.14% 82.74%

K =38 82.13% 81.62% 83.64%

K =52 84.19% 83.53% 84.83%

These results show that affinity propagation achieves higher coverage than the greedy
method. Importantly, these results also suggest that the sacrifice in coverage necessary to
satisfy the vaccine community’s oft-emphasized need for natural components may in fact be

bearable if large datasets and appropriate algorithms are used to optimize coverage.

Chapter 6

Conclusions and Future Directions

In conclusion, clustering data by identifying exemplar data points rather than parametric meth-
ods allows for rich domain-specific models that can achieve superior results, as explored in
Chaptef 5. Affinity propagation (see Section]3.2) is an innovative and readily-extensible clus-
tering algorithm that identifies exemplars quickly and successfully. It consistently finds better
solutions than standard exemplar-based clustering algorithms séemedoids, and achieves
comparable or better results to workhorse algorithms such as the vertex substitution heuristic

(VSH) in far less time for large datasets.

Specifically, the benchmarks in Sectidn 4 show that for large datasets with thousands of
data points, many restarts bfmedoids clustering (Sectign 2.4) will achieve mediocre results
within a few minutes; allotting the algorithm more hours or days of CPU time will only yield
slight improvements in solution quality. Affinity propagation requires more minutes (or, for the
largest dataset examined, hours) thkamedoids but achieves vastly superior results. For large
datasets, the vertex substitution heuristic with variable neighbor search ($ection 2.5) achieves
comparable or worse results than affinity propagation but requires days or weeks of CPU time.
For small datasets with hundreds of data points, affinity propagation and the vertex substitution
heuristic both achieve near-optimal results though for realistic problems (where the number of

clusters is much less than half the number of points), VSH initialized with affinity propagation

125

CHAPTER 6. CONCLUSIONS ANDFUTURE DIRECTIONS 126

seems to be the best balance between computation time and solution quality. In any case,
optimal clusterings of these small datasets can be found with linear programming techniques
in a matter of hours.

In the two years since its introduction, affinity propagation has spawned a growing volume
of research, such as:

Vector quantization codebook design (Jiat@l. in [51])

Soft-constraint affinity propagation for gene expression data (Lebakin [68])
Multiple view image segmentation (Xiaat al. in [108])

Finding light sources using images (&bal. in [2])

Image categorization and normalized mutual information analysis (Erahin [44])
Semi-supervised object classification Ewal. in [39])

Image-audio dataset analysis (Zhat@l. in [113])

Gene3D: Protein analysis (Yeasal. in [110])

Protein sequence clustering (Wittkepal. in [107])

Affinity propagation with isomap-based metrics (Bataal. in [4])

Data streaming and analysis of grid computing jobs (Zhetrad. in [114])
Analysis of cuticular hydrocarbons (Keet al. in [58])

Analysis of brain tissue MRI data (Vernad al. in [100])

Clustering speakers from audio data (Zhangl. in [115])

Color-based clustering for text detection in imagesdiyal. in [112])
Analysis of hydrophobic-polar protein model (Santatal. in [89])

Face recognition with linear discriminant analysis (€ual. in [24])
Clustering text data (Kinet al. in [59])

Adaptive extensions of affinity propagation (Waettal. in [102])
Knowledge discovery in medical data sources (Sxrdl. in [91])
Analysis of land-use and land-cover data (Cardeli@l. in [12])
Customer micro-targeting (Jiargg al. in [50])

An interesting and recent research thrust is Dirichlet process affinity propagation [95]
which involves adapting the graphical model in Figlrel 3.5 to incorporate a Dirichlet prior
over the size of clusters into the factor graph. This representation can then be viewed as max-
imum a posterioriinference of a Dirichlet mixture model where the means are constrained to
be exemplars (co-located with data points) and variances are fixed.

The affinity propagation algorithm raises many new questions for further research:

The relationship between max-product belief propagation and linear programming relax-
ations is not well-understood but is beginning to be more widely investigatg[04, 109]).

In [88], a linear programming relaxation for the weighted matching problem is compared to

max-product belief propagation with a proof that “if the [linear programming] relaxation is

CHAPTER 6. CONCLUSIONS ANDFUTURE DIRECTIONS 127

tight, i.e,, if the unique solution is integral, then the max-sum algorithm converges and the re-
sulting estimate is the optimal matching”. Much theoretical work remains in analyzing affinity
propagation but this suggests a starting approach.

