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Clustering data by identifying a subset of representative examples is important for detect-

ing patterns in data and in processing sensory signals. Such “exemplars” can be found by

randomly choosing an initial subset of data points as exemplars and then iteratively refining it,

but this works well only if that initial choice is close to a good solution. This thesis describes a

method called “affinity propagation” that simultaneously considers all data points as potential

exemplars, exchanging real-valued messages between data points until a high-quality set of

exemplars and corresponding clusters gradually emerges.

Affinity propagation takes as input a set of pairwise similarities between data points and

finds clusters on the basis of maximizing the total similarity between data points and their ex-

emplars. Similarity can be simply defined as negative squared Euclidean distance for com-

patibility with other algorithms, or it can incorporate richer domain-specific models (e.g.,

translation-invariant distances for comparing images). Affinity propagation’s computational

and memory requirements scale linearly with the number of similarities input; for non-sparse

problems where all possible similarities are computed, these requirements scale quadratically

with the number of data points. Affinity propagation is demonstrated on several applications

from areas such as computer vision and bioinformatics, and it typically finds better clustering

solutions than other methods in less time.
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Caravaggio’sVocazione di san Matteo(The Calling of St. Matthew, [20]) is an artistic depiction
of identifying exemplars based on the direction of gestures, gazes, and even lighting in the
painting. This interpretation was suggested in [77].
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Chapter 1

Introduction

Clustering or discovering meaningful partitions of data based on a measure of similarity is

a critical step in scientific data analysis and a fundamental problem in computer science. A

common approach within the machine learning community involves unsupervised learning of

parameters that describe clusters (e.g. the location and scale/shape of the cluster) and par-

titioning the data by associating every point or region with one or more clusters. In many

situations, data is better and more easily characterized by a measure of pairwise similarities

rather than defaulting to negative squared Euclidean distance, and in this case, clusters can in-

stead be represented by an “exemplar” data point rather than domain-specific parameters. This

thesis introduces a novel algorithm, affinity propagation, that uses belief propagation methods

to achieve outstanding results for exemplar-based clustering.

Identifying exemplars is advantageous because user-specified similarities offer a large amount

of flexibility and allow the clustering algorithm to be decoupled from the details of how similar-

ities between data points are computed. Unlike many algorithms that operate in vector space,

there is no need for similarity to be based on squared Euclidean distance, or for the data space

to be metric or continuous, or even ordinal; see Figure 1.1 for examples. Additionally, there

is potential for significant improvement on existing algorithms, both in terms of solution time

and solution quality.

1
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EXEMPLAR-BASED

CLUSTERING

(A) (B)

(C) (D)

Figure 1.1: Several datasets are shown for which negative squared Euclidean distance would
be an inappropriate measure of similarity. In (A), faces are clustered using translation-invariant
comparisons (see Section 5.1.3 for details). In (B), North American cities are clustered with
similarity defined as flight time, which depends on airline schedules, headwinds, earth curva-
ture, etc. The dataset in (C) appears to contain two unconventional clusters that are shaped
like two-dimensional “plus-signs”. There are many realistic physical situations from which
data such as this could have arisen,e.g. where a subset of sensors (in this case, one of two)
are unreliable for each measurement. Conventional clustering algorithms would need special
tuning or re-deriving to accommodate such a model; exemplar-based clustering algorithms that
rely on pairwise similarities could just use a slightly different definition of similarity such as a
Gaussian likelihood with two possible variances switched in for each dimension. The result of
such clustering is shown in (D).
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The task of exemplar-based clustering is to identify a subset of theN data points as exem-

plars and assign every other data point to one of those exemplars. The only inputs are a set

of real-valued pairwise similarities between data points,{s(i, k)}, and the number of exem-

plars to find (K) or a real-valued exemplar cost to balance against similarities. A simple and

fast algorithm for finding clustering solutions is thek-medoids algorithm [70], which begins

by randomly selecting a set ofK data points as initial exemplars and then refines these in al-

ternating steps as shown in Figure 1.2. The algorithm monotonically maximizes the sum of

similarities between data points and exemplars but considers only a fixed set of exemplars, and

thus is quite sensitive to the initial selection of exemplars. For this reason,k-medoids cluster-

ing needs to be run with many different random initializations—it works well only when the

number of clusters is small and chances are good that at least one restart lies close to a good

clustering solution.

In contrast tok-medoids, affinity propagation simultaneously considers all data points as

potential exemplars. By viewing each data point in a network, it recursively transmits real-

valued messages along edges of the network until a good set of exemplars and corresponding

clusters emerge; see Figure 1.3 for an illustration of these dynamics. Affinity propagation

sends two types of message between data points: responsibilities are sent from data points to

candidate exemplars and reflect the evidence of how well-suited the message-receiving point is

to serve as an exemplar for the sending point. Availabilities are sent from candidate exemplars

to data points and reflect the evidence for how appropriate it would be for the message-sending

point to be the exemplar for the message-receiving point (see Figure 1.3). All data points can

be considered to be either cluster members or candidate exemplars, depending on whether they

are sending or receiving availability or responsibility messages.

Affinity propagation is outlined in the box below, with scalar responsibility and availability

message updates shown in equation (1.1). At any time, a current estimate of cluster assign-

ments can be obtained by adding responsibility and availability messages together.
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Initial 2D dataset

(A) (B) (C)

(D) (E) (F)

Figure 1.2: Thek-medoids clustering algorithm is a simple algorithm that finds a greedy so-
lution. Given the initial toy dataset in (A), the algorithm randomly chooses an initial set of
exemplars (B), and assigns the remaining non-exemplar data points to the “closest” exemplar
based on similarity (C). New exemplars are found for each cluster (D) to minimize the total sum
of intra-cluster similarities, and the process is repeated (E) until convergence to the solution in
(F).
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INITIALIZATION ITERATION 10 ITERATION 50

(CONVERGENCE)

••• •••

(, )r ik�

candidate exemplar k

(, )a ik  

competing candidate 

exemplar k’ (, )a ik�

data point i

( , )r i k 

supporting 

data point i’

data point i candidate exemplar k

ITERATION 20

•••

(A)

(B) (C)

Figure 1.3: The affinity propagation clustering algorithm defines messages that are exchanged
between data points indicating the ‘affinity’ each point has for another to act as its exemplar.
The toy exemplar above (A) shows a solution gradually emerging, with uncertainty in the tenth
iteration (shown as faded blue messages) being resolved to a good clustering solution shown at
the final iteration. Two messages are passed between data points: (B) “responsibilities”r(i, k)
are sent from data pointi to candidate exemplark, and (C) “availabilities”a(i, k) are sent from
candidate exemplark to data pointi.
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AFFINITY PROPAGATION

INPUT: a set of pairwise similarities,{s(i, k)}(i,k)∈{1,...,N}2,i6=k wheres(i, k)∈R
indicates how well-suited data pointk is as an exemplar for data pointi.

e.g., s(i, k) = −‖xi − xk‖2 , i 6=k (squared Euclidean distance)

For each data pointk, a real numbers(k, k) indicating thea priori preference
(negative cost of adding a cluster) that it be chosen as an exemplar.

e.g.s(k, k) = p ∀k ∈ {1, . . . , N} (global preference)

INITIALIZATION : set availabilities to zero,∀i, k : a(i, k)=0.

REPEAT: responsibility and availability updates until convergence

∀i, k : r(i, k) = s(i, k)− max
k′:k′6=k

[s(i, k′) + a(i, k′)]

∀i, k : a(i, k) =

{ ∑

i′:i′6=i max[0, r(i′, k)], for k= i

min
[

0, r(k, k)+
∑

i′:i′/∈{i,k}max[0, r(i′, k)]
]

, for k 6= i
(1.1)

OUTPUT: assignmentŝc = (ĉ1, . . . , ĉN), whereĉi = argmaxk [a(i, k)+r(i, k)]
andĉi indexes the cluster’s exemplar to which pointi is assigned. Specifically, if
point i is in a cluster with pointk serving as the exemplar, thenĉi =k andĉk =k.
Note: one run ofk-medoids may be needed to resolve contradictory solutions.

Affinity propagation achieves outstanding results by employing “loopy belief propaga-

tion” techniques (see Section 2.6) that have previously been used to approach Shannon’s limit

in error-correcting decoding [5] and solve random satisfiability problems with an order-of-

magnitude increase in size [76]. The objective function it maximizes is the net similarity,S,

which is the sum of the similarities of non-exemplar data points to their exemplars plus the sum

of exemplar preferences (negative costs of adding exemplars).

The affinity propagation algorithm is simple to implement and customize; it is also compu-

tationally efficient, scaling linearly in the number of similarities or quadratically in the number

of data points if all possible pairwise similarities are used. Computing pairwise similarities typ-

ically takes more computation than does clustering them; the example described in Section 5.2

involves clustering 75,066 data points with roughly 15,000,000 similarities—this requires sev-

eral minutes of computation on a typical notebook computer (as of 2008).

A background to parametric approaches to clustering, the facility location problem, and
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belief propagation algorithms is given in Chapter 2. This leads into a derivation and discussion

of the affinity propagation algorithm in Chapter 3 followed by thorough benchmarking of the

methods in Chapter 4. Affinity propagation is applicable to a wide variety of applications

spanning most areas of science and engineering. This thesis explores several application areas

within computer vision and bioinformatics in Chapter 5. For interested readers, all software

and data is available at http://www.psi.toronto.edu/affinitypropagation.



Chapter 2

Background

Clustering is the unsupervised learning task of organizing or partitioning data into meaningful

groupings. For data embedded in a vector space, a common way to accomplish this is to view

clusters as ‘clumps’ of data that are a certain [Euclidean] distance away from a center—in two

dimensions, these ‘clumps’ would be circular or elliptical. Though not necessarily the most

appropriate way to cluster (see Figure 1.1 for a counter-example), clustering such data based

on squared Euclidean distance is widespread in the machine learning literature and provides an

easy path to introducing affinity propagation.

2.1 k-means clustering

GivenN column-vector data pointsx1,x2, . . . ,xN where eachxi∈RD, the clustering task is to

assign each of them to one ofK classes labeled1, 2, . . . , K. These assignments are denoted by

latent class variablesz1, z2, . . . , zN where eachzi∈{1, 2, . . . , K}. With thek-means clustering

algorithm [70], each class is characterized by a cluster center,µk, which can be interpreted as

the mean vector for a unit-covariance spherical Gaussian (i.e., the covariance matrix is given

by the identity matrix,ID). Given that data pointxi belongs to classk, its distribution is given

8
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by:

P (xi|zi =k,µk) = N (xi; µk, ID) = 1√
(2π)D

exp
(
−1

2
(xi − µk)

⊤(xi − µk)
)

Class labels{zi}Ni=1 are hidden (latent) variables so overall the data is distributed according to

a mixture of spherical Gaussians distribution,

P (xi) =

K∑

k=1

P (xi|zi =k) · P (zi =k) =

K∑

k=1

N (xi; µk, ID) · 1

K

as illustrated in Figure 2.1(A). Note that thea priori probabilities of data point class assign-

ments are assumed to be uniform (for now),i.e. ∀k : P (zi =k)= 1
K

.

An appropriate class assignment for theith data point involves maximizing the posterior

probability P (zi = k|xi,µk) which by Bayes’ rule is equivalent to maximizingP (xi|zi =

k,µk)P (zi =k)/P (xi) with respect tok. As shown above,P (xi) does not depend on the class

assignments{zi}, so it is appropriate to write in this case:

argmax
k∈{1,2,...,K}

P (zi =k|xi,µk) = argmax
k∈{1,2,...,K}

1

K
·P (xi|zi =k,µk)

and thus each class label is assigned as follows:

zi ← argmax
k∈{1,...,K}

N (xi; µk, ID) = argmin
k∈{1,...,K}

‖xi − µk‖ (2.1)

This assignment, however, depends on the choices for{µk}Kk=1, and for computational rea-

sons it is typically optimized separately while holding values of{µk} constant. The likelihood

of the entire dataset given all class assignments isP (x|z,µ) =
N∏

i=1

N (xi; µzi
, ID) so the Gaus-

sian parameters are optimized by maximizing this likelihood (or rather, the log-likelihood,

which is equivalent). Setting partial derivatives oflogP (x|z,µ) with respect to eachµk to
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N(µ2,Σ2)

N(µ3,σ3I2)

-4

-2

0

2

4

6

-5 -4 -3 -2 -1 0 1 2 3 4 5
y

N(µ1,I2)

N(µ2,I2)

N(µ3, I2)

(A)

(B) (C)

Figure 2.1: Datasets fit tok-means (A) and EM for mixture of Gaussians (C) are shown in
two dimensions. A mixture of three spherical Gaussians are shown in (A) with meansµ1, µ2,
andµ3; these could have been fit byk-means (§2.1). A different mixture of three Gaussians
distribution more suited to the EM algorithm (§2.3) is shown in (B); the contour plot is for the
distribution:P (x) =

∑3
k=1N (x; µk,Σk). The plot displays the orientation of the Gaussians

in (C), where the first Gaussian is shown in red and parameterized by{µ1,Σ1}. The second
Gaussian is shown in blue and parameterized by{µ2,Σ2}—this covariance is diagonal as the
Gaussian is axis-aligned. The third Gaussian is shown in green and parameterized by{µ3, σ3},
where the Gaussian is isotropic/spherical (same variance in all dimensions) and the covariance
matrix is thus a scalar multiple of the identity matrix.
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zero leads to the following update equation:

0 = ∂
∂µk

∑N
i=1 logN (xi; µzi

, ID) ∝∑N
i=1 [zi = k](xi − µk)

soµk ←
∑N

i=1 [zi =k]xi

/
∑N

i=1 [zi =k]
(2.2)

where [ · ] denotes Iverson notation with[true] = 1 and [false] = 0. Essentially, the update

equation sets eachµk to be the vector mean of all data points in thekth class, hence the name

k-means.

K-MEANS CLUSTERING ALGORITHM
INPUT: {xi}Ni=1 (data),K (number of clusters)
INITIALIZE : set eachµk to a random data point
REPEAT UNTIL CONVERGENCE:

∀i : zi ← argmin
k∈{1,...,K}

‖xi − µk‖ = argmax
k∈{1,...,K}

N (xi; µk, ID)

∀k : µk ← mean {xi}i:zi=k =
∑N

i=1 [zi =k]xi/
∑N

i=1 [zi =k]

(2.3)

OUTPUT: {zi}Ni=1 (cluster assignments),{µk}Kk=1 (cluster centers)

2.2 k-medians clustering

A variant of k-means in occasional use isk-medians clustering, wherein the median is used

instead of the mean when updating the cluster center parameters. This algorithm is summarized

in equation (2.4).

K-MEDIANS CLUSTERING ALGORITHM
INPUT: {xi}Ni=1 (data),K (number of clusters)
INITIALIZE : set eachmk to a random data point
REPEAT UNTIL CONVERGENCE:

zi ← argmin
k∈{1,...,K}

‖xi −mk‖

mk ← median {xi}i:zi=k

(2.4)

OUTPUT: {zi}Ni=1 (cluster assignments),{mk}Kk=1 (cluster centers)
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2.3 EM algorithm for Mixtures of Gaussians

Thek-means algorithm makes all-or-nothing assignments of data points to clusters, and these

hard decisions can often lead to poor solutions corresponding to local minima inP (x|z,µ).

A common refinement involves learning the covariances (instead of fixing themi.e. ∀k :

Σk = ID; see Figure 2.1(B–C)), learning mixing weights on class priors (instead of assuming

∀k : πk = 1
K

), and to account for cluster assignment uncertainty by using the Expectation-

Maximization (EM) algorithm [23] and representing it with a simple distributionQ(z) =

∏N
i=1

∏K
k=1 q

[zi=k]
ik . Cluster assignments can be determined by minimizing the Kullback-Leibler

divergence [18] betweenQ(z) andP (z|x),D (Q(z)‖P (z|x)) =
∫

z
Q(z)·log Q(z)

P (z|x)
. Finding a

workable expression for the denominator,P (z|x) = P (x|z)P (z)/P (x), is not usually possible

so the following is minimized instead:

argmin
{q}





∫

z

Q(z)·log
Q(z)

P (z|x)
−

constant w.r.t. Q(z)
︷ ︸︸ ︷

logP (x)



= argmin
{q}





∫

z

Q(z)·log
Q(z)

P (x,z)



 (2.5)

The joint distribution becomesP (x, z) = P (x|z)P (z) =
∏N

i=1N (xi; µzi
,Σzi

)·πzi
, and the

expression to minimize—referred to as the free energy,F—becomes:

∫

z

Q(z)·log Q(z)
P (x,z)

=
∫

z

N∏

i=1

K∏

k=1

q
[zi=k]
ik

(
N∑

i′=1

K∑

k′=1

[zi′=k
′]·log qi′k′−

N∑

i′=1

log πzi′
N (xi′; µzi′

,Σzi′
)

)

=
∑N

i=1

∑K
k=1 qik · log qik −

∑N
i=1

∑K
k=1 qik · log πkN (xi; µk,Σk)

After adding the constraint∀i: ∑K
k=1 qik =1 to ensureQ(z) is a valid distribution, we can

optimizeQ(z) by setting its partial derivative (plus the Lagrange constraint) to zero:

0=
∂[F+λi(1−

∑K
k=1 qik)]

∂qik
=1+log qik−log πkN (xi; µk,Σk)−λi ⇒ qik =πkN (xi; µk,Σk)·eλi−1

soqik ← πkN (xi;µk,Σk)
∑K

k′=1
πk′N (xi;µk′ ,Σk′ )
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Mean and covariance parameters for the Gaussians can be found similarly:

0=
∂[F+λ(1−

∑K
k=1 πk)]

∂πk
= − 1

πk

∑K
k=1 qik − λ⇒ πk = − 1

λ

∑K
k=1 qik

0= ∂
∂µk

∑N
i=1

∑K
k=1 qik log πkN (xi; µk,Σk) ∝

∑N
i=1 qik(xi−µk)

0= ∂
∂Σk

∑N
i=1

∑K
k=1 qik log πkN (xi; µk,Σk) ∝

∑N
i=1 qikΣ

⊤
k +
∑N

i=1 qik(xi−µk)(xi−µk)
⊤

so πk ←
∑N

i=1 qik

N
, µk ←

∑N
i=1 qikxi
∑N

i=1 qik
, and Σ⊤k ←

∑N
i=1 qik(xi−µk)(xi−µk)⊤

∑N
i=1 qik

where{πk}Kk=1 is constrained to be a valid probability distribution through Lagrange multiplier

λ, which enforces
∑K

k=1 πk = 1.

For high-dimensional input data, learning the full covariance matrixΣk involves D(D−1)
2

scalar parameters, which can be cumbersome and potentially be a cause of overfitting. For this

reason the Gaussians are often assumed to have diagonal covariance matrices (in which case

the off-diagonal elements ofΣk are zeroed during updates) or even isotropic covariances.1.

Class assignments can be easily read from theQ-distributioni.e. ∀i : zi←argmax
k

qik.

EM ALGORITHM FOR A MIXTURE OF GAUSSIANS
INPUT: {xi}Ni=1 (data),K (number of clusters)
INITIALIZE : set{µk} to random data points,∀k : µk← 1

K
and Σk←var({xi})

REPEAT UNTIL CONVERGENCE:

∀i, k : qik ← πk·N (xi;µk,Σk)
∑K

k′=1 πk′ ·N (xi;µk′ ,Σk′)

∀k : πk←
∑N

i=1 qik

N
, µk←

∑N
i=1 qikxi
∑N

i=1 qik
, Σ⊤k ←

∑N
i=1 qik(xi−µk)(xi−µk)⊤

∑N
i=1 qik

(2.6)

OUTPUT: {zi←argmax
k∈{1,...,K}

qik}Ni=1 (assignments),{µk,Σk}Kk=1 (Gaussians)

Another item of interest is that setting the covariance matrices toΣk = ǫ ·ID, whereǫ→ 0,

polarizes theQ-distribution (maxQ(z) → 1) to reflect hard decisions and reduces the EM

update equations tok-means.