Clustering is traditionally an unsupervised learning task, but there are many applications
where some labeled (or at least partially-labeled) data is available for semi-supervised learning.
The affinity propagation factor graph can easily be extended to incorporate additional pairwise
constrains such as requiring points with the same label to appear in the same cluster with just an
extra layer of function nodes. The model is flexible enough for information other than explicit
constraints such as two points being in different clusters or even higher-order consé&:@nts (
two of three points must be in the same cluster). There may also be applicationswise
similarities are useful, such as triple-wise similarities for finding collinear pomts, (data
from astronomical tracking)

Finally, the paradigm shift of using pointers to exemplar data instead of problem-specific
parameters may have wider applicability. A cluster is a simple structure, perhaps requiring
only one exemplar to identify the location of its center. More complex structures such as
d-dimensional subspaces could use 1 data points to be specified, or clusters could have
additional attributes such as a scale or shape—analogous to a Gaussian’s covariance matrix—

that could be specified by multiple exemplars.

Appendix

128

Appendix A

The Bethe free energy approximation

Using the notation from Sectidn 2.6.3, a factor graph withodes representing variabXs=
{X1, Xs,..., Xy} and M nodes representing functioddi, f, ..., fa} describes a global
function that can be factorized d$X=x) =[], fi(Xn(m)). We letN(n) C{1,2,..., M}
represent the set of function nodes neighboring variable nate N (m)C{1,2,..., N} the
set of variable nodes connected to function nedsuch thak v, is the argument of function
fm and is shorthand for the sét,, },.cn@). The current beliefs or marginal of each variable
node are referred to as(z,,) and the clique marginal of variable nodes connected to function
node f,, areg, (Xnwm))-

Belief propagation updates are now shown to be equivalent to coordinate descent minimiza-

tion performed on the Bethe free energy expression in equation (2.21), reproduced here:

Fhethe = 2 2 Gm(Xnem)) 108 @ (Xnem) = 20 Y0 @m(Xnim)) 108 frn (Xnm))

m XN(m) m XN(m)

=2 (IN(n)[=1) 32 gn(2n) -10g gn(n)

Tn

Constraints must be added to ensure thaythestributions are valid probability distributions,

i.e,Vn:y qn(z,)=1andvm:}_ ¢m(Xn@m)) =1, and that the single-node marginals are

XN(m)

consistent with clique marginalén,n € N(m): ¢,(z,) = > ¢m(XN(m))- Incorporat-

XN(m)\n

ing these as Lagrange multipliers, the expression to minimize becomes:

129

APPENDIXA. THE BETHE FREE ENERGY APPROXIMATION 130

L= Foane + Lon Cnenim S Aol [an(w0) = ey tm(viom)|
Y [1= S @ Cinem) | + 50, 80 [L= 5, an(0)]

Taking partial derivatives with respect to the marginals and setting them to zero yields:

OL/0qn(wn): —(IN(n)|=1) = (IN(n)|=1) - 108 u(zn) + 3=, e nin) Amn(Tn) — Bn =0,
OL [0 (Xnim)): 1+ 108 G (Xntm)) = 108 for(Xnm)) = D

~~

because
> 2 Amnln) X am(Xngmy) = 20 20 Ama(@n)gm (Xn(m))
nEN(m) Tn XN(m)\n n€N(m) XN(m,)
(A1)
Solving for the marginals yields an update equation in terms of the Lagrange multipliers
Qs Bn, @Nd A, (). The first two are constant with respectit@nd can be dropped if unit

normalization is performed after each update.

1 _ Bn

Qn($n) — eINm)[-1 EmEN(n) Amn (Tn)— [N(n)|—1" O(H e Amn (zn) /(| N(m)|—1) ,
G (X)) = e2nenem Amn(En)H08 fmn G JFam =1 o g (Y T @dmn(@n)
neN(m)

The “message” from variable nod€, to function nodef,, can be defined ag, .., (z,) =
1/(IN(m)|-1)

n—m/

ermn(@n) "which leads to simple expressions for the marginglgs,,) o [Toneni)
and g, (Xnpmy) < fm(Xnem)) - [Le Nem) Vn—m(z,). These expressions can be substituted into

the marginals’ consistency constraiht, @ (XN(m)) = @n(zn), to yield:

N(m)\n

Z (fm(XN(m)) : H Vn’—>m(£n’)> X H Tll/_Jn]Z =1

XN(m)\n n’€N(m) m/€N(n)
U (A.3)
o fn&Enem) - T vem(zn) | o vnom(@n) ™ 1 iﬁ‘n]\{(m 1)
XN(m)\n n/€N(m)\n m’eN(n)

Finally, the “message” from function nodg, to variable nodeX, is defined to be,,, ., (z,,) =

APPENDIXA. THE BETHE FREE ENERGY APPROXIMATION 131

2 i S (8m) Tlentmyn Viw—m (). In this case, the final expression can be manip-

ulated from equatiori_ (Al3) to make the following simplifications:

:U’m—>n(xn) X Vn—>m(flfn)_1 : H anm/(xn>1/(|]\/(m’)|—1)

m/eN(n)

I

TT tonen(zn) o 1 [Vwm(a:n)—l NLvene ynﬂm,(g;n)l/<uv<m'>\—1>]

meN(n) meN(n)
= [T Vo (@) - | TT Vi () NV ANGR) 1)
meN(n) meN(n)
=] ,/nqm(xn)—1+IN(m)\/(IN(m)\—1) =11 anm(xn)l/(u\r(m)_l) ()
meN(n) meN(n)

and

’um_’”(x”) x Vn*m(xTJ_l ’ H Vn—>m’<xn>l/(‘N(m/)|_l)

m/eN(n)

1 ttwv—n(an) o< I [anm,(xn)—l.nm,,ejv(n) V,Hm,,(xn)l/wv(m”n—l)}
m/€N(n)\m m/€N(n)\m

- [Vn_m(xny I anmr(xn)_ll : [11 ynqm,(xn)%((i’é?i\ﬁ]

m/€N(n) m/€N(n)

= Vpom(zp) .

To summarize, we find the now-familiar belief propagation update equations:

Vnﬂm(l’n) X H ,Udm’—m(xn) and ,Udm—m(xn) X Z fm(XN(m)) : H Vn’ﬂm(l’n’) ,

m/€N(n)\m X N(m)\n n’eN(m)\n

Gn(n) o< [T ptm—n(zn) and Qm(XN(m)) X fm(XN(m)) T vnem(0) -
meN(n) neN(m)

(A.4)

Bibliography

[1] S. M. Aji and R. J. McEliece. The Generalized Distributive LA#®EE Transactions on
Information Theory46(2):325-343, 2000.

[2] S. An, W. Liu, and S. Venkatesh. Acquiring Critical Light Points for lllumination Sub-
spaces of Face Images by Affinity Propagation Clusteringréit. Pacific-Rim Confer-

ence on Multimedia (PCMR007.

[3] A. Banerjee, S. Merugu, |.S. Dhillon, and J. Ghosh. Clustering with Bregman Diver-
gencesJournal of Machine Learning Researdsi1705-1749, 2005.

[4] A.E. Baya and P.M. Granitto. ISOMAP based metrics for clustering. Revista

Iberoamericana de Inteligencia Artificiahumber 37, pages 15-23, 2008.

[5] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-correcting
coding and decoding: Turbo-codes (1EEE International Conference on Communi-
cations, 1993. ICC 93. Geneva. Technical Program, Conference Rezd@b4—-1070
vol.2, 23-26 May 1993.

[6] Julian Besag. On the statistical analysis of dirty pictures (with discussimirnal of
the Royal Statistical Society, SeriesAB(3):259-302, 1986.

[7] H. A. Bethe. Statistical Theory of SuperlatticeBroceedings of the Royal Society of
London. Series A, Mathematical and Physical Scient®8(871):552-575, 1935.

132

BIBLIOGRAPHY 133

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Christopher M. BishopPattern Recognition and Machine Learnin§pringer, August

2006.

Y. Boykov, O. Veksler, and R. Zabih. Fast Approximate Energy Minimization via Graph
Cuts. IEEE Trans. Pattern Anal. Mach. IntelR3(11):1222-1239, November 2001.

M. J. Brusco and H.-F. Kohn. Comment on "Clustering by Passing Messages Between

Data Points”.Science319(5864):726¢—, 2008.

G. C., M. L. Fisher, and G. L. Nemhauser. Location of bank accounts to optimize float:
An analytic study of exact and approximate algorithm&nagement Scienc23:163—

177,1977.

J.A. Cardille and M. Lambois. Widespread human signature in representative U.S. land-

scapes. 1®93rd Ecological Society of America Annual Meeti@§08.