1in which caseΣk ← ID ·
∑

N

i=1
qik(xi−µ

k
)⊤(xi−µ

k
)

D
∑

N

i=1
qik

whereD is the dimension of eachxi.
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2.3.1 Heuristics for clustering

The clustering algorithms described previously monotonically increase objective functions (via

coordinate ascent) and are thus prone to land in local minima. Various heuristics have been

devised that assist in overcoming this.

Furthest-first traversal

Parametric clustering algorithms are sensitive to the initial set of cluster centers,µ(0), so a

common initialization that often lies near a good solution (see [49] for theory) is to construct

an initial set of centers with a furthest-first traversal. Specifically, the centerµ
(0)
1 is a ran-

dom data pointxi1, and subsequent centers,µ
(0)
k , are set to the “furthest” data point from

{µ(0)
1 ,µ

(0)
2 , . . . ,µ

(0)
k−1} where distance is between a point and set of centers is defined as:

distance
[

xi,
{

µ
(0)
1 ,µ

(0)
2 , . . . ,µ

(0)
k−1

}]

= min
k′∈{1,2,...,k−1}

∥
∥
∥xi − µ

(0)
k′

∥
∥
∥

Random restarts

Another effective and commonly-used tactic to counteract sensitivity to the initialization of an

exemplar set is to re-run clustering with many different initializations or random restarts. The

final result can then be chosen as the restart achieving the best optimization.

Split-and-Merge

During clustering, centers can occasionally become poorly-dispersed in comparison to the data,

with many centers describing a few tightly-bunched data points and relatively few centers de-

scribing more-dispersed data. In order for centers to migrate evenly to the proper regions, it

often entails them traveling through low-likelihood intermediate solutions that will not occur

due to the update equations monotonically optimizing their objective. This can be addressed by

introducing a heuristic that merges cluster pairs (e.g., where centers occupy roughly the same

space, and combining their data into one cluster does not dramatically decrease the likelihood)
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or splits clusters (e.g., the center describing data with the lowest probability). The specifics of

split-and-merge criteria are described in [98].

k·log(k) heuristic

Dasguptaet al. show in [21, 22] for high-dimensional Gaussians (where dimensionD ≫

lnK) that the EM algorithm for a mixture of Gaussians can avoid many poor local minima by

initializing the algorithm withO(K lnK) Gaussians and then pruning this back toK using

heuristics. They describe a two-round variant of the EM algorithm which is summarized here:

• PickL data points (whereL = O(K lnK)) from {xi} and use them as the initial centers,

{µ(0)
1 ,µ

(0)
2 , . . . ,µ

(0)
L }. Initialize covariance matrices to∀k : Σ

(0)
k = ID

2D
mini6=j

∥
∥µi − µj

∥
∥2

for isotropic/spherical Gaussians.

• Run one iteration of the EM algorithm to estimate{µ(1)
k ,Σ

(1)
k }Lk=1 and∀i : {q(1)

ik }Lk=1.

• Automatically prune away clusters whose mixing weights,
∑N

i=1 qik, fall below 1
2L

+ 2
N

• Prune away any further surplus clusters by selectingK means from the remaining means

via a furthest-first traversal.

• Run an additional EM update to obtain final estimates for{µ(2)
k }, {Σ

(2)
k } and{q(2)

ik }.

A more thorough treatment of this heuristic can be found in [21].

2.4 Exemplar-based clustering and thek-medoids algorithm

The clustering methods in the previous section were based on assigning data to clusters char-

acterized by location and shape parameters such as means, variances, and even medians. The

k-medians clustering algorithm shown in equation (2.7) provides a natural segue to an alterna-

tive cluster representation—by actual data points calledexemplars. For high-dimensional data,

it is slightly more efficient to store a pointer to a data point,mk, rather than the full cluster data
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median,mk. This changes thek-medians update equations tozn← argmin
k∈{1,...,K}

‖xi − xmk
‖ and

mk←argmin
n:zn=k

∑

n′:zn′=k ‖xn′ − xn‖.

If the zn andmk updates are iterated, there are numerous needlessly repeated distance

computations in both steps—these could be efficiently pre-computed as∀i,j ∈ {1, . . . , N} :

d(i, j) = ‖xi−xj‖ or equivalently, similarities2 s(i, j) =−d(i, j). To complete the transition,

a final notation switch is storing the index of each data point’s exemplar in anN-ary variable

ci: ci∈K⊆{1, . . . , N}, instead of storing aK-ary index to a cluster number,zi∈{1, . . . , K}.

Here, the set of exemplars (i.e., valid assignments forci) is K ⊆ {1, . . . , N}, indicated by

∀k∈K, ck =k) and the set of non-exemplars isK = {1, . . . , N}\K. Thek-medoids algorithm

is summarized below in equation (2.7).

K-MEDOIDS CLUSTERING ALGORITHM
INPUT: {s(i, j)}i,j∈{1,...,N} (data similarities),K (number of clusters)

INITIALIZE : setK to a random subset of{1, . . . , N} where|K| = K.

REPEAT UNTIL CONVERGENCE:

∀i /∈ K : ci ← argmax
k∈K

s(i, k) and ∀k∈ K : ck ← k

∀k∈K : k← argmax
j:cj=k

N∑

i=1
ci=k but i6=j

s(i, j)
(2.7)

OUTPUT: {ci}Ni=1 (cluster assignments),K (exemplars)

Thek-medoids algorithm [8] greedily maximizes a quantity referred to as the data similar-

ity, Sdata =
∑

i∈K s(i, ci). There is no longer any reason for enforcing similarity to be defined

ass(i, j) =−‖xi−xj‖; for example, with expression data in bioinformatics it is often more

convenient to uses(i, j) = x⊤i xj. There is no need for similarities to form a valid metric:

symmetry is optional (s(i, j) 6=s(j, i)), as is the triangle inequality (s(i, k)�s(i, j)+s(j, k)).

A more general objective function, henceforth referred to as the net similarity, is obtained

2To be comparable withk-means and EM for mixture of Gaussians and optimize the same objective, similari-
ties should be re-defined as negativesquaredL2 distance, unlikek-medoids which uses negative L2 distance.



CHAPTER 2. BACKGROUND 17

by including a model complexity term:

S =
∑

i∈K
s(i, ci)− λ |K| (2.8)

whereλ is a user-specified regularization parameter. If the number of clusters,K = |K| is

not specified in advance, it may seem at first glance that the net similarity is maximized by

making all data points exemplars, but this is not the case because of theλ |K| penalty term. For

example, if the similarity of one data point to another were greater than−λ, the net similarity

would be higher if the first point were not an exemplar but instead assigned to the second point.

Some data points could be knowna priori to be more or less suitable as exemplars, in which

case the model complexity term can depend on which data points are exemplars,
∑

k∈K λ(k).

We incorporate this into the framework by denoting these as self-similaritiess(k, k) =−λ(k)

or, for the constant-preference case,∀k : s(k, k) = p=−λ. This simplifies the net similarity

objective to:

S =
∑N

i=1
s(i, ci) =

∑

i∈K
s(i, ci) +

∑

k∈K
s(k, k) (2.9)

In addition to similarities, thek-medoids algorithm takes as input the number of exemplars,

K = |K|, and monotonically optimizes the data similarity,Sdata. The algorithm is quite sensi-

tive to its initial exemplar set, and is thus typically re-run with many (e.g., hundreds of) random

initializations in order to find a solution with high net similarity and thus avoid more unfortu-

nate restarts that find poor local maxima ofS. This is typically not computationally burden-

some in the larger context—k-medoids clustering requiresO(N2) binary operations whereas

pre-computing a similarity matrix from data can requireO(N2D) operations (or worse), de-

pending on the similarity definition in use.

If the preference regularization parameter,∀k : p=s(k, k) is specified with no value ofK,

the net similarity in equation (2.9) can be maximized by intelligently3 searching over net simi-

larities resulting from multiple runs ofk-medoids clustering initialized with different values of

3e.g., binary search, interpolation search
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K.

2.4.1 Linear Programming Relaxation

Maximizing the net similarity objective function in equation (2.9)—or evenSdata for that

matter—has been shown to beNP-hard in general [56]. Linear programming relaxations

can, however, be employed to find optimal solutions in small problems whereN < 1000; this

is outlined in the 0–1 integer program of equations (2.10–2.11).

0–1 INTEGER PROGRAM FOR K-MEDIANS PROBLEM
INPUT: {s(i, j)}i,j∈{1,...,N} (data similarities),K (optional number of clusters)

VARIABLES : bij ∈ {0, 1} wherei, j = 1, . . . , N

MAXIMIZE :

S =
∑N

i=1

∑N

k=1
bik ·s(i, k) (2.10)

SUBJECT TO:

∀i : ∑N
k=1 bik = 1 (always in exactly one cluster)

∀i, k 6= i : bkk ≥ bik (each cluster has an exemplar)

∑N
k=1 bkk = K (optional total number of clusters)

(2.11)

OUTPUT: {ci}Ni=1 (cluster assignments),

wherebik =1⇒ ci =k and ∀j 6=k : bij =0

The 0–1 integer program rephrases the previous setup ofN integer-valued variables{ci}Ni=1

asN2 binary-valued variables,{bik} whereci =k impliesbik =1. The constraints in equation

(2.11) ensure the consistent mapping sobik =1 for only onek-value and that if∃i 6=k : bik =1

then pointk must be an exemplar (bkk = 1). Finally, a constraint on the number of clusters
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can be included (
∑N

k=1 bkk = K) if the net similarity,S, is being minimized and not just the

data-point similarity,Sdata.

A common approach is to solve a linear program relaxation [55, 57] where∀i, j : b̂ij ∈

R and 0≤ b̂ij ≤ 1 or implemented in optimization software packages such as CPLEX [19]. If

the resulting solution is non-integer, stochastic rounding techniques or heuristics [69] have been

shown to produce satisfactory results. With current computing technology, such approaches are

feasible for problems up to about1000 data points containing millions of constraints. For the

exact solutions shown in Section 4.1, CPLEX 7.1 software was utilized which takes advantage

of branch-and-bound techniques and Gomory’s cutting-plane method [42].

Other possible approaches to exemplar-based clustering borrow from techniques employed

for minimizing the sum of cut weights while partitioning graphs (graph cuts) or its dual for-

mulation, maximizing network flow [31, 32]. The optimal two-way (binary) graph-cut can

be found in polynomial time [43], which corresponds to finding aK = 2 clustering solution

whose search space is onlyO(N2). There are many approximate techniques for finding gen-

eralK-way graph cuts, such as simulated annealing [13, 62, 75], Gibbs sampling [41], and

iterated conditional modes [6], but more recent techniques such as using expansion moves

and swap moves [9] have shown greatly improved performance. For example,α-expansion

moves involve iteratively solving binary subproblems constructed by choosing one class label

and lumping the remainder in the other class;α-β-swap moves involve finding swaps of two

class labels that improve the objective similar to the vertex substitution heuristic described in

Section 2.5. A useful overview of these formulations can be found in [64].

2.5 The Facility Location Problem

Facility location is an important area of operations research. Simply stated, it is concerned

with finding facility locations to be matched with subsets of customers so as to minimize a

delivery cost. If the task involves selecting a subset of possible facility locations to be utilized
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Figure 2.2: The discrete facility location problem is concerned with finding a subset of poten-
tial facility locations (shown as buildings with ‘?’) to open in order to best serve a population
of customers (stick-figures above). Note that the background image is a map of Toronto, sug-
gesting that ‘distance’ need not be defined as Euclidean (L2) distance. In fact, it could be
Manhattan (L1)—or perhaps more aptly, Toronto (L1)—distance to reflect road travel distance,
average driving time (to account for traffic congestion and expressway speeds), or even travel
time via public transit.

(i.e. discrete facility location) and the cost is the sum of customer distances from said facilities,

this is known as thep-median problem (PMP). Alternatively, the cost could be the maximum

distance between customers and facilities—known as thep-center problem—in which case the

objective function is of the minimax variety instead of minisum. The clustering framework

described in Section 2 is closely related to thep-median problem.

The p-median problem was formally defined and investigated in literature from the early

1960s with notable contributions from Cooper ([15],[17],[16]) and Hakimi ([45],[46]); for a

more recent survey of approaches to the problem see [78]. It is defined as follows: given a

set,N , of possible facility locations and a set,M, of customers to be serviced, select a subset
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L⊆M of those facilities to open (wherep= |L|) such that the sum of distances from customers

to their closest open facility is minimized. MatrixD∈RM×N , whereM= |M| is the number of

customers andN= |N | is the number of facility locations, contains distances such that element

dmn≥0 is the distance from customerm to potential facilityn.

In purely mathematical terms, the task is to selectp columns of matrixD such that the sum

of the smallest element of each row is minimized. The cost function is

D(L) =
∑

m∈M
min
n∈L

dmn . (2.12)

The search space for this problem is of size
(

M
p

)
and finding the optimal subset,L∗, has

been shown to beNP-hard in general [56]. An exact solution is possible for many problems

with hundreds of facilities based on linear programming relaxations of the integer programming

problem [11,86].MN binary variables{bmn} are introduced to indicate which facilities serve

each customer (i.e., bmn =1 if customerm is served by facilityn, andbmn =0 otherwise), and

N binary variables{an} indicate which facilities are opened (i.e., an =1 facility n is open, and

an =0 otherwise).
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0–1 INTEGER PROGRAM FOR P-MEDIAN PROBLEM
INPUT: distances{dmn} wherem∈{1, . . . ,M} andn∈{1, . . . , N}

number of open facilities,p

VARIABLES : bmn∈{0,1} andan∈{0,1} wherem=1, . . . ,M andn=1, . . . , N

M INIMIZE :

D =
∑N

n=1

∑M

m=1
bmndmn (2.13)

SUBJECT TO:

∀m :
∑N

n=1 bmn = 1 (demand of each customer must be met)

∀m,n : bmn ≤ an (unopened facilities cannot service customers)

∑N
n=1 an = p (number of opened facilities)

(2.14)

Thep-median formulation in equations (2.13–2.14) is the same ask-medians from equa-

tions (2.10–2.11) if the customer and location sets are identical,i.e.,M=N .

For problems containing larger number of facilities (N > 1000), exact solutions via linear

programming relaxations are usually unavailable with current computing technology so the

task is left to heuristics. Standard facility-location heuristics include:

Greedy Heuristic [66]: Initialize the set of open facilities,L(0), to be the empty set. Perform

p rounds during which an unopened facilitynt ∈M\L is opened during thetth round

(L(t) = L(t−1) ∪ nt) so that the cost decrease between rounds,
∣
∣D(L(t))−D(L(t−1))

∣
∣, is

maximized.

Stingy Heuristic [29]: Initialize the set of open facilities,L(0) to beN . PerformM−p rounds

during which one open facilitynt ∈ L(t) is closed so that the cost increase between

rounds,
∣
∣D(L(t))−D(L(t−1))

∣
∣, is minimized.

Alternating Heuristic [72]: The alternating heuristic is identical tok-medoids clustering in

equation (2.7), whereby there are alternating phases of assigning users to the closest
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opened facility and open facilities are replaced by new facilities nearest to median of

their customers’ location.

Vertex Substitution Heuristic (VSH) [96]: Randomly initializeL to containp facilities. For

each unopened facilityn∈M\L, find the open facility,ℓ∈L to substitute with it so as to

most-improve the cost function if possible,i.e. maxℓ [D(L)−D(L∪n\ℓ)]. This process

is repeated until convergence, when no cost-reducing substitutions are possible.

Some algorithms have provable worst-case guarantees (e.g.[14]), whereby their solution’s

costD(L) is related to the optimal costD(L∗) by a constant factor as follows:
∣
∣
∣
D(L)−D(L∗)
D(L)

∣
∣
∣≤ε.

Values ofε are rarely small and often much larger than the typical error, so this may be a

poor guide to selecting an algorithm [78]. The vertex substitution heuristic [96] has been the

standard for comparison for four decades and provides the basis for the variable neighborhood

search meta-heuristic [47] that was compared with affinity propagation in [10,35].

Variable-neighborhood search utilizes speedups to the original vertex substitution heuristic

by storing all nearest and second-nearest open facilities for each customer and only recomput-

ing certain elements in these lists when necessary [106] (i.e., a pertinent substitution is made).

It also restructures thep(N−p) possible interchanges to involve fewer comparisons with early

exit conditions, and randomly chooses higher-orderπ-ary interchanges4 to escape local min-

ima.

2.6 Factor Graphs and the Sum-Product Algorithm

Many physical systems involve complex interactions among large numbers of variables, which

can be realistically approximated by relationships between small subsets of variables. For

example, an image’s pixels may all be interrelated, however, for some applications this is ap-

4Theπ-ary interchange search space for each iteration has size
(

p
π

)(
N−p

π

)
, which grows impractically large

for interesting problems whereN > 1000 andp is non-trivial (5 <p < N−5). Experiments forπ = 2 have been
conducted [28] but only forN≤30.
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Figure 2.3: A sample factor graph showing a relationship between three variables,X1,X2, and
X3, and two connecting function nodes,f1 andf2.

proximated as a regular network of correlations between neighboring pixels. Graphical models

are a useful device for succinctly expressing and visualizing the structure and dependencies

present in networks of variables.

2.6.1 Factor Graphs

Standard graphical models such as Bayesian networks [83] and Markov random fields [60]

have long been used for modeling hierarchical dependencies and energy-based models, respec-

tively. A more recent innovation is the factor graph [65], a graphical model that provides a

natural way of representing global functions or probability distributions that can be factored

into simpler local functions. A factor graph is a bi-partite graph consisting of a set ofN nodes

representing random variablesX = {X1, X2, . . . , XN} (from domainX1 × X2 × · · · × Xn)

andM nodes representing a set of functionsF = {f1, f2, . . . , fM}. Each function node,fm,

represents a function with codomain[0,∞) that depends only on the subset of variable nodes,

neighborsN(m)⊆ {1, . . . , N}, directly connected to it. The factor graph represents a global

function, customarily taken to be proportional to the joint probability of each configuration

{X1=x1, X2=x2, . . . , Xn=xn}, that is the product of all its function nodes:

f(X=x) =
∏M

m=1
fm(xN(m)) ,

wherexN(m) denotes the argument of functionfm, {xn}n∈N(m).
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For example, the factor graph in Figure 2.3 shows an interconnection betweenN=3 random

variables,X1, X2, andX3, each of which can take on valuesx1 ∈ X1, x2 ∈ X2, andx3 ∈

X3, respectively. The factor graph shows a topology withM=2 function nodes wheref1 is

connected toX1 andX3 (soN(1)={1, 3}), andf2 is connected toX2 andX3 (soN(2)={2, 3}).

This implies a global function that can be factorized in the following way:

f(x1, x2, x3) = f1(x1, x3) · f2(x2, x3) .

Interpreting the global function as proportional to the configuration probabilities, the marginal

probability distributions,{p1(x1), p2(x2), p3(x3)} can be found by summing over all configu-

rations of the other variables:

P (X1 =x1) ∝
∑

x2∈X2

∑

x3∈X3

f(x1, x2, x3) =
∑

x2∈X2

∑

x3∈X3

f1(x1, x3) · f2(x2, x3) ,

P (X2 =x2) ∝
∑

x1∈X1

∑

x3∈X3

f(x1, x2, x3) =
∑

x1∈X1

∑

x3∈X3

f1(x1, x3) · f2(x2, x3) ,

P (X3 =x3) ∝
∑

x1∈X1

∑

x2∈X2

f(x1, x2, x3) =
∑

x1∈X1

∑

x2∈X2

f1(x1, x3) · f2(x2, x3) .