V. Cerny. A thermodynamical approach to the travelling salesman problem: An effi-
cient simulation algorithmJournal of Optimization Theory and Applicatiod$:41-51,
1985.

M. Charikar, S. GuhaE. Tardos, and D. B. Shmoys. A constant-factor approximation
algorithm for the k-median problend. Comput. Syst. S¢65(1):129-149, 2002.

L. Cooper. Location-allocation problem@perations Researgii1:331-343, 1963.

L. Cooper. Heuristic Methods for Location-Allocation Problems$SIAM Review

6(1):37-53, 1964.

L. Cooper. Solutions of generalized locational equilibrium mod#sirnal of Regional

Science7:1-17, 1967.

T.M. Cover and J.A. ThomasElements of Information ThearyWiley-Interscience,

August 1991.

BIBLIOGRAPHY 134

[19]

[20]

[21]

[22]

CPLEX Optimization Inc. CPLEX Linear Optimizer and Mixed Integer Optimizer.
Suite 279, 930 Tahoe Blvd. Bldg 802, Incline Village, NV 89541.

Michelangelo Merisi da Caravaggio. Vocazione di san Matteo (The Calling of St.

Matthew). Hanging in Contarelli Chapel at San Luigi dei Francesi, Rome, Italy, 1599.

S. Dasgupta and L. Schulman. A Probabilistic Analysis of EM for Mixtures of Sepa-
rated, Spherical Gaussiank.Mach. Learn. Res8:203—-226, 2007.

S. Dasgupta and L. J. Schulman. A Two-Round Variant of EM for Gaussian Mixtures. In
UAI '00: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence

pages 152-159, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[23] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete

[24]

[25]

[26]

[27]

Data via the EM AlgorithmJournal of the Royal Statistical Society. Series B (Method-
ological), 39(1):1-38, 1977.

C. Du, J. Yang, Q. Wu, and F. Li. Integrating affinity propagation clustering method with
linear discriminant analysis for face recognitid@ptical Engineering46(11):110501,

2007.

D. Dueck and B. J. Frey. Non-metric affinity propagation for unsupervised image cat-
egorization. Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference
on, pages 1-8, Oct. 2007.

D. Dueck, B. J. Frey, N. Jojic, V. Jojic, G. Giaever, A. Emili, G. Musso, and R. Hegele.
Constructing Treatment Portfolios Using Affinity PropagatiorREECOMB pages 360—
371, 2008.

A. A. Efros and T. K. Leung. Texture Synthesis by Non-parametric Sampling. In
IEEE International Conference on Computer Visipages 1033-1038, Corfu, Greece,
September 1999.

BIBLIOGRAPHY 135

[28] S. Eilonand R. D. Galvao. Single and double vertex substitution in heuristic procedures

for the p-median problemManagement Scienc24:1763-1766, 1978.

[29] E. Feldman, F. A. Lehrer, and T. L. Ray. Warehouse location under continuous

economies of scaldManagement Scienc#2:670—-684, 1966.

[30] W. Fischer, S. Perkins, J. Theiler, T. Bhattacharya, K. Yusim, R. Funkhouser, C. Kuiken,
B. Haynes, N. L Letvin, B. D Walker, B. H Hahn, and B. T Korber.

[31] L. Ford and D. Fulkerson. Maximal Flow Through a Netwoi®anadian Journal of

Mathematics8:399-404, 1956.

[32] L. Ford and D. FulkersonFlows in Networks Princeton University Press, Princeton,

NJ, 1962.

[33] W. T. Freeman and E. C. Pasztor. Learning to Estimate Scenes from Imagé23n

pages 775781, 1998.

[34] B. Frey and D. Dueck. Mixture Modeling by Affinity Propagation. In Y. Weiss,
B. Scholkopf, and J. Platt, editorsdvances in Neural Information Processing Systems

18, pages 379-386. MIT Press, Cambridge, MA, 2006.

[35] B. J. Frey and D. Dueck. Response to Comment on "Clustering by Passing Messages

Between Data Points’Science319(5864):726d—, 2008.

[36] B. J. Frey, N. Mohammad, Q. D. Morris, W. Zhang, M. D. Robinson, S. Mnaimneh,
R. Chang, Q. Pan, E. Sat, J. Rossant, B. G. Bruneau, J. E. Aubin, B. J. Blencowe, T. R.
Hughesverre, and F. Mitelman. Genome-wide analysis of mouse transcripts using exon

microarrays and factor graphNature Genetics37:991-996, 2005.

[37] B. J. Frey, Q. Morris, M. D. Robinson, and T. R. Hughes. Finding Novel Transcripts
in High-Resolution Genome-Wide Microarray Data Using the GenRate Mod&®Emh
COMB, pages 66—82, 2005.

BIBLIOGRAPHY 136

[38] B.J. Frey and D. Dueck. Clustering by Passing Messages Between Data Boiet&e
315:972-976, 2007.

[39] Y. Fu, Z. Li, X. Zhou, and T.S. Huang. Laplacian Affinity Propagation for Semi-
Supervised Object ClassificatiolEEE International Conference on Image Processing,

2007. ICIP 2007.1:1 -189-1-192, Oct 2007.

[40] D. Gavrilaand V. Philomin. Real-Time Object Detection for “Smart” VehiclesQGV,
pages 87-93, 1999.

[41] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of imagedEEE Trans. Pattern Anal. Mach. Intel6:721-741, 1984.

[42] Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs.

Bulletin of the American Mathematical Socigby:275—-278, 1958.

[43] D. Greig, B. Porteous, and A. Seheult. Exact maximum a-posteriori estimation for

binary imagesJournal of the Royal Statistical Society, SeriedB(2):271-279, 1989.

[44] N. Grira and M.E. Houle. Best of both: a hybridized centroid-medoid clustering heuris-
tic. In Zoubin Ghahramani, editdiCML, volume 227 oACM International Conference

Proceeding Seriepages 313-320. ACM, 2007.

[45] S. L. Hakimi. Optimum Locations of Switching Centers and the Absolute Centers and

Medians of a GraphOperations Researgii2:450—-459, 1964.

[46] S.L.Hakimi. Optimum Distribution of Switching Centers in a Communication Network

and Some Related Graph Theoretic Proble@yserations Resear¢hi3:462—-475, 1965.

[47] P.Hansen and N. Mladenovic. Variable neighborhood search fertinedian.Location

Science5(4):207-226, 1997.

BIBLIOGRAPHY 137

[48] G. E. Hinton and M. Revow. Using Pairs of Data-Points to Define Splits for Decision
Trees. In D. S. Touretzky, M. Mozer, and M. E. Hasselmo, editdiBS pages 507—
513. MIT Press, 1995.

[49] D.S. Hochbaum and D. B. Shmoys. A Best Possible Heuristic for the k-Center Problem.
Mathematics of Operations Researd®(2):180-184, 1985.

[50] T.Jiang and A. Tuzhilin. Dynamic Micro Targeting: Fitness-Based Approach to Predict-
ing Individual Preferences. MCDM, pages 173-182. IEEE Computer Society, 2007.

[51] W. Jiang, F. Ding, and Q.-L. Xiang. An Affinity Propagation Based method for Vector
Quantization Codebook Desig@oRR abs/0710.2037, 2007.

[52] N. Jojic, B. J. Frey, and A. Kannan. Epitomic analysis of appearance and shape. In
ICCV '03: Proceedings of the Ninth IEEE International Conference on Computer Vi-
sion page 34, Washington, DC, USA, 2003. IEEE Computer Society.

[53] N. Jojic, V. Jojic, B. Frey, C. Meek, and D. Heckerman. Using “epitomes” to model
genetic diversity: Rational design of HIV vaccine cocktails. In Y. Weiss, B. Scholkopf,
and J. Platt, editorgydvances in Neural Information Processing Systemgages 587—

594. MIT Press, Cambridge, MA, 2006.
[54] VlIadimir Jojic. Algorithms for rational vaccine desigii?hD thesis, 2007.

[55] L. G. Kachiyan. A polynomial algorithm in linear programmin§oviet Mathematics

Doklady, 20:191-194, 1979.

[56] O. Kariv and S. L. Hakimi. An algorithmic approach to network location problems.
[I: The p-medians.SIAM Journal on Applied Mathematic37(3):539-560, December
1979.

[57] N. Karmarkar. A new polynomial-time algorithm for linear programmi@gmbinator-

ica, 4(4):373—-395, December 1984.

BIBLIOGRAPHY 138

[58] C. Kent, R. Azanchi, B. Smith, A. Chu, and J. Levine. A Model-Based Analysis
of Chemical and Temporal Patterns of Cuticular Hydrocarbons in Male Drosophila

melanogasteLoS ONE2(9):€962, Sep 2007.