(2.15)

Using the distributive law

∑

y [factors independent of y] · [factors dependent on y]

= [factors independent of y] ·∑y [factors dependent on y] ,

the computation can be simplified to:

P (X1=x1) ∝
∑

x2∈X2

∑

x3∈X3

f(x1,x2,x3)
︷ ︸︸ ︷

f1(x1, x3)·f2(x2, x3) =
∑

x3∈X3

f1(x1, x3) ·
∑

x2∈X2
f2(x2, x3) ,

P (X2=x2) ∝
∑

x1∈X1

∑

x3∈X3

f(x1,x2,x3)
︷ ︸︸ ︷

f1(x1, x3)·f2(x2, x3) =
∑

x3∈X3

f2(x2, x3) ·
∑

x1∈X1
f1(x1, x3) ,

P (X3=x3) ∝
∑

x1∈X1

∑

x2∈X2

f(x1,x2,x3)
︷ ︸︸ ︷

f1(x1, x3)·f2(x2, x3) =

[
∑

x1∈X1

f1(x1, x3)

]

·
[
∑

x2∈X2

f2(x1, x3)

]

.

(2.16)
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Figure 2.4: Belief propagation on a factor graph. The function-to-variable node message,
shown in (A), is computed from incoming variable-to-function node messages along other
edges. Likewise, the variable-to-function node message in (B) is computed from incoming
function-to-variable node messages. The marginals for a variable (C) can be computed from
all incoming function-to-variable messages.

In effect, the brute-force approach of summing together all possible products (equation

(2.15)) can be simplified by intelligently organizing the factors into sum-product-sum-product

form (equation (2.16)). Thesum-product algorithm, described below, represents a computationally-

efficient rearrangement of these sums and products.

2.6.2 Sum-Product Algorithm

A notable formulation of the sum-product algorithm is Judea Pearl’s use of it as “belief propa-

gation” in [84] for marginalizing variables in Bayesian networks. The algorithm is a series of

rules—framed as passing messages between factor graph nodes—that organize and automate

the application of the distributive property. For example, in equation (2.16) where marginal

P (X1 = x1) is computed, if the inner sum is considered a function ofx3 (i.e., µ2(x3) =

∑

x2∈X2
f2(x2, x3)), the expression becomesP (X1=x1) =

∑

x3∈X3
f1(x1, x3)·µ2(x3) where

µ2 is a ”message” from the inner summation to the outer.

The sum-product algorithm involves the propagation of messages from variable nodes to

function nodes (ν in Figure 2.4 (A)) and from function nodes to variable nodes (µ in Fig-

ure 2.4 (B)). The message sent by a variable node,Xn, to a function nodefm is a function of

xn ∈ Xn and reflects the current probability distribution (‘beliefs’) aboutXn given evidence
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from all its other neighbors,N(n)\m. It is an element-wise product:

νn→m(xn) =
∏

m′∈N(n)\m
µm′→n(xn) . (2.17)

The message a function node,fm, sends to variable nodeXn is a function ofxn ∈ Xn and

reflects the current beliefs aboutXn given the function and its other neighbors,N(m)\n:

µm→n(xm) =
∑

xN(m)\n

fm(xN(m)) ·
∏

n′∈N(m)\n
νn′→m(xn) . (2.18)

Note the shorthand use ofxN(m) for {xn}n∈N(m) andxN(m)\n for {xn′}n′∈N(m)\n

Finally, the current beliefs about any variable,Xn, can be computed any time by fusing

incoming function-to-variable messages:

qn(Xn=xn) =
∏

m∈N(n)
µm→n(xn) (2.19)

These are known as pseudo-marginals, though for singly-connected graphs (i.e., tree-structured

graphs that contain no loops), these converge to the true marginals off(x) in a finite number

of message-update iterations [84].

2.6.3 Loopy Belief Propagation

Pearl [84] shows that belief propagation converges to the true marginals in a finite number of

message-update iterations for singly-connected graphs. With respect to the general case, he

states:

When loops are present, the network is no longer singly-connected and local propagation
schemes will invariably run into trouble ... If we ignore the existence of loops and per-
mit the nodes to continue communicating with each other as if the network were singly-
connected, messages may circulate indefinitely around the loops and the process may not
converge to a stable equilibrium ... (even if it does) this asymptotic equilibrium is not co-
herent, in the sense that it does not represent the posterior probabilities of all the nodes of
the network. (p. 195)
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Previous impressive empirical results from the area of coding theory [5] were shown to be

a special case of belief propagation in this loopy case [73]. Additional factor graphs (involving

applications such as medical diagnostics [79] and phase-unwrapping [63]) were investigated at

the time; positive results gave additional credence to the idea that pseudo-marginals provided

useful enough approximations thatargmaxxn
q(xn) = argmaxxn

P (xn) for many nodes (val-

ues ofn). Theoretical justification for loopy belief propagation was later shown [111], where

update equations (2.17–2.19) were related to minimizing a KL-divergence [18] computed using

Bethe’s free energy approximation [7] from 1935.

Given a factor graph describing a probability density ofP (x) ∝ ∏m fm(xN(m)), one can

search for a simpler approximating distribution,Q(x), such that the KL-divergence between

them,D(Q(x) ‖ P (x)) =
∑

x
Q(x)·log Q(x)

P (x)
, is minimized. WhereP (x) ∝ ∏m fm(xN(m)),

this expands to:

D(Q(x)‖P (x)) + constant =
∑

x

Q(x)·logQ(x)−
∑

x

Q(x)
∑

m

log fm(xN(m))

If it is assumed that the approximating distributionQ(x) can be factorized into single-node

marginalsqn(xn) for each variable node, and function-node or clique marginalsqm(xN(m)) for

each function node5 like this:

Q(x) =

∏M
m=1 qm(xN(m))

∏N
n=1 qn(xn)|N(n)|−1

, (2.20)

then the Bethe approximation to the free energy is obtained:

FBethe =
∑

m

∑

xN(m)

qm(xN(m))·log qm(xN(m))−
∑

m

∑

xN(m)

qm(xN(m))·log fm(xN(m))

−∑
n

(|N(n)|−1)
∑

xn

qn(xn)·log qn(xn) .
(2.21)

5For example, in the factor graph from Figure 2.3, the single-node marginals areqn=1(x1), qn=2(x2), and
qn=3(x3); the clique marginals areqm=1(x1, x3) andqm=2(x2, x3).



CHAPTER 2. BACKGROUND 29

It is useful to perform coordinate descent minimization on the Bethe free energy subject to

the valid distribution constraints that∀n :
∑

xn
qn(xn)=1 and∀m :

∑

xN(m)
qm(xN(m))=1, and

the constraint that single-node marginals are consistent with clique marginals∀m,n∈N(m) :

qn(xn) =
∑

xN(m)\n
qm(xN(m)). The complete derivation is shown in Appendix A, however,

the end-result yields familiar-looking update equations as follows:

νn→m(xn) ∝ ∏

m′∈N(n)\m

µm′→n(xn) and µm→n(xn) ∝ ∑

xN(m)\n

fm(xN(m)) ·
∏

n′∈N(m)\n

νn′→m(xn′) ;

qn(xn) ∝ ∏
m∈N(n)

µm→n(xn) and qm(xN(m)) ∝ fm(xN(m)) ·
∏

n∈N(m)

νn→m(xn) ,

(2.22)

where theqn(xn) are pseudo-marginals from earlier. It should be noted that for singly-connected

graphs the factorization in equation (2.20) is exact and the algorithm converges to the exact

marginals.

2.6.4 Max-Product Algorithm

As described in [1], the idea behind the sum-product algorithm and factor graphs can be applied

to any commutative semiring6. In many cases it is more desirable or efficient to use the max-

product algorithm, whose messages are updated as follows:

νn→m(xn) ∝
∏

m′∈N(n)\m

µm′→n(xn) and µm→n(xn) ∝ max
xN(m)\n

fm(xN(m)) ·
∏

n′∈N(m)\n

νn′→m(xn′) .

(2.23)

For the max-product algorithm, the computation ofqn(xn) andqm(xN(m)) pseudo-marginals

is intended for estimating the best configuration,x∗, of the variables,x, which can be per-

formed as follows:

6A semiring is an algebraic structure which generalizes the additive and multiplicative properties of the set
of natural numbersN (including zero); unlike rings, there is no requirement that each element have an additive
inverse.
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x∗n = argmax
xn

∏

m∈N(n)
µm→n(xn) (2.24)

These quantities are closely related to evaluations of best-path configurations in the Viterbi

algorithm more so than the probabilistic interpretation in Section 2.6.2. Note that for reasons

of numerical stability, much of the work in this thesis is performed in the max-sum semiring,

which is isomorphic to max-product via the mappingx→ log(x), assumingx>0.



Chapter 3

Affinity Propagation

The exemplar-based clustering algorithms described in Sections 2.4–2.5 operate by iteratively

refining a randomly-chosen initial set of exemplars,K ⊆ {1, 2, . . . , N}, but this works well

only if that initial subset of data points is close to a good solution. Affinity propagation simul-

taneously considers all data points as possible exemplars, exchanging real-valued messages

between them until a high-quality set of exemplars (and corresponding clusters) emerges. Mes-

sages are updated on the basis of simple formulae that reflect sum-product or max-product up-

date rules and, at any point in time, the magnitude in each message reflects the current affinity

that one point has for choosing another data point as its exemplar, hence the name “affinity

propagation”.

Affinity propagation takes as input a collection of real-valued similarities between data

points,{s(i, k)}, where each similaritys(i, k) indicates how well the data point with indexk

is suited to be the exemplar for data pointi. Each data point is paired with a variable node,ci

in a factor graph (Section 2.6) as shown in Figure 3.1. A value ofci = k for i 6= k indicates

that data pointi is assigned to a cluster with pointk as its exemplar;ck = k indicates that

data pointk serves as a cluster exemplar. The graph’s function is a constrained net similarity

(exponentiated, so the function is non-negative), defined as follows:

31
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Figure 3.1: Affinity propagation is an exemplar-based clustering algorithm that performs be-
lief propagation on the factor graph shown in (A). Two kinds of message are passed in the
graph;responsibilities(B) are passed from variable nodes to function nodes (i.e., data points
to candidate exemplars).Availabilitiesare passed from function nodes to variable nodes (C),
interpreted as candidate exemplars to data points..
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F (c; s) = e

S from (2.9)
︷ ︸︸ ︷
∑N

i=1
s(i, ci)+

coherence constraint
︷ ︸︸ ︷
∑N

k=1
log fk(c)

=
∏N

i=1
es(i,ci) ·

∏N

k=1
fk(

c
︷ ︸︸ ︷
c1, c2, . . . , cN) (3.1)

Note that the first term in the exponent involves the net similarity,S, from thek-median

problem, except that similarities are exponentiated to ensureF (c; s) always evaluates to a

positive function. The second term contains a coherence constraint defined as follows:

fk(c) =







0, if ck 6=k but ∃i : ci =k (disallow clusters without an exemplar)

1, otherwise
(3.2)

which causes the function to evaluate to zero for the incoherent configuration of a cluster

without an exemplar,i.e., a data pointi has chosenk as its exemplar (ci = k) with k having

been incorrectly labeled as a non-exemplar (ck 6=k).

Each component ofF (c; s) is represented by a function node and each labelci is repre-

sented by a variable node. Eachfk(c) term appearing in equation (3.1) has a corresponding

function node that is connected to all variablesc1, c2, . . . , cN . In addition, eachs(i, ci) term has

a corresponding function node that is connected to the single variableci. The log of the global

functionF (c; s)—in this caseS(c) (previously referred to as net similarity,S)—is given by

the sum of all the log-functions represented by function nodes.

3.1 Sum-Product Affinity Propagation

The sum-product algorithm can be used to search over configurations of variablesc in the factor

graph to maximizeF (c; s), which also maximizeseS(c) (andS(c)) subject to the coherency

constraint. The sum-product algorithm for this particular graph topology can be derived in a

straightforward fashion and consists of sending messages from variables to functions and from

functions to variables in a recursive fashion (see Section 2.6.2).
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O(NN ) vector message updates

The message sent from variable nodeci to function nodefk(c) consists ofN non-negative

real numbers—one for each possible value,j, of ci—and can be denotedρi→k(j) as shown in

Figure 3.1(B). A later simplification reduces thisN-vector to a scalar value, making affinity

propagation scale linearly in time and memory with the number of similarities. The message

sent from function nodefk(c) to variable nodeci also consists ofN real numbers and can be

denotedαi←k(j) as shown in Figure 3.1(C). At any time, the value ofci can be estimated by

multiplying together all incoming messages.

Since theρ-messages are outgoing from variables, they are computed as the element-wise

multiplication of all incoming messages:

ρi→k(ci) = es(i,ci) ·
N∏

k′=1,
k′6=k

αi←k′(ci) . (3.3)

Messages sent from functions to variables are computed by multiplying incoming messages and

then summing over all variables except the variable the message is being sent to. Because all

function nodes are connected to allN variable nodes, this nominally involvesN−1 summations

overNN possible configurations—for each ofN function nodes.

O(N3) vector message updates

Fortunately, all functions{fk(c)}Nk=1 are binary-valued constraints that are completely factor-

izable givenck as follows:

fk(c) =







N∏

i=1,
i6=k

[ci 6=k], for ck 6=k ,

1, for ck =k .

If the two cases,ck = k andck 6= k, are handled with separate expressions, the functions

can be absorbed into the summations by changing limits, and incoming messages can be inde-

pendently summed (sum and product operators change places). Accordingly, the message sent
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from function nodefk to variable nodeci is:

αi←k(ci)=

sum over all configurations satisfying fk given ci
︷ ︸︸ ︷

∑

j1

∑

j2

· · ·
∑

ji−1

∑

ji+1

· · ·
∑

jN

[

fk(j1, j2, . . . , ji−1, ci, ji+1, . . . , jN ) ·
∏

i′:i′6=i

ρi′→k(ji′)

]

=







all configurations, with or without cluster k
︷ ︸︸ ︷
∏

i′:i′6=i

∑

j
ρi′→k(j) , for i=k and ck =k ;

all configurations without cluster k
︷ ︸︸ ︷
∏

i′:i′6=i

∑

j:j6=k
ρi′→k(j) , for i=k and ck 6=k ;

k is an exemplar
︷ ︸︸ ︷

ρk→k(k) ·
all configurations, with or without cluster k
︷ ︸︸ ︷
∏

i′:i′/∈{i,k}

∑

j
ρi′→k(j) , for i 6=k and ci =k ;

all configurations with no cluster k
︷ ︸︸ ︷
∑

j:j6=k

ρk→k(j) ·
∏

i′:i′/∈{i,k}

∑

j:j6=k

ρi′→k(j)+

all configurations with a cluster k
︷ ︸︸ ︷

ρk→k(k) ·
∏

i′:i′/∈{i,k}

∑

j

ρi′→k(j) , for i 6=k and ci 6=k .

These vector messages are easier to interpret if we view them as the product of constant and

variable (with respect toci) components as follows:ρi→k(ci)= ρ̄i→k ·ρ̃i→k(ci) andαi←k(ci)=

ᾱi←k ·α̃i←k(ci). This changes the messages to:

ρi→k(ci) = es(i,ci) ·∏k′:k′6=k ᾱi←k′ ·∏k′:k′6=k α̃i←k′(ci) (3.4)

and

αi←k(ci)=







∏

i′:i′6=i ρ̄i′→k ·
∏

i′:i′6=i

∑

j ρ̃i′→k(j), for i=k and ck =k ;
∏

i′:i′6=i ρ̄i′→k·
∏

i′:i′6=i

∑

j:j 6=k ρ̃i′→k(j), for i=k and ck 6=k ;
∏

i′:i′6=i ρ̄i′→k · ρ̃k→k(k) ·
∏

i′:i′/∈{i,k}

∑

j ρ̃i′→k(j), for i 6=k and ci =k ;
∏

i′:i′6=i

ρ̄i′→k ·
∏

i′:i′6=i

∑

j:j 6=k

ρ̃i′→k(j) +
∏

i′:i′6=i

ρ̄i′→k ·ρ̃k→k(k) ·
∏

i′:i′/∈{i,k}

∑

j

ρ̃i′→k(j), for ci 6=k 6= i .

(3.5)

For convenience, if we let̄ρi→k =
∑

j:j 6=k

ρi→k(j) then
∑

j:j 6=k

ρ̃i→k(j) = 1 and thus
∑

j

ρ̃i→k(j) =

1+ ρ̃i→k(k). Also note that in the update forαi←k(ci) (equation (3.5)), none of the expressions
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explicitly contain ci—only the choice of expression depends onci. Consequently, theN-

vector of messages,αi←k(ci) has only two unique values: one forci =k and another forci 6=k.

Settingᾱi←k = αi←k(ci : ci 6= k) makesα̃i←k(ci) = 1 for all ci 6= k. This also means that
∏

k′:k′6=k

α̃i←k′(ci) = α̃i←ci
(ci) for all ci 6= k and

∏

k′:k′6=k

α̃i←k′(ci) = 1 for ci = k, leading to further

simplification:

ρi→k(ci) =







es(i,k) ·∏k′:k′6=k ᾱi←k′, for ci =k ;

es(i,ci) · α̃i←ci
(ci) ·

∏

k′:k′6=k ᾱi←k′, for ci 6=k ,
(3.6)

and

αi←k(ci)=







∏

i′:i′6=i ρ̄i′→k ·
∏

i′:i′6=i [1 + ρ̃i′→k(k)], for i=k and ck =k ;
∏

i′:i′6=i ρ̄i′→k ·
∏

i′:i′6=i 1, for i=k and ck 6=k ;
∏

i′:i′6=i ρ̄i′→k · ρ̃k→k(k) ·
∏

i′:i′/∈{i,k} [1 + ρ̃i′→k(k)], for i 6=k and ci =k ;
∏

i′:i′6=i

ρ̄i′→k ·
∏

i′:i′6=i

1 +
∏

i′:i′6=i

ρ̄i′→k · ρ̃k→k(k) ·
∏

i′:i′/∈{i,k}

[1 + ρ̃i′→k(k)], for i 6=k and ci 6=k .

(3.7)

Next, solve forρ̃i→k(ci = k) = ρi→k(ci =k)/ρ̄i→k andα̃i←k(ci = k) = αi←k(ci =k)/ᾱi←k

to obtain simple update equations where theρ̄ andᾱ terms cancel:

ρ̃i→k(ci=k) =
ρi→k(ci=k)

ρ̄i→k

=
ρi→k(k)

∑

j:j 6=k ρi→k(j)
=

es(i,k) ·
�

�
�

�
�

�
�∏

k′:k′6=k ᾱi←k′

∑

j:j 6=k[e
s(i,j) · α̃i←j(j)] ·

�
�

�
�

�
�

�∏

k′:k′6=k ᾱi←k′

(3.8)

and

α̃i←k(ci=k) = αi←k(ci=k)/ᾱi←k = αi←k(ci=k)/αi←k(j:j6=k)

=







(
(

(
(

((
∏

i′:i′6=i ρ̄i′→k·
∏

i′:i′6=i [1+ρ̃i′→k(k)]

(
(

(
(

((
∏

i′:i′6=i ρ̄i′→k
, for k= i ;

(
(

(
(

((
∏

i′:i′6=i ρ̄i′→k·ρ̃k→k(k)·
∏

i′:i′/∈{i,k} [1+ρ̃i′→k(k)]

(
(

(
(

((
∏

i′:i′6=i ρ̄i′→k+
(

(
(

(
((

∏

i′:i′6=i ρ̄i′→k·ρ̃k→k(k)·
∏

i′:i′/∈{i,k} [1+ρ̃i′→k(k)]
, for k 6= i .

(3.9)
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O(N3) scalar message updates

Noting thatρ̃i→k(ci) andα̃i←k(ci) for ci 6= k are not used in the updates (specifically, because

α̃i←k(ci6=k)=1), messages can be considered to be scalar instead ofN-ary vectors. Working in

the log-domain for numerical range reasons, scalar variable-to-function messages are defined

aser(i,k) = ρ̃i→k(k) and scalar function-to-variable messages asea(i,k) = α̃i←k(k)

er(i,k) =
es(i,k)

∑

k′:k′6=k

[es(i,k′)ea(i,k′)]
and ea(i,k) =







∏

i′:i′6=i

[
1 + er(i′,k)

]
, for k= i ;

(

e−r(k,k) ·∏
i′:i′/∈{i,k}

[
1+er(i′,k)

]−1
+1

)−1

, for k 6= i .

(3.10)

Messager(i, k) is referred to as the “responsibility” sent from data pointi to candidate ex-

emplar pointk, reflecting the accumulated evidence for how well-suited pointk is to serve as

the exemplar for pointi, taking into account other potential exemplars for pointi. The “avail-

ability” a(i, k), sent from candidate exemplar pointk to data pointi, reflects the accumulated

evidence for how appropriate it would be for pointi to choose pointk as its exemplar, taking

into account the support from others that pointk should be an exemplar. All data points can

be considered to be either cluster members or candidate exemplars, depending on whether they

are sending or receiving availability or responsibility messages.

To estimate the value of a variableci after any iteration, multiply (fuse) together all incom-

ing messages to variable nodeci and use the valuêci that maximizes the product:

ĉi = argmaxj

[

es(i,j) ·∏N
k=1 αi←k(j)

]

= argmaxj

[

es(i,j) ·∏N
k=1 ᾱi←k ·

∏N
k=1 α̃i←k(j)

]

= argmaxj

[
es(i,j) ·ea(i,j)

]
= argmaxj [s(i, j) + a(i, j)] .

(3.11)

An alternative form that includes availabilities and responsibilities but not input similarities

can be obtained by including an additional term inside theargmax [ · ] that leaves the result

unchanged as follows:
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ĉi = argmax
k






ea(i,k) ·

er(i,k) from (3.10)
︷ ︸︸ ︷

es(i,k)
/∑

k′:k′6=k

(

es(i,k′)ea(i,k′)
)







= argmax
k

[
ea(i,k) · er(i,k)

]

= argmaxk [ a(i, k) + r(i, k) ] .

(3.12)

O(N2) scalar message updates

Each iteration involves computingN2 availability and responsibility messages (from allN

points to allN points), and each message expression in equation (3.10) involvesO(N) binary

operations which yields anO(N3) algorithm. If intermediate expressionsR(i)=
∑N

k′=1 e
s(i,k′)+a(i,k′)

andA(k) =
∏N

i′=1

[
1 + er(i′,k)

]
are defined—which can be calculated at the start of each itera-

tion inO(N2) time—each message can be computed inO(1) time as follows:

er(i,k) =
es(i,k)

R(i)− es(i,k)+a(i,k)
and ea(i,k) =







A(k)

1+er(i,k) , for k= i ;
(

1 + e−r(k,k) · [1+er(i,k)]·[1+er(k,k)]
A(k)

)−1

, for k 6= i .

which makes an entire iteration possible inO(N2) space and time (using a parallel message-

passing schedule).

In practice, this approach leads to numerical instability due to limited machine precision

when correctingR(i) =
∑

k′ es(i,k′)+a(i,k′) into
∑

k′:k′6=k e
s(i,k′)+a(i,k′) by subtractinges(i,k)+a(i,k).

To overcome this, it is necessary to store cumulative sums and manipulate expressions to com-

puteR(k) andA(k) accordingly.

3.2 Max-Product Affinity Propagation

Applying the max-product algorithm to the factor graph in Figure 3.1 overcomes some of the

numerical precision difficulties described previously and also produces clustering results that
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are invariant not only to similarities with arbitrary additive constants1, but also to multiplicative

constants (the ‘units’ similarities are expressed in). The variable-to-function messages are

unchanged from sum-product,i.e. ρi→k(ci) = es(i,ci)·∏
k′:k′6=k

αi←k′(ci) but the sums in the function-

to-variable messages are replaced by max operators:

αi←k(ci)=

best possible configuration satisfying fk given ci
︷ ︸︸ ︷

max
j1

max
j2
· · ·max

ji−1

max
ji+1

· · ·max
jN

[

fk(j1, j2, . . . , ji−1, ci, ji+1, . . . , jN)·
∏

i′:i′6=i

ρi′→k(ji′)

]

=







best configuration with or without cluster k
︷ ︸︸ ︷
∏

i′:i′6=i
maxj ρi′→k(j) , for i=k and ck =k ;

best configuration without cluster k
︷ ︸︸ ︷
∏

i′:i′6=i
maxj:j6=k ρi′→k(j) , for i=k and ck 6=k ;

k is an exemplar
︷ ︸︸ ︷

ρk→k(k) ·
best configuration, with or without cluster k
︷ ︸︸ ︷
∏

i′:i′/∈{i,k}
maxj ρi′→k(j) , for i 6=k and ci =k ;

max






best configuration with no cluster k
︷ ︸︸ ︷

max
j:j6=k

ρk→k(j)·
∏

i′:i′/∈{i,k}

max
j:j6=k

ρi′→k(j),

best configuration with a cluster k
︷ ︸︸ ︷

ρk→k(k)·
∏

i′:i′/∈{i,k}

max
j
ρi′→k(j)




, for i 6=k and ci 6=k .

As with sum-product, representing theseN-vector messages as the product of constant and

variable components changes the messages to:

ρi→k(ci) = es(i,ci) ·∏k′:k′6=k ᾱi←k′ ·∏k′:k′6=k α̃i←k′(ci) .

1For sum-product affinity propagation, similarities appear only in responsibility equations and solutions are in-

variant to additive constantsi.e., s′(i, k)=s(i, k)+constant becauseer(i,k) =es(i,k)/
∑

k′:k′ 6=k

[

es(i,k′)ea(i,k′)
]

=

es(i,k)+constant/
∑

k′:k′ 6=k

[

es(i,k′)+constantea(i,k′)
]



CHAPTER 3. AFFINITY PROPAGATION 40

and

αi←k(ci)=







∏

i′:i′6=i ρ̄i′→k ·
∏

i′:i′6=i maxj ρ̃i′→k(j), for i=k and ck =k ;
∏

i′:i′6=i ρ̄i′→k·
∏

i′:i′6=i maxj:j6=k ρ̃i′→k(j), for i=k and ck 6=k ;
∏

i′:i′6=i ρ̄i′→k · ρ̃k→k(k) ·
∏

i′:i′/∈{i,k}maxj ρ̃i′→k(j), for i 6=k and ci =k ;

max






∏

i′:i′6=i ρ̄i′→k ·
∏

i′:i′6=i maxj:j 6=k ρ̃i′→k(j),

∏

i′:i′6=i ρ̄i′→k · ρ̃k→k(k) ·
∏

i′:i′/∈{i,k}maxj ρ̃i′→k(j)




 , for ci 6=k 6= i .

Let ρ̄i→k = max
j:j 6=k

ρi→k(j) so max
j:j 6=k

ρ̃i→k(j) = 0 andmax
j
ρ̃i→k(j) = max[0, ρ̃i→k(k)]. For

availabilities, letᾱi←k = αi←k(ci : ci 6= k) which makesα̃i←k(ci) = 1 for all ci 6= k and
∏

k′:k′6=k α̃i←k′(ci) = α̃i←ci
(ci) for ci 6= k and

∏

k′:k′6=k α̃i←k′(k) = 1 otherwise. This leads to

simplification:

ρi→k(ci) =







es(i,k) ·∏k′:k′6=k ᾱi←k′, for ci =k ;

es(i,ci) · α̃i←ci
(ci) ·

∏

k′:k′6=k ᾱi←k′, for ci 6=k ,

and

αi←k(ci)=







∏

i′:i′6=i ρ̄i′→k ·
∏

i′:i′6=i max [1, ρ̃i′→k(k)], for i=k and ck =k ;
∏

i′:i′6=i ρ̄i′→k ·
∏

i′:i′6=i 1, for i=k and ck 6=k ;
∏

i′:i′6=i ρ̄i′→k · ρ̃k→k(k) ·
∏

i′:i′/∈{i,k}max [1, ρ̃i′→k(k)], for i 6=k and ci =k ;

max

[

∏

i′:i′6=i

ρ̄i′→k ·
∏

i′:i′6=i

1,
∏

i′:i′6=i

ρ̄i′→k ·ρ̃k→k(k)·
∏

i′:i′/∈{i,k}

max [1, ρ̃i′→k(k)]

]

, for ci 6=k 6= i .

Solving for ρ̃i→k(ci=k) = ρi→k(ci=k)/ρ̄i→k and α̃i←k(ci=k) = αi←k(ci=k)/ᾱi←k yields

further cancelation:

ρ̃i→k(ci=k) =
ρi→k(k)

ρ̄i→k
=

ρi→k(k)
∑

j:j 6=k ρi→k(j)
=

es(i,k) ·
�

�
�

�
�

�
�∏

k′:k′6=k ᾱi←k′

∑

j:j 6=k[e
s(i,j) · α̃i←j(j)] ·

�
�

�
�

�
�

�∏

k′:k′6=k ᾱi←k′

(3.13)
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and

α̃i←k(ci=k) = αi←k(ci=k)/ᾱi←k = αi←k(ci=k)/αi←k(j:j6=k)

=







(
(

(
(

((
∏

i′:i′6=i ρ̄i′→k·
∏

i′:i′6=i max[1, ρ̃i′→k(k)]

(
(

(
(

((
∏

i′:i′6=i ρ̄i′→k
, for k= i ;

(
(

(
(

((
∏

i′:i′6=i ρ̄i′→k·ρ̃k→k(k)·
∏

i′:i′/∈{i,k} max[1, ρ̃i′→k(k)]

max[
(

(
(

(
((

∏

i′:i′6=i ρ̄i′→k,
(

(
(

(
((

∏

i′:i′6=i ρ̄i′→k·ρ̃k→k(k)·
∏

i′:i′/∈{i,k} max[1, ρ̃i′→k(k)]]
, for k 6= i .

(3.14)

Finally, messages are defined asr(i, k) = log ρ̃i→k(k) and a(i, k) = log α̃i←k(k) to ob-

tain simple update equations shown in (3.15), where the final expression fora(i, k) is due to

log x
max(1,x)

= min(0, log x) and the estimatêci is as before (3.12).

AFFINITY PROPAGATION
INPUT: {s(i, j)}i,j∈{1,...,N} (data similarities and preferences)

INITIALIZE : set ‘availabilities’ to zeroi.e. ∀i, k : a(i, k)=0

REPEAT: responsibility and availability updates until convergence

∀i, k : r(i, k) = s(i, k)− max
k′:k′6=k

[s(i, k′) + a(i, k′)]

∀i, k : a(i, k) =

{ ∑

i′:i′6=i max[0, r(i′, k)], for k= i

min
[

0, r(k, k)+
∑

i′:i′/∈{i,k}max[0, r(i′, k)]
]

, for k 6= i
(3.15)

OUTPUT: cluster assignmentŝc=(ĉ1, . . . , ĉN), ĉi =argmaxk [a(i, k)+r(i, k)]

Note: ĉ may violate{fk} constraints, so initializek-medoids witĥc and run to
convergence for a coherent solution.

The simplicity and effectiveness of these update equations have made it the standard incar-

nation of affinity propagation since its initial 2007 publication inScience[38]. All experiments

in Chapters 4–5 use this form of the algorithm.

It is interesting to note that the greedyk-medoids clustering algorithm can be rewritten to

use responsibilities and thus more closely resemble affinity propagation:

∀i∈{1, . . . , N}, k∈K : r(i, k)=s(i, k)−max
k′:k′6=k

s(i, k′) and ci =argmax
k∈K

r(i, k)

∀k∈K : k←argmax
j:cj=k

∑

i:ci=k

s(i, j)
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The major difference is that in computing responsibilities, there are no availabilities to modu-

late similarities and hard decisions are made. Instead, the refinements are performed on a fixed

set of exemplars,K.

3.2.1 Max-Product vs. Sum-Product Affinity Propagation

Replacing the summations with max operators eliminates the numerical precision issues from

sum-product affinity propagation; findingmax
k′:k′6=k

can be done cleanly in linear time by holding

the cumulative largest and next-largest array elements in memory. Another advantage is that

additive constants in the similarities are canceled out in the responsibility update equation and

multiplicative constants,i.e., s′(i, k) = s(i, k) · constant scale both the responsibilities and

availabilities but leaves cluster assignmentsĉi unchanged (as long as numerical issues are kept

in check).

3.2.2 Dynamics of Affinity Propagation

Availabilities are initialized to zero for the first iteration, sor(i, k) is set to the input similarity

between pointi and pointk minus the largest competing similarity between pointi and other

potential exemplars,i.e. r(i, k)=s(i, k)−max
k′:k′6=k

s(i, k′). This competitive update does not take

into account how many other points favor each candidate exemplar, though in later iterations

when some points are effectively assigned to other exemplars, their availabilities will drop

below zero. This decreases the effective value of the corresponding similarity to which it is

added and gradually withdraws them from the competition to be an exemplar. Fori = k,

the “self-responsibility”r(k, k) is set to the input preference,s(k, k), minus the largest of

the similarities between pointi and all other candidate exemplars. This reflects accumulated

evidence that pointk is an exemplar, based on its input preference tempered by how ill-suited

it is to be assigned to another cluster’s exemplar.

The responsibility update lets all candidate exemplars compete for ownership of a data
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point so accordingly, availability updates gather evidence from data points indicating whether

each candidate exemplar would make a good exemplar. The availability of pointi to serve

as an exemplar for pointk, a(i, k), is set to the self-responsibilityr(k, k) plus the sum of

positive responsibilities candidate exemplark receives from other points (not includingi,

the message destination). Only the positive portions of incoming responsibilities are added

(max[0, ·] term), because it is only necessary for a good exemplar to explain some data points

well (those with positive responsibilities) regardless of how poorly it explains other extremely-

dissimilar data points (those with negative responsibilities). If the self-responsibilityr(k, k)

is negative—indicating that pointk is currently better suited as belonging to a cluster rather

than being an exemplar itself—the availability of pointk to serve as an exemplar could be

increased if some other points have positive responsibilities toward pointk. To limit the in-

fluence of unjustifiably-strong incoming positive responsibilities—which could arise from a

pair of extremely-similar ‘twin’ data points—the total sum is thresholded so that it cannot rise

above zero due to themin[0, ·] operation. The “self-availability”a(k, k) is updated by adding

positive components of incoming responsibilities but without the final threshold.

The message-passing dynamics of affinity propagation applied to a toy dataset of 27 two-

dimensional points are shown in Figure 3.2.

3.2.3 Preferences for Affinity Propagation

A global shared preferencep, where∀i∈{1, . . . , N} : s(i, i)=p, is often used as a control knob

to govern the number of clusters found by affinity propagation. As shown in Figure 3.3, lower

values ofp penalize the use of data points as exemplars more heavily and lead to fewer clusters,

while the effect with higher preference values is the opposite2. This is an advantage in that the

2Further intuition is obtained by imagining an algorithm that has currently identifiedK exemplars and is
considering labeling another data point as an additional exemplar. By switching away from their old exemplars
and choosing the new exemplar, some data points will cause an increase in the net similarity. However, creating
the additional exemplar will cause its preference to be added to the net similarity and, since it will no longer be
assigned to one of the old exemplars, the net similarity will decrease by that similarity value. Since the preference
is usually low compared to similarities, the difference is usually large and the additional exemplar will be created
only if the total gain in similarity exceeds this negative value. This intuition shows that the preferences have
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INITIALIZATION ITERATION 4

ITERATION 15

ITERATION 30

ITERATION 2

ITERATION 5 ITERATION 20

ITERATION 40

ITERATION 3

ITERATION 10

ITERATION 25 ITERATION 50

(CONVERGENCE)

Figure 3.2: The dynamics of affinity propagation are shown for a hand-crafted dataset of
N =27 two-dimensional points. Negative squared Euclidean distance is used as a measure of
similarity and a global preferencep is set to the minimum similarity which yields the natural-
looking three clusters (see Figure 3.3 for further analysis). Messages are depicted as chevrons
pointed towards candidate exemplars; the blue intensity is in proportion to the responsibility
plus availability,r(i, k)+a(i, k), which is used in clustering decisions (see equation (3.15)).
Note that messages are weak and uniform in all directions for early iterations, but clusters be-
gin to emerge by iteration 15, with corner points far more certain of their exemplar than central
points. The algorithm is fully-converged by iteration 50, though faint probabilities of alternate
configurations remain visible near the center of the plot.
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Figure 3.3: A shared preference value,p, can be used as a control knob to vary the number
of clusters,K, found by affinity propagation in the toy example from Figure 3.2. Notice that
a relatively wide range of preference values, between roughlyp = −10 and p = −3, lead
to the natural-looking three clusters (p = mini6=k s(i, k) ≈ −5.2 from Figure 3.2 is marked)
compared to a narrow range leading to an apparently unnatural two clusters. The dynamics
tend to become quite unstable and non-monotonic pastK = 10 clusters, which is sensible
given that there are onlyN=27 data points.

number of exemplars need not be specified beforehand, enabling automatic model selection

based on a prior specification of how preferable (a priori log-probability) each point is as an

exemplar. Note that a relatively wide range of preference values lead to the natural-looking

configuration with three clusters as opposed to a narrow range leading to two clusters.

3.2.4 Implementation Details

A M ATLAB implementation,apcluster.m, is available for download at http://www.psi.toronto.edu.,

and has been downloaded several hundred times to date. Part of affinity propagation’s appeal is

the fact that the simple update equations can be easily implemented as shown in the following

∼20 lines of MATLAB source code:

the same ‘units’ as the similarities, since similarities and preferences are traded when deciding whether or not to
create exemplars.
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01 N=size(S,1); A=zeros(N,N); R=zeros(N,N); % initialize messages

02 S=S+1e-12*randn(N,N)*(max(S(:))-min(S(:))); % remove degeneracies

03 lambda=0.9; % set dampening factor

04 for iter=1:100,
05 Rold=R; % NOW COMPUTE RESPONSIBILITIES

06 AS=A+S; [Y,I]=max(AS,[],2);

07 for i=1:N, AS(i,I(i))=-inf; end; [Y2,I2]=max(AS,[],2);

08 R=S-repmat(Y,[1,N]);

09 for i=1:N,R(i,I(i))=S(i,I(i))-Y2(i); end;

10 R=(1-lambda)*R+lambda*Rold; % dampening responsibilities
11 Aold=A; % NOW COMPUTE AVAILABILITIES

12 Rp=max(R,0); for k=1:N, Rp(k,k)=R(k,k); end;

13 A=repmat(sum(Rp,1),[N,1])-Rp;

14 dA=diag(A); A=min(A,0); for k=1:N, A(k,k)=dA(k); end;

15 A=(1-lambda)*A+lambda*Aold; % dampening availabilities

16 end;
17 E=R+A; % pseudomarginals

18 I=find(diag(E)>0); K=length(I); % indices of exemplars

19 [tmp c]=max(S(:,I),[],2); c(I)=1:K; idx=I(c); % assignments

Several implementation details should be noted. First, random noise on the order of ma-

chine precision3 should be added to input similarities (line02) in order to remove possible

degeneracies. For example, if similarities are symmetric and two data points are isolated from

the rest, there may be indecision as to which one of them should be the exemplar and that can

lead to oscillations. Another example is if multiple clustering solutions have the same opti-

mal net similarityS—especially common when similarities belong to a finite sete.g. range of

integers—the algorithm may oscillate between optima. For most datasets, however, this is not

necessary and the solution is invariant to the added noise4.

As described in Section 2.6.1, belief propagation methods converge to exact solutions in a

finite number of iterations when the factor graph topology is singly-linked (no cycles). Be-

havior is generally reported as less-stable and more prone to oscillation as the number of

3This can also be seen as randomly flipping the least significant bits of the floating-point mantissa for each
input similarity value.