[59] J. Kim and H. Park. Sparse Nonnegative Matrix Factorization for Clustering. Technical
Report GT-CSE-08-01, Georgia Institute of Technology, Computational Science and
Engineering Technical Reports, 2008.

[60] R. Kindermann and J.L. SnelMarkov Random Fields and Their Applicatiorsmeri-

can Mathematical Society, Providence, RI, 1980.

[61] Benjamin King. Step-Wise Clustering Procedurdsurnal of the American Statistical

Association62(317):86-101, 1967.

[62] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by Simulated Annealing.
Science220(4598):671-680, 1983.

[63] R. Koetter, B. J. Frey, and N. Petrovic. Unwrapping phase images by propagating prob-
abilities across graphs. ICASSP '01: Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, pag&s 1845-1848, Washington,
DC, USA, 2001. IEEE Computer Society.

[64] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts?

IEEE Trans. Pattern Anal. Mach. IntelR6(2):147-159, 2004.

[65] F.R. Kschischang, B.J. Frey, and H.-A.Loeliger. Factor Graphs and the Sum-Product
Algorithm. IEEETIT: IEEE Transactions on Information Theody, 2001.

[66] A. A. Kuehn and M. J. Hamburger. A heuristic program for locating wareholdas-

agement Scien¢8:643—-666, 1963.

BIBLIOGRAPHY 139

[67] D. Lashkari and P. Golland. Convex Clustering with Exemplar-Based Models. In J.C.

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Platt, D. Koller, Y. Singer, and S. Roweis, editoisgvances in Neural Information

Processing Systems Jfages 825-832. MIT Press, Cambridge, MA, 2008.

M. Leone, Sumedha, and M. Weigt. Clustering by soft-constraint affinity propaga-
tion: Applications to gene-expression daBoinformatics 23(20):2708-2715, October
2007.

J.-H. Lin and J. S. Vitter. Approximation Algorithms for Geometric Median Problems.

Technical Report CS-92-37, 1992.

J. B. Macqueen. Some methods of classification and analysis of multivariate observa-
tions. InProceedings of the Fifth Berkeley Symposium on Mathemtical Statistics and

Probability, pages 281-297, 1967.

Simon A. Mallal. The Western Australian HIV Cohort Study, Perth, Australiaur-
nal of Acquired Immune Deficiency Syndromes and Human Retrovitdl@gy23-S27,

1998.

F. E. Maranzana. On the location of supply points to minimize transport cOgtsta-

tions Research Quarter|y.5:261-270, 1964.

R. J. Mceliece, D. J. C. Mackay, and J.-F. Cheng. Turbo decoding as an instance of
Pearl’s “Belief Propagation” algorithmEEE Journal on Selected Areas in Communi-

cations 16(2):140-152, 1998.

M. Meila and J. Shi. Learning Segmentation by Random WalkNIRPS pages 873—
879, 2000.

N. Metropolis, A.W. Rosenbluth, A.H. Teller, and E. Teller. Equations of State Calcu-
lations by Fast Computing Machinedournal of Chemical Physic21(6):1087-1092,
1953.

BIBLIOGRAPHY 140

[76] M. Mézard, G. Parisi, and R. Zecchina. Analytic and Algorithmic Solution of Random
Satisfiability ProblemsScience297(5582):812—-815, 2002.

[77] Marc Mézard. Where Are the ExemplarSeience315(5814):949-951, 2007.

[78] N. Mladenovic, J. Brimberg, P. Hansen, and J. A. Moreno-Pérez.pfhedian prob-
lem: A survey of metaheuristic approachEswropean Journal of Operational Reseaych

179(3):927-939, 2007.

[79] K. P. Murphy, Y. Weiss, and M. Jordan. Loopy Belief Propagation for Approximate
Inference: An Empirical Study. ItUncertainty in Artificial Intelligencepages 467—

475, 1999.

[80] A. Ng, M. Jordan, and Y. Weiss. On Spectral Clustering: Analysis and an algorithm.
In Advances in Neural Information Processing Systemsnber 14, pages 849-856,

Cambridge, MA, 2002. MIT Press.

[81] D.C. Nickle, M. Rolland, M. A Jensen, S. L. Kosakovsky Pond, W. Deng, M. Seligman,
D. Heckerman, J. I. Mullins, and N. Jojic. Coping with Viral Diversity in HIV Vaccine

Design.PL0oS Comput. Biol.3(4):e75, Apr 2007.