4For example, affinity propagation was input the 400-point Olivetti faces dataset (see Section 4.1) with a
typical preference ofp=−60 and over the course of 1000 trials with different random noise additions, there was
no consequential variation in the algorithms’s behavior (exemplar set at each iteration was identical). On the other
hand, randomly-initializing availabilities to non-zero values can lead to slightly better solutions.
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Figure 3.4: The net similarity,S, is shown as a function of iteration for runs of affinity propaga-
tion with different dampening factors,λ. The higher values ofλ unsurprisingly lead to slower
convergence rates but often lead to more stable maximization (seeλ= 0.3 for an example of
non-monotonic oscillatory behavior that ultimately converges).

tight cycles increase. Affinity propagation’s [potentially] completely-connected factor graph

is an extreme case, and thus the implementation containing parallel message updates—where

∀i,k : r(i, k) is computed and then∀i,k : a(i, k)—necessitates that messages be dampened,

which is done as follows:

r(·, ·)=λ·rold(·, ·)+(1−λ)·rnew(·, ·) and a(·, ·)=λ·aold(·, ·)+(1−λ)·anew(·, ·)

setting the dampening factorλ to 0.9 has been sufficient in almost all cases to ensure con-

vergence. For the 400 Olivetti faces dataset examined in Section 4.1, a dampening factor of

λ=0.4 is sufficient for convergence with no oscillation; this is shown with other values ofλ in

Figure 3.4.
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At any stage in the message-passing procedure, intermediate clustering solutions can be es-

timated fromĉi =argmax
k

[a(i, k)+r(i, k)]. This often produces{fk} constraint-violating solu-

tions which can be resolved by defining the set of exemplars asK and the set of non-exemplars

K≡ {1, 2, . . . , N}\K such that∀k ∈K : ĉk = k and∀i∈K : ĉi 6= i. Then run a half-iteration

of k-medoids to properly assign the non-exemplars,i.e. ∀i∈K : ci← argmax
k∈K

s(i, k). Affinity

propagation is considered converged if, for some constantconvits iterations, exemplar setK

remains unchanged. The number of iterations should also be bounded by constantsminits (in

caseλ≈1 leading to no exemplars|K| = 0 for many iterations initially while self-availabilities

a(k, k) slowly rise) andmaxits (in case of non-convergence, perhaps due to degeneracies).

For final results, performance can be slightly enhanced by runningk-medoids to convergence

and not just the half-iteration to satisfy constraints.

3.2.5 Sparse Similarities and Affinity Propagation

Affinity propagation is well-suited to take advantage of sparsity in data. When similarities are

computed between each data point, the algorithm shown in equation (3.15) isO(N2). Some

problems are structured in such a way that many data points cannot possibly be represented

by many others as exemplars;i.e. ∃i, k : s(i, k) =−∞. In this case,r(i, k) is automatically

−∞ and a(i, k) is inconsequential because it is overpowered inmax [

−∞
︷ ︸︸ ︷

s(i, k)+a(i, k)]. For

such a sparse5 dataset withN data points but onlyM<N2 values of(i, k) ∈ {1, 2, . . . , N}2

wheres(i, k) > −∞, only M responsibility and availability messages need to be computed

and exchanged. In terms of storage, the sparseness structure can be stored for quick traversal

using2M 2- or 4-byte integers (M for eachi-value,M for eachk-value), andM similarities,

responsibilities, and availabilities need to be stored as 4-byte or 8-byte floating-point values.

This results in memory requirements between16·M and32·M bytes.6

5The data is only sparse in the sense that a matrix ofexp(similarities) has zero entries; in the log-domain the
missing similarities become−∞.

6There is no need to storeM values ofa(old) or r(old), as there is no advantage to dampening messagesen
masse.
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3.3 Alternate Factor Graph for Affinity Propagation

An equivalent formulation of affinity propagation can be derived by usingN2 binary variable

nodes (orM<N2 for sparse situations) and2N constraint function nodes more in line with the

0–1 integer programming formulations from Section 2.4.1. As before, variablesbik ∈ {0, 1}

indicate cluster assignments wherebik = 1 for i 6= k indicates that data pointi is in a cluster

characterized by exemplar data pointk, andbkk = 1 indicates that pointk is an exemplar.

Function nodes{fk(b1k, b2k, . . . , bNk)}Nk=1 enforce a similar constraint as before (disallowing

clusters without an exemplar), and additional function nodes{gi(bi1, bi2, . . . , biN)}Ni=1 enforce

that all data points are in exactly one cluster (possibly as an exemplar):

fk(b1k, b2k, . . . , bNk)=
[

bkk =max
i
bik

]

=







0, if bkk 6=1 but ∃i : bik =1 ;

1, otherwise ,
(3.16)

and

gi(bi1, bi2, . . . , biN )=
[∑N

k=1
bik =1

]

=







0, if
∑N

k=1bik 6=1 ;

1, otherwise .
(3.17)

The global function is:

F (b; s) =
N∏

i=1

N∏

k=1

ebik ·s(i,k) ·
N∏

k=1

fk(b1k, b2k, . . . , bNk) ·
N∏

i=1

gi(bi1, bi2, . . . , biN ) ;

= e

N∑

i=1

N∑

k=1

bik·s(i,k)+
N∑

k=1

log fk(b1k ,b2k ,...,bNk)+
N∑

i=1
log gi(bi1,bi2,...,biN )

.

Four types of messages are passed between variable nodes and function nodes as shown in

Figure 3.5. Messages outgoing from variable nodes are the element-wise product of all other

incoming messages as shown here:



CHAPTER 3. AFFINITY PROPAGATION 50

b11 b12 b13 b1N

b21 b22 b23 b2N

b31 b32 b33 b3N

bik

bN1 bN2 bN3 bNN

s(1,1) s(1,2) s(1,3) s(1,N)

s(2,1) s(2,2) s(2,3) s(2,N)

s(3,1) s(3,2) s(3,3) s(3,N)

s(i,k)

s(N,1) s(N,2) s(N,3) s(N,N)

g1(b11,b12,...,b1N)

g2(b21,b22,...,b2N)

g3(b31,b32,...,b3N)

gi (bi1,bi2,...,biN)

gN(bN1,bN2,...,bNN)

f1 (b11,b21,...,bN1) fk (b1k,b2k,...,bNk)f3 (b13,b23,...,bN3) fN (b1N,b2N,...,bNN)f2 (b12,b22,...,bN2)
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Figure 3.5: An alternate grid-topology factor graph can be used to derive affinity propaga-
tion. N-state variableci is divided intoN binary variablesbi1, bi2, . . . , biN under additional
constraintgi that

∑N
k=1bik =1.
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τik(bik)=







σik(0)·αik(0), for bik =0 ;

σik(1)·αik(1), for bik =1 ;
and ρik(bik)=







σik(0)·βik(0), for bik =0 ;

σik(1)·βik(1), for bik =1 .
(3.18)

These binary messages can be ‘normalized’ and instead represented by a scalar ratioτik =

τik(1)
τik(0)

= σik(1)·αik(1)
σik(0)·αik(0)

= σikαik andρik = ρik(1)
ρik(0)

= σik(1)·βik(1)
σik(0)·βik(0)

= σikβik. Likewise, messages

outgoing from the similarity function nodes can be interpreted asσik(bik) = ebiks(i,k) so the

normalized ratio would beσik = σik(1)
σik(0)

= ebiks(i,k). Messages outgoing from theg-constraint

nodes differ for sum-product and max-product message-passing; they are as follows:

βSP
ik (bik) =

∑

j1

∑

j2

· · · ∑
jk−1

∑

jk+1

· · ·∑
jN

[

gi(j1, j2, . . . , jk−1, bik, jk+1, . . . , jN ) ·∏k′:k′ 6=k τik′(jk′)
]

=







∑

k′:k′ 6=k

[

τik′(1) ·∏k′′:k′′ /∈{k,k′} τik′′(0)
]

, for bik =0 ;
∏

k′:k′ 6=k τik′(0), for bik =1 ;

βMP
ik (bik) = max

j1
max

j2
· · ·max

jk−1

max
jk+1

· · ·max
jN

[

gi(j1, j2, . . . , jk−1, bik, jk+1, . . . , jN )·∏
k′:k′ 6=k

τik′(jk′)

]

=







max
k′:k′6=k

[

τik′(1) ·∏k′′:k′′ /∈{k,k′} τik′′(0)
]

, for bik =0 ;

∏

k′:k′ 6=k τik′(0), for bik =1 .

These can be expressed in terms of the scalar ratios, soτik(0) is replaced with1 andτik(1)

with τik to yield simple sum- and max-product update equationsβSP
ik =

βSP
ik (1)

βSP
ik (0)

=1/
∑

k′:k′6=k

τik′ and

βMP
ik =

βMP
ik (1)

βMP
ik (0)

=1/max
k′:k′6=k

τik′.

Messages outgoing from the otherf -constraint function nodes are somewhat more compli-

cated:
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αSP
ik (bik)=

∑

j1

∑

j2

· · ·∑
ji−1

∑

ji+1

· · ·∑
jN

[

fi(j1, j2, . . . , ji−1, bik, ji+1, . . . , jN ) ·∏i′:i′6=i ρi′k(ji′)
]

=







∏

i′:i′6=i ρi′k(0) = 1, for i=k and bik =0 ;
∏

i′:i′6=i [ρi′k(0)+ρi′k(1)] =
∏

i′:i′6=i [1+ρi′k], for i=k and bik =1 ;

ρkk(1)
∏

i′:i′/∈{i,k}

[ρi′k(0)+ρi′k(1)]+ρkk(0)
∏

i′:i′/∈{i,k}

ρi′k(0) = ρkk ·
∏

i′:i′/∈{i,k}

[1+ρi′k]+1, for i 6=k, bik =0 ;

ρkk(1)·∏i′:i′/∈{i,k} [ρi′k(0)+ρi′k(1)] = ρkk ·
∏

i′:i′/∈{i,k} [1+ρi′k], for i 6=k and bik =1 ,

so αSP
ik =

αSP
ik (1)

αSP
ik (0)

=







∏

i′:i′6=i [1 + ρi′k], for i=k ;
(

1 + ρ−1
kk ·

∏

i′:i′/∈{i,k} [1 + ρi′k]
)−1

, for i 6=k ,

and for the max-product algorithm,

αMP
ik (bik)=max

j1
max

j2
· · ·max

ji−1

max
ji+1

· · ·max
jN

[

fi(j1, j2, . . . , ji−1, bik, ji+1, . . . , jN)·∏
i′:i′6=i

ρi′k(ji′)

]

=







∏

i′:i′6=i ρi′k(0) = 1, for i=k and bik =0 ;
∏

i′:i′6=i max [ρi′k(0), ρi′k(1)] =
∏

i′:i′6=i max [1, ρi′k], for i=k and bik =1 ;

max
(

ρkk(1) ·∏i′:i′ /∈{i,k}max [ρi′k(0), ρi′k(1)], ρkk(0) ·∏i′:i′ 6=i ρi′k(0)
)

= max
(

1, ρkk ·
∏

i′:i′ /∈{i,k}max [1, ρi′k]
)

, for i 6=k and bik =0 ;

ρkk(1)·∏
i′:i′/∈{i,k}

max [ρi′k(0), ρi′k(1)] = ρkk ·
∏

i′:i′/∈{i,k}

max [1, ρi′k], for i 6=k and bik =1 ,

so αMP
ik =

αMP
ik (1)

αMP
ik (0)

=







∏

i′:i′6=i max[1, ρi′k], for i=k ;

min
(

0, ρkk ·
∏

i′:i′/∈{i,k}max[1, ρi′k]
)

, for i 6=k .

Becauseτik =σikαik andρik =σikβik, we can absorb theβ-updates into theρ-updates by re-

writing it asρSP
ik =σikβ

SP
ik =σik/

∑

k′:k′6=k

τik′ =σik/
∑

k′:k′6=k

σik′αik′ andρMP
ik =σikβ

MP
ik =σik/max

k′:k′6=k
τik′ =

σik/max
k′:k′6=k

σik′αik′. Then, the standard affinity propagation formulation from Sections 3.1–3.2

can be recovered by labeling responsibilitiesr(i, k)= log ρSP or MP
ik and availabilitiesa(i, k)=

logαSP or MP
ik .
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3.4 Other algorithms for clustering via belief propagation

Several additional algorithms that employ belief propagation for exemplar-based clustering are

possible and have been explored. The following section describes several possibilities; they are

more tightly-constrained (Section 3.4.1) or have higher computational complexity (3.4.2-3.4.4)

than affinity propagation and are thus not developed further.

3.4.1 Affinity propagation with added non-empty cluster constraint

In its earliest formulation [34], affinity propagation clustering employed a factor graph with

identical topology but more stringent constraint functions,{f ′k(c)}Nk=1. Not only did this func-

tion disallow exemplar-less clusters (as is the case with{fk(c)}), but also clusters without

any non-exemplar members. This was coupled with a sequential message-passing schedule

to prevent periodic swings where all data points were considered exemplars (heading empty

clusters). The constraint is as follows:

f ′k(c) =







0, if ck 6=k but ∃i: ci =k (disallow clusters without an exemplar) ;

0, if ck =k and ∀i6=k: ci 6=k (disallow clusters lacking non-exemplar members) ;

1, otherwise .

The second line inf ′k(c) does not appear infk(c) and is shown in red. This leads to

significantly-more complicated update equations (3.19) and (3.20), that are less intuitive:

Sum-product formulation: .

er(i,k) = es(i,k)
/
∑

k′:k′6=k

[
es(i,k′)ea(i,k′)

]

ea(i,k) =







∏

i′:i′6=i

[
1 + er(i′,k)

]
−1, for k= i ;

([
e−r(k,k)−1

]
·∏i′:i′/∈{i,k}

[
1 + er(i′,k)

]−1
+ 1
)−1

, for k 6= i .

(3.19)
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Max-product formulation: .

r(i, k)=s(i, k)− max
k′:k′6=k

[s(i, k′) + a(i, k′)]

a(i, k)=







max
i′:i′6=i

min [0, r(i′, k)] +
∑

i′:i′6=i max [0, r(i′, k)], for k= i ;

min

(

−max
i′:i′/∈{i,k}

min [0, r(i′, k)], r(k, k) +
∑

i′:i′/∈{i,k}

max [0, r(i′, k)]

)

, for k 6= i .

(3.20)

This algorithm, while stillO(N2), was shown in [25] to have quite inferior performance

due to the extra constraint unnecessarily preventing the algorithm from moving through regions

of the search space on the way to better solutions. To compare the two algorithms, the task

of clustering image patches described in [34] was examined7. Patches were clustered using

both versions of affinity propagation and the resulting likelihood was compared to 100,000

restarts ofk-medoids clustering (requiring roughly 1000 times the computation as both affinity

propagation algorithms), and theScienceversion of affinity propagation achieves better results

for a wide variety of parameters, as shown in Figure 3.6.

3.4.2 Alternate factor graph: N binary nodes

Instead of having variablesc1, c2, . . . , cN that makeN-ary assignments of each data point to

clusters, it is possible to useN binary variables that only indicate whether or not each point

is an exemplar. For each binary variable,{bi}Ni=1, bi =1 indicates that data pointi serves as

an exemplar andbi=0 that it is a non-exemplar—implicitly belonging in the cluster to which

it has highest similarity,argmaxk:bk=1s(i, k). This setup is reflected in the factor graph from

Figure 3.7, with constraint functions absorbing similarities as follows:

7Briefly (see [34] for details), a tiling of24×24 non-overlapping patches was extracted from the image and
translation-invariant similarities were computed by comparing smaller16×16 windows within each patch. The
lowest squared error between windows (over all possible translations) was chosen as a similarity measure.
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Figure 3.6: Performance (measured by ranking within 100,000 restarts ofk-medoids cluster-
ing plus one run of each version of max-product affinity propagation) for various numbers of
clusters on a patch clustering task. A common value for the exemplar preferences was tuned
to produceK = {2, 3, . . . , 12} clusters and the result was compared to that obtained from
100 000 random initializations ofk-medoids. In most cases, theScienceversion of affinity
propagation [38] finds a configuration at or near the best of the manyk-medoids initializa-
tions, while the olderNIPSversion [34] performs comparatively worse. For few clusters (e.g.
K={3, 4, 5}), the clustering task is trivial (search spaces of size

(
64
3

)
=41664,

(
64
4

)
=635376,

and
(
64
5

)
=7624512, respectively), so 100 000 restarts ofk-medoids works well. Larger search

spaces (e.g.K=9 has
(
64
9

)
≈3×1010) show a clearer benefit for affinity propagation.
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Figure 3.7: An alternate factor graph for exemplar-based clustering withN binary variables,
b1, b2, . . . , bN , wherebk = 1 indicates that data pointk is an exemplar. Non-exemplars (indi-
cated bybk =0) are implicitly assigned to the exemplar most-similar to them; this is incorpo-
rated into constraintsh1, h2, . . . , hN .

hi(b1, b2, . . . , bN ; s) =







[
∑

i′bi′>0] ·maxk e
s(i,k)·[bk=1], for bi =0 (i is a non-exemplar) ;

es(i,i), for bi =1 (i is an exemplar) .

Note that the initial[
∑

i′bi′>0] multiplier ensures that the degenerate case where there are

no exemplars,i.e. ∀i : bi =0, is not allowed. The global function is:

F (b; s) =
∏N

i=1
hi(b; s) =

no-exemplar
case not allowed
︷ ︸︸ ︷
[∑

i′
bi′
]N

·

exemplar
preferences

︷ ︸︸ ︷
∏

i:bi=1
es(i,i) ·

non-exemplars belong to cluster
with most-similar exemplar

︷ ︸︸ ︷
∏

i:bi=0
max

k

[
es(i,k)·[bk=1]

]
(3.21)

The algorithm isO(N3) after some optimization, and preliminary experimentation with small

problems has shown it to be even slower than exact (linear programming) methods with worse

results than affinity propagation.

3.4.3 Alternate factor graph: K N -ary nodes

It is possible to re-write the exemplar-based clustering problem explicitly in terms of findingK

clusters usingK N-ary variables, each of which indicate an exemplar such thatck = i indicates
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Figure 3.8: An alternate factor graph for exemplar-based clustering usingK N-ary variables,
c1, c2, . . . , cK , each of which index an exemplar. Non-exemplars are implicitly assigned to
the exemplar most-similar to them; this is incorporated into constraintsψ1, ψ2, . . . , ψN . Con-
straintsφ2, φ3, . . . , φK ensure that no points are duplicated in the set of exemplars.

that data pointi is an exemplar. The factor graph topology is shown in Figure 3.8. There areN

function nodes,{ψi}Ni=1, each of which computes theith non-exemplar data point’s contribution

to the net similarity by choosing the most-similar cluster. In addition, there areK function

nodes,{φk}Kk=2, that include exemplar preferences in the global function and also enforce the

tedious constraint that there are no duplicate or repeated exemplars. These functions are defined

as follows:

ψi(c1, c2, . . . , cK) =
∏N

i=1

(

maxk∈{1,2,...,K} e
s(i,ck) ·

∏K

k′=1
[ck′ 6= i]

)

;

ψi(c1, c2, . . . , cK) =
N∏

i=1

(

max
k∈{1,2,...,K}

es(i,ck)

)∏K
k′=1

[ck′ 6=i]

;

φk(c1, c2, . . . , ck) =
∏K

k=1

(

es(ck,ck) ·
∏k−1

k′=1
[ck 6=ck′]

)

, k>1 .
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They lead to the following global function:

F (c1, c2, . . . , cK ; s)=
∏K

k=1 φk(c1, c2, . . . , ck) ·
∏N

i=1 ψi(c1, c2, . . . , cK)

=
K∏

k=1






preferences
︷ ︸︸ ︷

es(ck,ck) ·
k−1∏

k′=1

no duplicates!
︷ ︸︸ ︷

[ck 6=ck′]




·

N∏

i=1






in most-similar cluster
︷ ︸︸ ︷

max
k∈{1,2,...,K}

es(i,ck) ·
K∏

k′=1

only non-exemplars
︷ ︸︸ ︷

[ck′ 6= i]




 .

Computation of sum-product and max-product messages can be done in polynomial time

(in particular, theφ-constraints can be efficiently absorbed into theψ-constraints for max-

product), but this is not explored further in this thesis.

3.4.4 Alternate factor graph: ternary nodes

A final factor graph worth brief mention is shown in Figure 3.9. It involves ternary vari-

ables{tik}(i,k)∈{1,2,...,N}2 and i<k for indicating cluster membership, wheretik = 1 indicates

that data pointi is in a cluster whose exemplar is data pointk, tik = −1 that data point

k is in a cluster whose exemplar is data pointi, and tik = 0 otherwise. There areN bi-

nary variables{bi}Ni=1 indicating whether each data point,i, is an exemplar (bi = 1) or non-

exemplar (bi =0). Function nodes enforce the usual constraints withζi(t1i, . . . , bi, . . . , tiN) =
[

bi ≥ max
k∈{1,2,...,i−1}

tki

]

·
[

bi ≥ max
k∈{i+1,...,N}

−tik
]

·
[

1 =
i−1∑

k=1

[tki=−1] + bi +
N∑

k=i+1

[tik=1]

]

acting similar to equa-

tions (3.16) and (3.17) in Section 3.3.
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Figure 3.9: This factor graph for exemplar-based clustering involves ternary variables
{tik}(i,k)∈{1,2,...,N}2 and i<k for indicating cluster membership wheretik = 1 indicates that data
point i is in a cluster whose exemplar is data pointk, tik =−1 that data pointk is in a cluster
whose exemplar is data pointi, andtik =0 otherwise.



Chapter 4

Benchmarking Affinity Propagation

The affinity propagation algorithm for exemplar-based clustering performs well at finding clus-

tering solutions that optimize net similarity. This chapter benchmarks affinity propagation

alongside 15 other clustering methods for a range of small (N < 1000) and large (N > 5000)

datasets.

4.1 Olivetti faces: Clustering a small dataset

The Olivetti faces dataset [87] is a collection of400 64×64 greyscale images of human faces (10

from each of 40 people) with varying facial expressions and lighting conditions. The complete

dataset is available at http://www.cs.toronto.edu/∼roweis/data.htmland shown in Figure 4.1.

Figure 4.1: The Olivetti dataset [87] consists of400 64×64 greyscale images of human faces.

60
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Figure 4.2: The exact (CPLEX 7.1) solution time is plotted as a function ofK (number of
clusters). The curve is thin in cases where only an approximate solution was found (i.e., a
bound to several decimal places); for mostK-values the optimal solution was found along
with the set of exemplars that yields it. Most interesting solutions take minutes to find, with
some in theK<50 range requiring several hours.

To lessen the effects of the background, only the central50×50 pixel window (normalized to

have mean intensity zero and standard deviation0.1) is used to compute pairwise similarities.

The similaritys(i, k) of face imagei to face imagek was set to the negative sum of squared

pixel differences between these two images.

4.1.1 Exact clustering solutions

This dataset was of particular interest because it has a large enough search space to challenge

approximate algorithms (e.g., for N = 400 points andK = 40 clusters,
(

N
K

)
≈ 1055 possible

exemplar sets) but is small enough for the linear programming relaxation (§2.4.1) to feasibly

find exact solutions for most parameter settings.

CPLEX 7.1 optimization software was used to compute optimal clusterings of the Olivetti

data for all possible numbers of clusters,i.e., K = 1, 2, . . . , N using the linear programming

formulation from Section 2.4.1. In most interesting cases,i.e., K < 100, several minutes of
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Figure 4.3: The contributions (and tradeoffs) of data similarities (Sdata) and exemplar pref-
erences to net similarity (S) are shown for exact CPLEX solutions. Increasing the exemplar
preference (p) monotonically increases the optimal number of clusters (K), but the zoomed-
in region illustrates that not allK-values (e.g. K ∈ {186, 187}) have associated preference
ranges. Note thatp ·K is linear but appears logarithmic due to the horizontal axis using a log
scale.

computation time were required for CPLEX to find a solution as shown in Figure 4.2. Exact

solutions were found for366 K-values; bounds (though not solutions with exemplar sets) that

were tight to several digits of precision were found for the remaining34 K-values and are

shown as thin lines in the figure.

Closer examination of the exact linear programming results provide several valuable in-

sights into the exemplar-based clustering problem setup. Figure 4.3 shows the similarity of

data to exemplars (Sdata), the total preference of exemplars (p · K), and their sum, the net

similarity (S). Separate curves are shown for different numbers of clusters, and each quantity

is shown as a function of the globally-shared preference,p. Sdata is constant with respect top
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so it is shown as an ensemble of horizontal lines; eachp · K is linear with slopeK. Noting

that all similarities and preferences are negative, the curves are ordered differently in both of

the component plots: forSdata, the curves are parallel and sorted according to ascendingK

becauseSdata is highest where there are the fewest non-exemplar data points (highK). The

total preference of exemplars has the reverse situation, where curves with increasing slope are

sorted in order of descendingK because solutions with few clusters contain the smallest pref-

erence contributions/penalties. The sum, net similarityS = Sdata+p · K, is also plotted and

illustrates the tradeoff between the two terms and how the optimal number of clusters increases

as the preference is increased.

The optimal number of clusters increases monotonically with the preference, however, not

everyK-value has an associated interval of preference values for which it is optimal—for

this problem the set ofK ∈ {20, 21, 23, 28, 34, 46, 62, 100, 101, 118, 129, 186, 187} falls into

this category. Apparently, CPLEX has difficulty optimizing in regions specifically around

these missingK-values and with the only exceptions being nearK ∈ {129, 186, 187}. The

situation aroundK ∈ [185, 189] is illustrated in the highly zoomed-in Section aroundp ∈

[−10.8877,−10.8875]. At the point where theK = 185 andK = 188 curves intersect, the

K = 186 and theK = 187 curves are both below; because their slopes are higher than the

K = 185 curve they are never greater for lower preferences nor are they ever higher for greater

preferences than the more-slopedK = 188. The intuition is that the preference cost of adding

an extra exemplar in the area aroundp=−10.8876 (whereK=185 is optimal) never outweighs

the savings of a betterSdata solution, and it only becomes worthwhile (the net similarity im-

proves) when three additional exemplars are added.

4.1.2 Performance of Affinity Propagation

Next, affinity propagation was run using1000 different global preference values logarithmi-

cally sampled between−1200 and−0.7 (randomly sampled from the horizontal axis of Fig-

ure 4.4), each requiring less than one minute of computation time. An important consideration
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Figure 4.4: Affinity propagation was run on the Olivetti facesdataset with1000 global prefer-
ences (p) sampled randomly from the horizontal axis shown above. The number of clusters,K,
found is plotted as a function ofp in (A) and superimposed over the exact solution found by
CPLEX. There is little divergence between the two curves, and it mostly takes place forK≤6.
The CPU time required for affinity propagation is shown in (B); it typically requires seconds
whereas CPLEX requires minutes or even hours. Withp > −10, the solutions split into two
regions because many runs oscillate; this represents less-interesting solutions whereK > 100
for N = 400.
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is whether affinity propagation finds the ‘correct’ number of clusters; the resulting number

found are shown in Figure 4.4 alongside optimal values found by CPLEX. For a large range of

preferences (untilp>−10 i.e.K>300), affinity propagation finds solutions quite close to the

optimalK. The net similarities,S, achieved by affinity propagation are shown in Figure 4.5

as well as optimal values derived from CPLEX (computed usingS = Sdata + K ·p). In addi-

tion, Figure 4.5 shows the total similarity of non-exemplar points to their exemplars,Sdata, as

a function ofK for both algorithms.

Finding a suitable preference using cross-validation

For datasets such as the400 Olivetti faces where negative squared Euclidean distance is used

as the similarity measure, a suitable choice of preference can be made by employing ten-fold

cross-validation. This was attempted by running affinity propagation for the set of1000 global

preference values described in Section 4.1.2 on ten differentN = 360-sized training sets with

10% of the data held out for validation. Using the clustering solutions found by affinity prop-

agation, mixtures of isotropic Gaussians were found (one M-step from EM) and the likelihood

of the validation sets under the mixture was computed. This is shown in the plot of total vali-

dation log-likelihood as a function of preference (p) in Figure 4.6. The preference value with

the highest log-likelihood,p∗≈−31.5082, corresponds to affinity propagation findingK=58

exemplars as shown in Figure 4.4(A).

4.1.3 Performance of other clustering techniques

Results were computed for 15 additional clustering algorithms and are shown in Figures 4.7 to 4.22.

They were computed using a 64-node computing cluster1 and involved roughly a year of total

single-node processing time in MATLAB 7.5 (R2007b). Random restarts (where applicable)

1The information processing lab at the University of Toronto, a joint effort between Profs. B. Frey, F. Kschis-
chang, and W. Yu, consists of a Linux-based computing cluster of 64 computing nodes, each with 12 GB of RAM
and two dual-core AMD Opteron 2220 CPUs running at 2.8 GHz.
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(A)

(B)

Figure 4.5: The quality of affinity propagation’s solutions for the Olivetti faces data are shown
as a function of the preference (A) and number of clusters (B). These two different setups
lead to different cost functions as shown in the vertical axes; when the number of clusters is
controlled by a global preference,p, as in (A), the net similarity,S, is maximized reflecting
the tradeoff between exemplar preferences and data point similarities. When the number of
clusters is explicitly defined as in (B), the similarity between data points and their exemplars,
Sdata, is maximized.
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Figure 4.6: A suitable choice of preference for the400 Olivetti faces dataset using ten-fold
cross-validation is shown. Affinity propagation was run on training sets for1000 shared pref-
erence values, and Gaussian mixture distributions were learned for each clustering solution
found. The validation log-likelihoods are shown, with the best preference,p∗ ≈ −31.5082,
corresponding to a solution withK=58 exemplars.

are shown (shaded) as described in the legend, with median best and worst of 10, 100, 1000,

etc. runs demarcating boundaries where shading is lightened; specifically, the median best and

worst runs oft restarts are defined as the median result of as many samplet-run trials as avail-

able2. Performance after one second, one minute, and one hour of CPU time are also shown

to better illustrate the tradeoff between running time and quality of solution. To facilitate eas-

ier comparison, all algorithms are shown on plots with the same scales on both axes and, in

contrast with Figure 4.5(B), the horizontal axis (number of clusters,K) is shown with a linear

scale, and the vertical axis is shown relative to CPLEX’s optimalSdata.

The algorithms examined includek-means and the EM algorithm for a mixture of Gaus-

sians, which is suitable because similarity is defined as the negative sum-of-squared-differences

2The sample median best and worst runs oft restarts are the(0.5)1/t and1−(0.5)1/t quantile results ofT ≫ t
restarts. This can be seen by considering the median maximum oft random variables,U1, U2, . . . , Ut, distributed
uniformly on [0, 1]. DefiningM (t) = median[max(U1, U2, . . . , Ut)], thenP [U1 < M (t), U2 < M (t), . . . , Ut <

M (t)] =
(
P [U <M (t)]

)t
= 0.5 so M (t) = (0.5)1/t. For example, if a total ofT = 106 random restarts are

computed, the median best of ten restarts is the(0.5)1/10 ≈ 0.933rd quantilei.e., the66700th-best restart.
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between50×50 pixel windows, a2500-dimensional data space. These algorithms were all run

until convergence or 100 iterations, whichever came first. For algorithms that find only a par-

titioning of data points but no exemplars, the resulting partition is ‘quantized’ by initializing

a single restart ofk-medoids to find the locally-optimal set of exemplars for the partition (or

if means characterize cluster centers, quantized to exemplars). In more detail, the algorithms

examined are as follows:

Affinity Propagation

Affinity propagation was run with a dampening factor ofλ=0.9 for a maximum of 1000 itera-

tions (where 100 consecutive iterations of no change in exemplar set qualifies as ‘convergence’)

and is shown on all plots for easier comparison. Running times are shown in Figure 4.4; it is

typically several seconds. Performance noticeably degrades betweenK = 150 andK = 300,

where the solution search space is largest.

Vertex substitution heuristic (VSH) with variable neighbor search

The vertex substitution heuristic is shown alongside CPLEX and affinity propagation in Fig-

ure 4.7. This is by far the most competitive algorithm, achieving optimal results for this prob-

lem in a matter of minutes for allK-values. It is implemented with variable neighbor search as

described in Section 2.5 and [47]. For problems of this size, VSH is competitive with affinity

propagation in terms of computation time and Figure 4.7 shows that initializing VSH with the

output of affinity propagation usually achieves solutions far superior to the median VSH run.

k-medoids clustering (with or without k ·log(k) heuristic)

k-medoids clustering is shown alongside CPLEX and affinity propagation in Figure 4.8 with

several million random initializations computed perK-value. It is the simplest and fastest al-

gorithm available, and results from many restarts show wide variation. Affinity propagation

outperforms millions ofk-medoids runs beyondK = 10; interestingly, the number of restarts
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typically required for an optimal solution roughly increases by a factor of ten for every addi-

tional cluster beyondK = 3 until 10 million restarts no longer finds an optimal solution for

K =11’s search space (which is roughly1020 in size).k-medoids with thek · log(k) heuristic

is shown in Figure 4.9. This is implemented as described in Section 2.3.1 with the caveat for

extreme cases thatmin (K ·ln(K), N) is used as the initial number of clusters before pruning.

This algorithm is somewhat slower per restart than regulark-medoids but shows modest im-

provements given the same amount of time (apparent by comparing the one hour performance

curves).

k-means (with or without k ·log(k) heuristic; exemplars from partitions or means)

k-means clustering is shown alongside CPLEX and affinity propagation in Figures 4.10–4.13.

This is implemented as described in Section 2.1 and is run on 2500-dimensional data points

to convergence; exemplars are identified either by feeding the resulting cluster partition into

k-medoids or by initializingk-medoids with an exemplar set consisting of points closest to

each mean3. Due to the high dimensionality of the input data, only hundreds or thousands

of runs are typically feasible within a few hours. Thek-means algorithm with thek · log(K)

heuristic is also shown; it substantially improves the result when compared tok-means without

the heuristic.

EM for mixture of diagonal or isotropic Gaussians (exemplars from partitions or means)

The EM algorithm for mixtures of Gaussians is shown alongside CPLEX and affinity propa-

gation in Figures 4.14–4.18. Exemplars can be identified by partitions, in which case cluster

assignment is determined to be the Gaussian with the maximum responsibility4, or they can

be identified by data points closest to the means (as withk-means). Runs with diagonal and

3If fewer thanK exemplars are found due to two means being closest to the same exemplar, the run is dis-
carded.

4In cases where a Gaussian has no member data points after thresholding (leading to fewer thanK partitions),
the run is discarded.
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runs with isotropic/spherical Gaussians are shown; the high dimensionality of the data makes

computation time per run quite high, negatively impacting results. Finally, to more-closely ap-

proximate thek-means results—which may be better because they optimize the net similarity

unadulterated by different covariances for each cluster—runs of the EM algorithm with spher-

ical Gaussians using a shared global variance annealed to near-zero are shown in Fig. 4.185.

Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering is shown alongside CPLEX and affinity propagation in

Figure 4.19. Hierarchical agglomerative clustering ( [61, 93, 103]) involves creating a linkage

structure (easily visualized as a dendrogram) for a dataset containing a series of nested clusters,

beginning withN clusters and ending with one large cluster. At each ofN −1 steps, two

subclusters are selected to be merged together using one of several possible criteria; aK-

clusters partitioning of the dataset can be realized by halting (or revisiting the result of the

(N−K)th agglomeration), akin to ‘chopping’ off the dendrogram tree at the height where it

hasK branches. The MATLAB statistics toolbox implementation of this algorithm was used,

with all implemented linkage methods attempted: single linkage (a.k.a. nearest neighbor),

complete linkage (a.k.a. furthest neighbor), average linkage (a.k.a. unweighted pair group

method with arithmetic mean, UPGMA), weighted average distance, centroid linkage, median

linkage (a.k.a.weighted center of mass distance, WPGMC), and Ward’s linkage (inner squared

distance). The resulting partitions for eachK-value were then fed intok-medoids clustering for

refinement and exemplar discovery. For this Olivetti dataset, Ward’s linkage method—which

combines clusters so as to minimize the increase in the total within-cluster sum of squares—

is the only method with competitive results; not surprising considering its cost function is

5For these experiments, EM for a mixture of isotropic/spherical Guassians was employed with means ini-
tialized from data via a furthest-first traversal and a shared (global) variance∀k : Σk = σ2

ID whereσ2 =
1

ND

∑N
i=1 (xi−µci

)⊤(xi−µci
). Variances (or standard deviations) were gradually annealed to near-zero via

theσnew =0.99·σold update at each EM iteration. A total of 1000 iterations were run for each EM optimization,
meaningσfinal =0.991000·σinitial≈ .00004·σinitial. Also, allN =400 possible furthest-first traversal initializations
were attempted for eachK-value, resulting in the range of results shown in Figure 4.18.
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equivalent to the definition of similarity.

Convex Clustering (Lashkari-Golland, 2007)

The convex clustering method (Lashkari-Golland, 2007) [67] is shown alongside CPLEX and

affinity propagation in Figure 4.20. This algorithm is based on the idea that instead of max-

imizing a typical mixture-model log-likelihood1
N

∑N
i=1 log

[
∑K

k=1 πkf(xi;µk)
]

(wheref is

an exponential family distribution function), the problem can be reformulated to maximizing

1
N

∑N
i=1 log

[
∑N

j=1 πje
−βdϕ(xi,xj)

]

where mixture component densities are located at each data

point. Heredϕ(xi, xj) must be a Bregman divergence [3] (e.g. dϕ(xi, xj) = −s(i, j)), and

so the latter likelihood is convex whose global optimum, subject to
N∑

j=1

πj = 1, can be found

in polynomial time. Theβ parameter is used to control the sharpness of the mixture com-

ponents, which turns out to be a multiplicative adjustment of the negative similarity for this

example; it controls the number of exemplars found by the algorithm. Consistent with other

experiments [82], the convex clustering algorithm seems to have poor performance in practice6.

Markov Clustering Algorithm (van Dongen, 2000)

The Markov clustering algorithm [99] is a graph-based clustering algorithm based on simu-

lation of stochastic flow in graphs; results of the algorithm applied to the Olivetti faces are

shown alongside CPLEX and affinity propagation in Figure 4.21. The algorithm performs

competently for very large numbers of clusters, but is difficult to configure for finding small

K.

Spectral Clustering

Spectral Clustering is shown alongside CPLEX and affinity propagation in Figure 4.22. Spec-

tral clustering methods use the top eigenvectors of a matrix derived from the distance (nega-

6Perhaps the dimensionality of the Olivetti dataset plays a part in convex clustering’s poor performance; results
on two-dimensional toy datasets of various sizes yield more satisfactory results.
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tive similarity) between points to partition the dataset into clusters. For these simulations, a

spectral clustering algorithm [80] (based on [74, 104]) is used. Briefly, theK largest eigen-

vectors are computed (using MATLAB ’s svds command) for anN×N normalized distance

matrix with diagonal elements set to zero and stacked into anN×K matrix whose rows are

normalized (to have unit length) and then clustered usingk-means. The cluster assignments

of theN rows of the matrix of eigenvectors correspond to the assignments for theN data

points, which is fed intok-medoids to refine the solution and identify locally-optimal exem-

plars. This formulation of spectral clustering is not invariant to the scale (i.e. units) of the

pairwise similarities so the input pairwise distance is divided by a factor,σ, such that the nor-

malized distance between pointsi andj is defined asdij = −s(i, j)/σ. For each number of

exemplars, 36 normalization factors spanning four orders of magnitude were attempted, namely

σ∈{0.1, 0.2, . . . , 0.9, 1, 2, . . . , 9, 10, 20, . . . , 90, 100, 200, . . . , 900}. Most trials require 10–20

seconds of CPU time; a few take longer than a minute but none longer than two minutes. Per-

formance is decent forK<25 clusters, but it dramatically falls off for more clusters. Note that

spectral clustering algorithms operate without exemplars by partitioning along gaps in data

(i.e., minimizing ‘cut’ weights), which is an entirely different objective than exemplar-based

clustering. The algorithm is included in the comparison for the sake of completeness.