[82] S. Nowozin and G. Bakir. A Decoupled Approach to Exemplar-based Unsupervised
Learning. InProceedings of the 25th International Conference on Machine Learning

(ICML 2008) 2008.

[83] Judea Pearl. Bayesian networks: A model of self-activated memaory for evidential rea-
soning. InProceedings of the 7th Conference of the Cognitive Science Society, Univer-

sity of California, Irving pages 329-334, August 1985.

[84] Judea PearlProbabilistic Reasoning in Intelligent Systems: Networks of Plausible In-

ference Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

BIBLIOGRAPHY 141

[85] K. D. Pruitt, T. A. Tatusova, and D. R. Maglott. NCBI Reference Sequence Project:
update and current statuducleic Acids Resear¢cB1(1):34-37, 2003.

[86] C.S. ReVelle and R. Swain. Central facilities locati@eographical Analysi2:30-42,
1970.

[87] F. Samaria and F. Fallside. Face Identification and Feature Extraction Using Hidden
Markov Models. In G. Vernazza, editdmage Processing: Theory and Applications

pages 295-298. Elsevier, June 1993.

[88] S. Sanghavi, D. Malioutov, and A. Willsky. Linear programming analysis of loopy belief
propagation for weighted matching. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis,
editors,Advances in Neural Information Processing Systemga@ges 1273-1280. MIT
Press, Cambridge, MA, 2008.

[89] R. Santana, P. Larranaga, and J.A. Lozano. Learning factorizations in estimation of
distribution algorithms using affinity propagation. Technical Report EHU-KZAA-IK-
1/08, Department of Computer Science and Aritificial Intelligence, University of the

Basque Country, 2008.

[90] J. C. SchlimmerConcept acquisition through representational adjustmé@D thesis,

1987.

[91] A.J. Senf, C. Leonard, and J. DeLeo. A Statistical Algorithm to Discover Knowledge in
Medical Data Sources. IFCMLA '07: Proceedings of the Sixth International Confer-
ence on Machine Learning and Applicatioqsmges 537-540, Washington, DC, USA,
2007. IEEE Computer Society.

[92] E. Shechtman, Y. Caspi, and M. Irani. Space-Time Super-ResolutieBEE Trans.
Pattern Anal. Mach. Intel).27(4):531-545, 2005.

BIBLIOGRAPHY 142

[93] P. H. A. Sneath and R. R. Sokallumerical taxonomy: the principles and practice of

numerical classificationFreeman, San Francisco, USA, 1973.

[94] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP Re-
laxations for MAP using message passing.Phoceedings of the 24th Conference on

Uncertainty in Artificial IntelligenceAUAI Press, Arlington, Virginia, 2008.

[95] D. Tarlow, R. Zemel, and B. Frey. Flexible Priors for Exemplar-based Clusterifyon
ceedings of the 24th Conference on Uncertainty in Artificial IntelligeAt#Al Press,

Arlington, Virginia, 2008.

[96] M. B. Teitz and P. Bart. Heuristic methods for estimating the generalized vertex median

of a weighted graphOperations Resear¢hi6(5):955-961, September—October 1968.

[97] K. Toyama and A. Blake. Probabilistic Tracking with Exemplars in a Metric Spiate.
J. Comput. Visiop48(1):9-19, 2002.

[98] N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton. Split and Merge EM Algo-
rithm for Improving Gaussian Mixture Density Estimatddie Journal of VLSI Signal

Processingpages 133-140, August 2000.
[99] S. van DongenGraph Clustering by Flow SimulatioriPhD thesis, 2000.

[100] R. Verma and P. Wang. On Detecting Subtle Pathology via Tissue Clustering of Multi-
parametric Data using Affinity PropagatioBomputer Vision, 2007. ICCV 2007. IEEE

11th International Conference ppages 1-8, Oct. 2007.

[101] T. Vetter and T. Poggio. Image Synthesis from a Single Example Imag&CCV
'96: Proceedings of the 4th European Conference on Computer Vision-Vo|yragds

652—-659, London, UK, 1996. Springer-Verlag.

[102] K. Wang, J. Zhang, D. Li, X. Zhang, and T. Guo. Adaptive Affinity Propagation Clus-

tering. Acta Automatica SinigeB83(12).

BIBLIOGRAPHY 143

[103] Joe H. Ward. Hierarchical Grouping to Optimize an Objective Funcfloarnal of the

American Statistical Associatiph8(301):236—244, 1963.