For applications involving computer vision and this Olivetti faces dataset, see Section 5.1.
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OLIVETTI FACES: Affinity propagation, Vertex substitution heuristic

VSHVSH

exact solution (CPLEX 7.1)

affinity propagation

AP followed by VSH

K (number of clusters)

OLIVETTI FACES: AP, VSH (same vertical scale as subsequent plots)

K (number of clusters)

(A)

(B)

Figure 4.7: Olivetti faces and affinity propagation, vertex substitution heuristic. (A) shows
1000 runs of the vertex substitution heuristic alongside affinity propagation (red stars) and
affinity propagation followed by VSH (green stars). Affinity propagation alone performs some-
what worse than the median performance of VSH, but affinity propagation followed by the
vertex substitution heuristic performs significantly better than the median run of VSH alone.
(B) shows the same plot with a compressed vertical scale directly comparable to subsequent
plots.
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OLIVETTI FACES: k!medoids clustering

K (number of clusters)

k!medoids

Figure 4.8: Olivetti faces andk-medoids clustering

OLIVETTI FACES: k!medoids clustering with k log(k) heuristic

k!medoids

K (number of clusters)

Figure 4.9: Olivetti faces andk-medoids clustering withk ·log(k) heuristic
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OLIVETTI FACES: k!means clustering (partitions)

k!means

K ( b f l t )K (number of clusters)

Figure 4.10: Olivetti faces andk-means clustering (by partitions)

OLIVETTI FACES: k!means clustering (partitions) with k log(k) heuristic

k!means

K (number of clusters)

Figure 4.11: Olivetti faces andk-means clustering withk ·log(k) heuristic (by partitions)
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OLIVETTI FACES k l t i (b )OLIVETTI FACES: k!means clustering (by means)

k!means

K (number of clusters)

Figure 4.12: Olivetti faces andk-means clustering (by means)

OLIVETTI FACES: k!means clustering (by means) with k log(k) heuristic

k!means

K (number of clusters)

Figure 4.13: Olivetti faces andk-means clustering withk ·log(k) heuristic (by means)
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OLIVETTI FACES: EM for mixture of diagonal Gaussians (partitions)

EM algorithm

K (number of clusters)

Figure 4.14: Olivetti faces and EM for mixture of diagonal Gaussians (by partitions)

OLIVETTI FACES: EM for mixture of diagonal Gaussians (by means)

EM algorithm

K (number of clusters)

Figure 4.15: Olivetti faces and EM for mixture of diagonal Gaussians (by means)
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OLIVETTI FACES: EM for mixture of isotropic Gaussians (partitions)

EM algorithm

K (number of clusters)

Figure 4.16: Olivetti faces and EM for mixture of isotropic Gaussians (by partitions)

OLIVETTI FACES: EM for mixture of isotropic Gaussians (means)

EM algorithm

K (number of clusters)

Figure 4.17: Olivetti faces and EM for mixture of isotropic Gaussians (by means)
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OLIVETTI FACES: EM for mixture of spherical Gaussians
(variance annealed to zero)

best of 400 runs

best of 100 runs

best of 10 runs

worst of 10 runs

worst of 400 runs

worst of 100 runs

median run  EM algorithm

K (number of clusters)

Figure 4.18: Olivetti faces and EM for mixture of spherical Gaussians (annealed variance)

OLIVETTI FACES: Hierarchical clustering algorithms

K (number of clusters)

Figure 4.19: Olivetti faces and hierarchical agglomerative clustering algorithms
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OLIVETTI FACES: Convex clustering algorithm

K (number of clusters)

Figure 4.20: Olivetti faces and convex clustering (Lashkari-Golland,NIPS)

OLIVETTI FACES: Markov clustering algorithm

K (number of clusters)

Figure 4.21: Olivetti faces and Markov clustering algorithm (van Dongen)
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OLIVETTI FACES: Spectral clustering

K (number of clusters)

Figure 4.22: Olivetti faces and spectral clustering

4.1.4 Affinity Propagation and Mixture of Gaussians models

The previous section demonstrates that, for the Olivetti faces dataset, affinity propagation per-

forms significantly better than parametric clustering methods (k-means, EM for mixture of

Gaussians) on the task of exemplar-based clustering. A question that naturally arises is: how

well does affinity propagation perform when the task is parametric clustering? For example,

if cluster centers were parameterized by means and not constrained to be actual data points,

means might better-describe high-dimensional Gaussian-distributed data, where the data would

tend to lie near a hollow hypersphere surrounding the mean.
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Figure 4.23: Olivetti faces are clustered using parametric clustering methods (EM for mixture
of spherical, diagonal Gaussians) and data log-likelihoods are compared with corresponding
mixture of Gaussians models learned from affinity propagation’s clustering results.
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For the Olivetti faces data, EM for a mixtures of diagonal and spherical (i.e. isotropic)

Gaussians was run for a range ofK-values and the resulting data log-likelihoods are shown in

Figure 4.23. The plot shows the performance range using all possible (N) furthest-first traver-

sals to initialize at each setting ofK. Then, the previous results of affinity propagation are

compared by computing means and covariances7 from the clustering partition and evaluating

the data likelihood under the apppropriate mixture model. All algorithms use the same lower

bound for variances (10−3), which is frequently invoked when computing variances from sin-

gleton clusters that consistly arise beyondK > 150 (due to the output partitioning of affinity

propagation containing hard assignments).

Notice that for this dataset, affinity propagation does a decent job at finding Gaussian mix-

ture models, even though it is optimizing an entirely different exemplar-based clustering cost

function more comparable to a set of spherical Gaussians with a single (global) variance. For

all values ofK, affinity propagation falls within the performance range of furthest-first traver-

sal initializations of the EM algorithm. Notably, for mixtures of diagonal Gaussians in the

range30 ≤ K ≤ 50, affinity propagation’s performance exceeds even the best inialization of

EM.

4.2 Affinity Propagation and Large Datasets

The results presented in the previous section and in [10] indicate that for small datasets (N <

1000) such as the Olivetti faces, the vertex substitution heuristic frequently outperforms affinity

propagation. However, because CPLEX optimization software can be used to find exact solu-

tions for such small datasets, a question that naturally arises is: “how do affinity propagation

and the vertex substitution heuristic compare for larger problems, where exact clustering is not

practically feasible?”. In this section, affinity propagation is comprehensively compared to the

vertex substitution heuristic,k-medoids,k-means, EM for mixtures of Gaussians, hierarchical

7The covariance matrices for affinity propagation are computed to be of the same form (e.g. diagonal,
isotropic) as the mixture of Gaussians models to which comparisons are made.
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clustering, and spectral clustering on three datasets containing many thousands of data points.

In the case of larger datasets, comparison is less straightforward for two reasons:

• Affinity propagation (and CPLEX linear programming) use the input preference to find

a set of exemplars to maximize the net similarity. Other algorithms explicitly require

the number of exemplars as input and then attempt to maximize the similarity of the

data to an exemplar set of that size. With the exception of the computationally-infeasible

linear programming relaxation, the two optimizations are not interchangeable; many runs

of affinity propagation could be required in a possibly-fruitless bisection search for a

preference leading to a specifiedK-value. On the other hand, a similar search over

K-values (potentially with many restarts) would be required for other algorithms (e.g.

k-medoids) to minimizeS if a preference is specified. This was not a problem with the

smaller Olivetti dataset, where algorithms could be run for all possibleK-values or many

preferences (leading to most if not allK-values).

• The exact solution is unavailable as a baseline for comparison so solution quality com-

parisons over a range ofK- or p-values cannot be in absolute terms. Differences between

Sdata orS vary across several orders of magnitude for different values ofK or p (see Fig-

ure 4.3), so performance differences between algorithms without perfectly-matchedK

are not visible at a global scale without subtracting a nearby baseline such as the opti-

mal value (as in Figures 4.7 to 4.22). For consistency, the figures in this section use an

approximate baseline equal to the median performance of 100 runs ofk-medoids clus-

tering, which is easy enough to be computed for all [thousands of] possible values of

K.

Another issue with larger datasets is that computation time is a more important variable

in assessing algorithm performance and so plots need to reflect this extra dimension. Plotting

in three dimensions—as illustrated in Figure 4.25—is cluttered and lacks perspective, so two-

dimensional slices across notable points on the time (one minute, one hour, one day, one week)
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axis are shown instead. Each plot contains a smooth curve with several dozenp- orK-values,

where the number of clusters varies approximately fromK = 10 to K = N/2, as shown on

the horizontal axes. Slices along theK- or p-axes were shown in [35] but require the number

of clusters to be consistent across all algorithms; this would be somewhat arbitrary, given that

affinity propagation’s solution only finds an approximation.

The datasets examined consist of measurements for 8124 mushrooms, 11,000 handwritten

digits, and customer ratings for 17,770 movies from Netflix. Similarities range from nega-

tive squared Euclidean-distance in a 64-dimensional data space for the handwritten digits, to

uniform-loss embeddable in 121-dimensional space for mushrooms, to extremely-high dimen-

sion as is the case for the sparse movie ratings data.

4.2.1 Mushroom data (N=8124)

The mushroom dataset [90] is available at the UCI Machine Learning Respository8. It contains

22 discrete, non-ordinal attributes for each of 8124 mushrooms as illustrated in Figure 4.24.

These attributes include color, shape, and surface characteristics of the mushrooms’ cap, gill,

and stalk—the stalk root attribute is ignored because it is more than 30% incomplete. The

similarity function uses the uniform loss as shown in equation (4.1) which counts the number

of matching attributes between each mushroom, meaning that similarities are integers in the

range0≤s(i, k)≤21.

s(i, k) =
21∑

j=1

[(
ith mushroom’sj th attribute

)
=
(
k th mushroom’sj th attribute

)]
(4.1)

Simulations were carried out for the same set of clustering algorithms as in Section 4.1

and are shown in Figures 4.26–4.27. Simulations were carried out using algorithms such as

k-means (with and without thek·log(k) heuristic, finding exemplars by initializingk-medoids

8Located at http://mlearn.ics.uci.edu/MLRepository.html
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Figure 4.24: The mushrooms dataset contains 22 discrete, non-ordinal attributes for each of
8124 mushrooms, as illustrated above.

with the means and by the cluster partitions), EM for mixture of Gaussians (using diagonal

and isotropic/spherical Gaussians, finding exemplars by means and by partitions), hierarchical

clustering, and spectral clustering. These techniques rely on the data being embedded in a

relatively low-dimensional vector space which is accomplished by a one-hot representation of

each attribute; this expands the data to a set of 121-dimensional binary-valued vectors.

Hierarchical clustering required roughly an hour for each of the seven linkage methods to

form the linkage tree structure; then eachK-value required several seconds to find the exem-

plars usingk-medoids initialized with the cluster partitioning. The results were not competitive

and required several gigabytes of memory – more than other algorithms (e.g.affinity propaga-

tion required about 1.6 GB of RAM). As mentioned earlier, results for a range of computation

times andK- or p-values are shown in the 3D plot of Figure 4.25.
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Figure 4.25: Results fork-medoids with a range of computation times andp- or K-values
(preferences or number of exemplars) are shown in the 3D plot above. The plot is a useful
illustration of the parameters involved in the algorithm and the issues at play in visualizing the
results, but it is not informative for algorithm comparison (consider the appearance if additional
algorithms were shown). For this, 2D plots that are cut along noteworthy slices of the CPU
time-axis are shown in Figures 4.26–4.28.
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(no results after only one minute)   

MUSHROOM DATA: Best result after ONE MINUTE of CPU time

MUSHROOM DATA: Best result after TEN MINUTES of CPU time

Figure 4.26: Performance comparison for mushrooms dataset after minutes of computation.
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MUSHROOM DATA: Best result after ONE HOUR of CPU time

MUSHROOM DATA B t lt ft FIVE HOURS f CPU tiMUSHROOM DATA: Best result after FIVE HOURS of CPU time

Figure 4.27: Performance comparison for mushrooms dataset after hours of computation.
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MUSHROOM DATA: Best result after ONE DAY of CPU time

MUSHROOM DATA: Best result after ONE WEEK of CPU time

Figure 4.28: Performance comparison for mushrooms dataset after days of computation.
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After a total of 3 years of single-CPU computation time spent on the mushrooms dataset,

Figures 4.26–4.28 show that among the algorithms examined and under most circumsances,

only the vertex substitution heuristic achieves results that are competitive with affinity propaga-

tion. Spectral clustering achieves fairly good solutions, but requires many days of computation

time as it searches for appropriate values of theσ parameter.

Affinity propagation and the vertex substitution heuristic are examined more directly in

Figure 4.29, which displays results on the same axes as Figures 4.26–4.28. Computation times

are also shown, and affinity propagation usually requires 40–60 minutes whereas the vertex

substitution heuristic requires several minutes for smallK<50 and up to two hours for larger

K>500.

4.2.2 USPS digits (N=11000)

The next-largest dataset examined consists of 11,000 handwritten digits originating from United

States Postal Service ZIP code scans from Buffalo, NY9. This is in the form of 11008×8

greyscale images of each handwritten digit ‘0’ through ‘9’, for a total of 11,000 images / data

points—the dataset in its entirety is shown in Figure 4.30. The similarity between two images

was set to the negative sum of squared pixel differences, which, like the Olivetti data, implies

k-means and mixture of Gaussians parametric modelscandirectly minimize the similarity (al-

beit with means instead of exemplar data points). Note thatK = 10 is not necessarily the

proper choice for clustering this data; even though a useful classifier might assign one of ten

possible labels if it classifies each digit image according to its associated numeral, clustering

as an earlier step in the analysis can very well find significantly more than ten digit exemplars.

9Available at http://www.cs.toronto.edu/ roweis/data.html
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MUSHROOM DATA: Solution Quality

MUSHROOM DATA: CPU time for one run

Figure 4.29: Performance comparison for mushrooms dataset between affinity propagation and
the vertex substitution heuristic.
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Figure 4.30: The USPS digits dataset consists of11000 8×8 images of digits scanned from
ZIP codes in the Buffalo, NY office, as shown above.
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(no results after only one minute)   

USPS DATA: Best result after ONE MINUTE of CPU time

USPS DATA: Best result after TEN MINUTES of CPU time

Figure 4.31: Performance comparison for USPS dataset after minutes of computation.



CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 95

USPS DATA: Best result after ONE HOUR of CPU time

USPS DATA: Best result after FIVE HOURS of CPU time

Figure 4.32: Performance comparison for USPS dataset after hours of computation.
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USPS DATA: Best result after ONE DAY of CPU time

USPS DATA: Best result after ONE WEEK of CPU time

Figure 4.33: Performance comparison for USPS dataset after days of computation.
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Simulations were carried out for the same set of clustering algorithms as in Section 4.2.1

and are shown in Figures 4.31–4.32, except for spectral clustering which did not produce results

within a week of CPU time. Some techniques (k-means, EM) rely on the original data in the

form of an11000×256 data matrix rather than the similarity matrix.

Hierarchical clustering required somewhat less than an hour of computation time for each

of the seven linkage methods to form the linkage tree structure; then eachK-value required sev-

eral seconds to find the exemplars usingk-medoids initialized with the cluster partitioning. The

results turn out to be competitive only for extremely large numbers of clustersi.e. K >N/2.

After a total of ten years of single-CPU computation time spent analyzing the USPS dataset,

the main competitor for the affinity propagation algorithm is the vertex substitution heuristic.

After a few minutes of CPU time (before VSH and affinity propagation report results), the

k-means algorithm achieves quite competitive results that are even better than affinity propaga-

tion for smallK < 50; this is most likely because it is directly minimizing squared Euclidean

distance which happens to be the definition of (negative) similarity for this problem.

As before, affinity propagation is compared directly with the vertex substitution heuristic

in Figure 4.34. Computation times are shown, and affinity propagation requires several hours

whereas one run of the vertex substitution heuristic requires a varying amount of time that

depends on search space size; ranging from several minutes for low values ofK ≤ 20 to

roughly a day for higher values ofK ≥ 2000. VSH outperforms affinity propagation in terms

of both computation time and solution quality forK ≤ 60; affinity propagation outperforms

VSH in terms of speed (at times by a factor of 5), achieving solutions of similar quality beyond

K=200 or so.

4.2.3 Netflix movies (N=17770)

The largest dataset explored is a collection of Netflix customer ratings for 17,770 movies,

available at http://www.netflixprize.com and illustrated in Figure 4.35. The data consists of

∼100 million ratings from 480,189 Netflix customers for 17,770 movies, so the data could be
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USPS DATA: Solution Quality

USPS DATA CPU ti fUSPS DATA: CPU time for one run

Figure 4.34: Performance comparison for USPS dataset between affinity propagation and the
vertex substitution heuristic.
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Figure 4.35: The Netflix dataset consists of∼100 million ratings of 17,770 movies by 480,000
Netflix customers, as shown above. Most movies are rated by hundreds of customers, and
likewise, most customers have rated hundreds of movies. Ratings are given in units of ‘stars’
ranging between⋆ and⋆ ⋆ ⋆ ⋆ ⋆, with the⋆ ⋆ ⋆⋆ rating being the most common.

represented in a17770×480189 matrix that is∼98.8% sparse. Typically, customers have rated

roughly 100 movies and most movies have at least 100 customers ratings. Ratings are given as

one through five ‘stars’, with⋆ ⋆ ⋆ ⋆ ⋆ being the highest rating (used 23% of the time) and⋆

being the lowest (used for 5% of ratings); ratings are most-often⋆⋆⋆ or ⋆⋆⋆⋆, with a frequency

of roughly 30% each.

Movies are clustered using a similarity function that accounts for users giving similar rat-

ings to similar movies; the similaritys(i, k) between moviei and moviek is set to the negative

mean-squared-difference between ratings for viewers common to both movies, denoted by set

Cik. Ratings for customers who have viewed one movie but not the other are ignored; for
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movies with very few or no common viewers, similarities are regularized as described in equa-

tion (4.2). Briefly, if there are fewer than five common user ratings then the expression is

regularized by padding with enough simulated rating differences of2 to equal five common

user ratings (this is required for 5.3% of movie pairings). Movie pairs with no common users

are assigned a similarity of−∞ (necessary for only 0.2% of cases).

s(i, k) =







−∞, Cik ≡ ∅ (0.2% of cases)

−
∑

c∈Cik
(xic−xkc)

2+22·(5−|Cik |)

5
, 0 < |Cik| < 5 (5.3% of cases)

−
∑

c∈Cik
(xic−xkc)

2

|Cik|
, |Cik| ≥ 5 (94.5% of cases)

(4.2)

Simulations were carried out for clustering algorithms that take similarities as input—k-

medoids (including thek ·log(k) heuristic), the vertex substitution heuristic, and affinity prop-

agation. Because the dataset consists of17770×17770 inputs requiring roughly 2.5 GB of

memory (plus working space), the more memory-intensive algorithms such as hierarchical

clustering and spectral clustering were not feasible. Simulation results from 8 years of single-

node CPU time are shown in Figure 4.36–4.38, with identical horizontal and vertical scales for

easy comparison.
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NETFLIX DATA: Best result after ONE MINUTE of CPU time

NETFLIX DATA: Best result after TEN MINUTES of CPU timeNETFLIX DATA: Best result after TEN MINUTES of CPU time

Figure 4.36: Performance comparison for Netflix dataset after minutes of computation.
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NETFLIX DATA: Best result after ONE HOUR of CPU time

NETFLIX DATA: Best result after FIVE HOURS of CPU time

Figure 4.37: Performance comparison for Netflix dataset after hours of computation.
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NETFLIX DATA: Best result after ONE DAY of CPU time

NETFLIX DATA: Best result after ONE WEEK of CPU time

Figure 4.38: Performance comparison for Netflix dataset after days of computation.



CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 104

As before, the only algorithm examined that was competitive with affinity propagation is

the vertex substitution heuristic (with the exception of some regions ofk-medoids reporting

first results quicker than affinity propagation in the first few minutes). Another set of simu-

lations was conducted for a range of preferences (K-values) and, additionally, for a range of

N-values (number of data points) accomplished by clustering only the firstN movies. Affinity

propagation is compared directly with 20 random restarts of VSH10, with results shown in Fig-

ure 4.39. The plots show that for larger datasets containingN ≥ 6000 data points and finding

K ≥ 50 exemplars, affinity propagation clearly comes out on top in terms of both solution

quality achieved and computation time. In terms of computation time, affinity propagation is

much less sensitive to the number of exemplars, and for larger problems is faster than a single

restart of VSH (by as much as a factor of ten for the full dataset andK>500).