[104] Yair Weiss. Segmentation Using Eigenvectors: A Unifying View.IQCV '99: Pro-
ceedings of the International Conference on Computer Visiolume 2, page 975,

Washington, DC, USA, 1999. IEEE Computer Society.

[105] Y. Wexler, E. Shechtman, and M. Irani. Space-Time Video Comple@MPR 01:120—
127, 2004.

[106] R. A. Whitaker. A fast algorithm for the greedy interchange for large-scale clustering
and median locationCanadian Journal of Operations Research and Information Pro-

cessing21:95-108, 1983.

[107] T. Wittkop, J. Baumbach, F. Lobo, and S. Rahmann. Large scale clustering of protein
sequences with FORCE — A layout based heuristic for weighted cluster edBMg.
Bioinformatics 8(1), 2007.

[108] J. Xiao, J. Wang, P. Tan, and L. Quan. Joint Affinity Propagation for Multiple View
SegmentationComputer Vision, 2007. ICCV 2007. IEEE 11th International Conference
on, pages 1-7, Oct. 2007.

[109] C. Yanover, T. Meltzer, and Yair Weiss. Linear Programming Relaxations and Belief
Propagation — An Empirical Studydournal of Machine Learning Researclt1887—

1907, 2006.

[110] C. Yeats, J. Lees, A. Reid, P. Kellam, N. Martin, X. Liu, and C.A. Orengo. Gene3D:
comprehensive structural and functional annotation of genonMscleic Acids Re-

search 36:414-418, 2008.

[111] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Generalized Belief PropagatidilP &
pages 689-695, 2000.

BIBLIOGRAPHY 144

[112] J.Yi, Y. Peng, and J. Xiao. Color-based clustering for text detection and extraction in
image. INMULTIMEDIA ’'07: Proceedings of the 15th International Conference on
Multimediag pages 847-850, New York, NY, USA, 2007. ACM.

[113] H. Zhang, Y. Zhuang, and F. Wu. Cross-modal correlation learning for clustering on
image-audio dataset. MULTIMEDIA '07: Proceedings of the 15th International Con-
ference on Multimedigpages 273-276, New York, NY, USA, 2007. ACM.

[114] X. Zhang, C. Furtlehner, and M. Sebag. Data Streaming with Affinity Propagation.
2008.

[115] X.Zhang, J. Gao, P. Lu, and Y. Yan. A novel speaker clustering algorithm via supervised
affinity propagation. IiProceedings of International Conference on Accoustics, Speech,

and Signal Processingages 4369-4372, 2008.

	Introduction
	Background
	k-means clustering
	k-medians clustering
	EM algorithm for Mixtures of Gaussians
	Heuristics for clustering

	Exemplar-based clustering and the k-medoids algorithm
	Linear Programming Relaxation

	The Facility Location Problem
	Factor Graphs and the Sum-Product Algorithm
	Factor Graphs
	Sum-Product Algorithm
	Loopy Belief Propagation
	Max-Product Algorithm

	Affinity Propagation
	Sum-Product Affinity Propagation
	Max-Product Affinity Propagation
	Max-Product vs. Sum-Product Affinity Propagation
	Dynamics of Affinity Propagation
	Preferences for Affinity Propagation
	Implementation Details
	Sparse Similarities and Affinity Propagation

	Alternate Factor Graph for Affinity Propagation
	Other algorithms for clustering via belief propagation
	Affinity propagation with added non-empty cluster constraint
	Alternate factor graph: N binary nodes
	Alternate factor graph: K N-ary nodes
	Alternate factor graph: ternary nodes

	Benchmarking Affinity Propagation
	Olivetti faces: Clustering a small dataset
	Exact clustering solutions
	Performance of Affinity Propagation
	Performance of other clustering techniques
	Affinity Propagation and Mixture of Gaussians models

	Affinity Propagation and Large Datasets
	Mushroom data (N=8124)
	USPS digits (N=11000)
	Netflix movies (N=17770)

	Applications of Affinity Propagation
	Affinity Propagation and Computer Vision: Image categorization
	Augmenting the Olivetti dataset
	Performance on unsupervised image classification
	Performance using non-metric similarities

	Affinity Propagation and Sparsity: Exon Detection
	Treatment Portfolio Design via Affinity Propagation
	Treatment Portfolio Design
	Application to HIV vaccine cocktail design

	Conclusions and Future Directions
	The Bethe free energy approximation
	Bibliography