Varying the dataset size and number of clusters provides an opportunity to examine several

algorithms’ memory requirements. As shown in Figure 4.40,k-medoids has the lowest memory

requirements, doing much of its computation in-place with negligble memory required beyond

that for storing the input similarities. The vertex substitution heuristic has modest memory

requirements that depend on the number of clusters (for keeping track of the swaps); for the

full Netflix dataset it ranges from 102% of the input similarity capacity (similar tok-medoids)

to 136% using the range of preferences from Figure 4.39. The affinity propagation algorithm

has much greater memory requirements in keeping soft information; it requires roughly 310%

of the input similarity capacity, mostly to keep equally-sized availabilities and responsibilities

in memory.

10twenty restarts are recommended in [10] by operations research experts for a good solution.
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Figure 4.39: Performance comparison for Netflix dataset between affinity propagation and the
vertex substitution heuristic, for a range of Netflix data sizes (N) and number of clusters (K).
For large datasets (N > 10000) and non-trivial numbers of clusters (K> 100), (A) shows that
affinity propagation consistently finds better solutions than 20 runs of the vertex substitution
heuristic. The running times for the algorithms are shown for affinity propagation (B), one
run of the vertex substitution heuristic (C), and 20 runs of the vertex substitution heuristic (D).
Affinity propagation takes hours for the most complex problems, while one run of the vertex
substitution heuristic can take days, and 20 runs can take weeks.
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Figure 4.40: The memory requirements fork-medoids, affinity propagation, and the vertex
substitution are shown for various subsets of the Netflix dataset. Memory requirements were
tabulated from the resident process size (including code and data segments) using the UNIX
top command and include roughly 72 MB overhead (insignificant considering the plot’s scale)
for MATLAB ’s toolbox caches,etc. The baseline input similarity memory requirements are
shown as wide bars in the background; thek-medoids algorithm requires little beyond this.
The vertex substitution heuristic requires between 2% and 36% more, depending on the value
of K. Affinity propagation requires roughly 310% times the input similarities capacity, mostly
for storing availabilities and responsibilities.



Chapter 5

Applications of Affinity Propagation

A major benefit to affinity propagation is that it clusters data without having a specific model

of the data built into the method; this has lead to its use in a wide variety of problem domains

using rich application-specific similarity models. This chapter briefly explores several results

from the topics of computer vision and bioinformatics.

5.1 Affinity Propagation and Computer Vision:

Image categorization

Many computer vision tasks either produce a clustering of input features as output or require

it as a preprocessing step for subsequent analysis. Exemplars have been used with success in

a variety of vision tasks, including image synthesis [27, 101], super-resolution [33, 92], image

and video completion [52,105], and combined tracking and object detection [40,97].

The use of exemplars is attractive for several reasons. A relatively small number of repre-

sentative exemplars can capture high-order statistics, since each exemplar can simultaneously

express dependencies between a large number of image features. In contrast to general sta-

tistical methods for which many parameter configurations can correspond to unrealistic data,

each exemplar is an image or an image fragment so it naturally corresponds to realistic image

107
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data. For this reason, exemplars can be used to make realistic predictions for missing image

data and avoid the blurring that often occurs when parametric methods are applied. Exemplars

are represented efficiently as pointers into the training data (e.g., a subset of image features),

so the number of bits of information needing to be specified during exemplar learning is quite

small [48].

5.1.1 Augmenting the Olivetti dataset

The Olivetti dataset (§4.1) was modified for computer vision experiments as follows: to ex-

amine the effect of a wider range in image variation for each individual, the images of ten

individuals were extracted, and for each of the resulting100 images, three in-plane rotations

and three scalings were applied1, producing a dataset of900 images. Initially, the similar-

ity between imagei and imagek, s(i, k) was set to the negative of the sum of squared pixel

differences.

5.1.2 Performance on unsupervised image classification

In several vision tasks, such as image or video summarization, labels are unavailable and the

goal is to detect meaningful image categories in an unsupervised fashion. Even in supervised

tasks, it can be helpful to first perform unsupervised categorization of images or image parts

so as to reduce the dimensionality of the input and simplify supervised learning. Here, the

performance of affinity propagation is explored in terms of unsupervised classification error of

the learned categories based on the true categories, where each learned category is associated

with the true category that accounts for the largest number of data points in the learned category.

The classification rate will approach 100% as the number of learned categories approaches the

number of training cases, so classification rates are reported as a function of the number of

learned categories.

1The rotations were{−10◦, 0◦, +10◦} and the scaling factors were{0.9, 1, 1.1}.
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Figure 5.1: Performance on unsupervised classification error for the Olivetti face data. The
classification rate (fraction of images correctly classified where the learned category is associ-
ated with the true category that accounts for the largest number of data points in the learned
category) is plotted against the number of clusters or exemplars,K. Results for affinity prop-
agation, best of 1000 runs ofk-medoids clustering, and the vertex substitution heuristic are
shown. For larger numbers of clusters (e.g., K> 25), k-medoids clustering typically achieves
a classification rate 3–5% worse than affinity propagation or the vertex substitution heuristic
(which both achieve similar results).
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Figure 5.1 plots the classification rate as a function of the number of clusters (K) for affinity

propagation, the best of 1000 runs ofk-medoids clustering, and the vertex subsitution heuristic

on the faces dataset containing 900 images. Affinity propagation achieves similar results to

the vertex substitution heuristic but typically achieves a classification rate 3–5% better than

k-medoids clustering, for the sameK.

5.1.3 Performance using non-metric similarities

In the context of comparing two face images, squared Euclidean distance ignores the fact that

certain facial features may appear in different positions in each image. This section outlines

a non-metric similarity function that can be tailored toward matching face images, and shows

that it achieves higher classification rates.

Denoting the vector of pixel intensities for imagesi andk byxi andxk, the previous section

used the following definition of similarity:

s(i, k) = −‖xi − xk‖2

Here, the similarity of imagei to imagek is computed by extracting a sub-image from the

center of imagei and finding its best match to all sub-images (not necessarily centered) in

imagek. Let T denote an operator that cuts a window of a fixed size out of the image it is

operating on. There will be many operators corresponding to different possible positions from

which the window may be extracted; letT0 denote the operator that cuts the window out of the

center of the image. The non-metric similarity used here is given by:

s(i, k) = −min
T

‖T0xi −Txk‖2

The original Olivetti images of size64× 64 are used here with a window size of50× 50.

Figure 5.2(A) shows an example of an imagexi (upper left) and the windows that achieve the
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minimum in the above expression for the other nine images in the same (true) category.

Figure 5.2(B) plots the classification rate against the number of clusters (K) for affinity

propagation applied to this non-metric similarity function. Included for comparison is the

plot obtained usingk-medoids clustering and the vertex substitution heuristic applied to the

same non-metric similarity function. Also included is the affinity propagation plot obtained

using the negative squared Euclidean distance similarities described in the previous section

(circles, as before). The non-metric similarity definition facilitates a significant increase in

the classification rate and affinity propagation achieves similar classification rates to the vertex

substitution heuristic and higher classification rates compared tok-medoids clustering.

5.2 Affinity Propagation and Sparsity: Exon Detection

An important problem in current genomics research is the discovery of genes and gene variants

that are expressed as messenger RNAs (mRNAs) in normal tissues. In a recent study [37],

DNA-based techniques were used to identify more than 800,000 possible exons (‘putative ex-

ons’) in the mouse genome. For each putative exon, an Agilent microarray probe matching a

60-base long DNA segment was used to measure the amount of corresponding mRNA that was

present in each of twelve mouse tissues. Each twelve-dimensional vector, called an ‘expression

profile’ for the DNA, can be viewed as a feature vector indicating the putative exon’s function.

Also, when nearby segments of DNA undergo coordinated transcription across multiple tis-

sues, they are likely to come from transcribed regions of the same gene [36]. By grouping

together feature vectors for nearby probes, we can detect genes and variations of genes.

Figure 5.3(A) shows a normalized subset of the data and gives three examples of groups of

nearby feature vectors that are similar enough to provide evidence of gene units. The actual

data is generally much noisier [36], and includes:

• Multiplicative noise, because exon probe sensitivity can vary by two orders of magnitude.

• Correlated additive noise, because a probe can cross-hybridize in a tissue-independent
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Figure 5.2: Unsupervised image categorization using non-metric similarities. (A) The similar-
ity of an image (left) to each of the other images is determined by finding the best match (in
terms of squared error) between a window centered in the first image and all possible equally-
sized windows in the second image. (B) The classification rate is plotted against the number
of exemplars (shown as squares) for affinity propagation, the best of 1000 runs ofk-medoids
clustering, and the vertex substitution heuristic using the non-metric similarity function. Also
shown (as circles) is the plot for affinity propagation applied using the metric similarity func-
tion described previously. Again, affinity propagation and the vertex substitution heuristic
achieve similar classification rates, which in turn are several percentage points better than affin-
ity propagation applied to the previously-examined metric similarities.
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Figure 4: (a) A normalized subset of 837,251 tissue expression profiles – mRNA level
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Figure 5.3: Exons can be detected by grouping together DNA segments with similar nor-
malized expression patterns across tissues, shown in (A). A sparse matrix of similarities is
constructed as shown in (B), where the zeroeth data point is an intron exemplar (background
model) and off-diagonal similarity entries are computed as in equation (5.1). The probability of
each expression profile under the background model is placed in the first column and along the
diagonal (as preferences) along with a global preference additive term,p, used for controlling
the false-positive rate.
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manner to background mRNA sources.

• Spurious additive noise, due to a noise measurement procedure and biological effects

such as alternative splicing.

To account for noise, false putative exons and the proximity of exons in the same gene, the

input similaritys(i, k) between DNA segment (data point)i and DNA segmentk is:

es(i,k) = βe−β|i−k| ·max
y,z,σ

{

p(y, z, σ) · e
− 1

2σ2

∑12
m=1 [xm

i −(y·xm
j +z)]

2

(
√

2πσ2)12

}

(5.1)

wherexm
i is the expression level for themth tissue in theith probe (in genomic order). The pa-

rametersy, z, andσ were assumed to be independent and uniformly distributed2 sop(y, z, σ)∝

1 over the domain. To account for the non-transcribed regions (e.g.containing introns), an ad-

ditional artificial data point was included (which is indexed as data point ‘0’) and the similarity

of each other point to this ‘non-transcribed exemplar’ was determined by evaluating each point

under a mixture of Gaussians for the entire dataset; this background model likelihood is re-

ferred to asp0(xi) so∀i > 0 : s(i, 0) = log p0(xi). The preference for the artificial data point

was set tos(0, 0)=+∞ to guarantee its selection as an exemplar (this was also facilitated by

setting∀i>0 : s(0, i)=−∞), whereas the preference for every other data point was set to the

background model log-likelihood plus a shared preference constant,p, that was used to control

the number of exemplars found and thus the sensitivity of the system.

A total of 75,066 DNA segments were all mined from the genome for mouse Chromosome

1, with a similarity matrix constructed as illustrated in Figure 5.3(B). Not all(75066+1)2 ≈

5.6 billion possible similarities were used or even computed; the exponentialβe−β|i−k| prior

term and the assumption that genes on the same strand meant that similarities for|i−k|>100

could be approximated3 as−∞. This reduces the problem size to approximately 15 million

2Based on the experimental procedure and a set of previously-annotated genes (RefSeq), they were estimated
asβ =0.05, y∈ [0.025, 40], z∈ [−max

i,m
xm

i , + max
i,m

xm
i ], andσ∈(0, + max

i,m
xm

i ).
3According to ground truth (RefSeq), less than 1% of genes spanned a distance of more than 100 probes (none

spanned more than 165). The sparseness constraint can accomodate a span of 200 if the exemplar is centered.
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similarities and messages to exchange—99.73% sparse—or roughly the same difficulty as a

non-sparse problem with
√

15×106≈3900 data points. Figure 5.4 illustrates the identification

of gene clusters and the assignment of some data points to the non-exon exemplar.

After clustering the75067×75067 sparse matrix of similarities, DNA segments assigned

to exemplars other than the non-transcribed exemplar were considered to be parts of genes.

All DNA segments were separately mapped to the RefSeq database of annotated genes [85] to

produce labels used for reporting true positive and false positive rates. These results are com-

pared in Figure 5.5, where the true-positive (TP) rate is plotted against the false-positive (FP)

rate for affinity propagation andk-medoids clustering. For each number of clusters, affinity

propagation was run once and took roughly six minutes, whereask-medoids clustering was

run 10,000 times which required 208 hours. Affinity propagation achieves significantly higher

TP rates, especially at low FP rates which are most useful to biologists. At a FP rate of 3%,

affinity propagation achieved a TP rate of 39%, whereas the bestk-medoids clustering result

was 17%. For comparison, at the same FP rate, the engineering tool described in [36]—which

integrates additional biological knowledge—achieved a TP rate of 43%.
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Figure 5.4: Affinity propagation was used to detect putative exons (data points) comprising
genes from mouse chromosome 1. A small portion of the data and the emergence of clusters
during each iteration of affinity propagation are shown. In each frame, the 100 boxes outlined in
black correspond to 100 data points (from a total of 75,066 putative exons), and the 12 colored
blocks in each box indicate the transcription levels of the corresponding DNA segment in 12
tissue samples. The grey profile on the far left corresponds to an artificial data point (i=0) with
infinite preference that is used to account for non-exon regions (e.g., introns). Lines connecting
data points indicate potential assignments, where gray lines indicate assignments that currently
have weak evidence and dark-colored lines indicate assignments that currently have strong
evidence.
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Figure 5.5: Affinity propagation was used to detect putative exons (data points) comprising
genes from mouse chromosome 1. For each number of clusters, affinity propagation took six
minutes, whereas 10,000 runs ofk-medoids clustering took 208 hours. The false positive rate
was adjusted via a constant added to the preference; this plot of the resulting true-positive rate
versus false-positive rate for detecting exons (using labels from RefSeq [85]) shows that affinity
propagation performs better at detecting biologically-verified exons thank-medoids clustering.
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5.3 Treatment Portfolio Design via Affinity Propagation

A central question for any computational research collaborating with a biologist or medical

researcher is in what form computational analyses should be communicated to the experimen-

talist or clinician. While application-specific predictions are often most appropriate, in many

cases what is needed is a selection of potential options available to the biologist/medical re-

searcher, so as to maximize the amount of information gleaned from an experiment (which can

often be viewed as consisting of independently-assayed targets). If the number of options is

not too large, these can be discussed and selected manually. On the other hand, if the num-

ber of possibilities is large, a computational approach may be needed to select the appropriate

options. Affinity propagation has been shown [26] to be an effective approach to this task.

5.3.1 Treatment Portfolio Design

For concreteness, the possible set of options is referred to as ‘treatments’ and the assays used to

measure the suitability of the treatments as ‘targets’. Every treatment has a utility for each tar-

get and the goal of what is referred to as treatment portfolio design (TPD) is to select a subset of

treatments (the portfolio) so as to maximize the net utility of the targets. The terms ‘treatment’,

‘target’, and ‘utility’ can take on quite different meanings, depending on the application. For

example, treatments may correspond to queries, probes, or experimental procedures. Examples

of targets include disease conditions, genes, and DNA binding events.

The input to TPD is a set of potential treatments or queriesT , a representative population

of targetsR, and a utility functionu : T ×R→ R, whereu(T,R) is the utility of applying

treatmentT ∈ T to targetR ∈ R. This utility may be based on a variety of factors, including

the benefit of the treatment, cost, time to application, time to response, estimated risk,etc.The

goal of computational TPD is to select a subset of treatmentsP ⊆ T (called the ‘portfolio’)

so as to maximize their net utility for the target population. A defining aspect of the utility

function is that it is additive (i.e., the total or net utility is a sum of component utilities); for
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portfolio P, the net utility is:
∑

R∈R

max
T∈P

u(T,R) .

To account for the fact that some treatments are preferable to others regardless of their efficacy

for the targets (e.g., different setup costs), a treatment-specific cost functionc : T → R can be

used. The net utility, including the treatment cost is:

U(P) =
∑

R∈R

max
T∈P

u(T,R)−
∑

T∈P

c(T )

Provided withT ,R, u andc, the computational task is to findmax
P⊆T

U(P). Note that the number

of treatments in the portfolio will be determined by balancing the utility with the treatment cost.

In general, the treatment set does not equal the target set. Then, TPD can be viewed as a

facility location problem with treatments serving as potential facilities (exemplars) and targets

as customers. Affinity propagation can be adapted to address this: if pointi is a target and point

k is a treatment, thens(i, k) can be set to the utility of that treatment for that target; if pointk

is a treatment,s(k, k) can be set to the negative cost for that treatment.

One important difference, however, between the problem statements for exemplar-based

clustering and TPD is the distinction between treatments and targets. The basic affinity prop-

agation algorithm treats all points as potential exemplars and every non-exemplar point must

be assigned to an exemplar. In TPD, only treatment can be selected as exemplars, and only

targets have utilities for being assigned to exemplars (treatments). Treatments that are not se-

lected for the portfolio (exemplar set) are neither exemplars nor assigned to another exemplar

(treatment).

To allow some treatments to not be selected for the portfolio and also not be assigned to any

other points, a special ‘garbage collector’ point is introduced and the similarities of treatments

to this point are set to zero. So, unless there is a net benefit in utility minus cost when including

a treatment in the portfolio (exemplar set), it will be assigned to the garbage collector point. In



CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 120

treatments

T

targets

R garbage

tr
e

a
tm

e
n

ts

T

−∞

0

−∞

ta
rg

e
ts

R −∞

garbage +∞

similarity 

matrix

cluster memberspotential exemplars
for unused 

treatments

−∞

utilities,

u(T,R)
−∞

−∞

Figure 5.6: Treatment portfolio design can be rephrased in terms of similarities and preferences
for affinity propagation. Constraints on similarities for treatment portfolio design (TPD) are
outlined in equation (5.2).

summary, the following similarity constraints account for the bipartite structure of TPD:

s(target, treatment)=u(treatment, target) and s(target, target′)=s(target, garbage)=−∞
s(treatment, garbage)=0 and s(treatment, target)=s(treatment, treatment′)=−∞

s(garbage, target)=s(garbage, treatment)=−∞
s(treatment, treatment)=−c(treatment), s(target, target)=−∞ and s(garbage, garbage)=+∞

(5.2)

The last constraints ensure that targets cannot be selected as exemplars and that the garbage

collection point is always available as an exemplar. The specific form of similarities under these

constraints is illustrated in Figure 5.6. Note that messages need only be exchanged between a

treatment and target if the utility is not−∞; this makes the algorithmO(|T | · |R|) instead of

O(|T +R|2).

5.3.2 Application to HIV vaccine cocktail design

The issue of HIV vaccine cocktail design can be nicely posed as a TPD problem. The idea

with this is to find a set of optimal HIV strains for the purpose of priming the immune sys-
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(A) treatments,T , are HIV strain sequences

(B) targets,R, are short subsequences that correspond to epitopes

Figure 5.7: Treatment and target sets for HIV vaccine design. The treatments,T , are thousands
of HIV strain sequences that differ slightly from each other due to mutations (shown in bold).
Sequences are shown as chains of amino acids (represented as text strings from an alphabet of
20 Latin letters). The targets,R are a set of short sequences that correspond to the epitopes
to which immune systems respond. For this application, all possible (overlapping) 9-mers
extracted from the HIV strain sequences are used.

tems of many patients. The treatmentsT are thousands of HIV strain sequences (available at

www.hiv.lanl.gov). The targetsR are a set of short sequences (patches, fragments) that corre-

spond to the epitopes to which immune systems respond (all 9-mers are used). See Figure 5.7

for more details. The utilityu(T,R) of a strainT for a fragmentR would ideally be set to its

potential for immunological protection, but following the approaches in [30,53,54,81], it is set

to the frequency of the fragment in the database of HIV sequences if fragmentR is present in

strainT , and zero otherwise, as in equation (5.3).

u(T,R) =







frequency of R in HIV sequence database, if T contains R ;

0, otherwise .
(5.3)

The net utility is also referred to as ‘coverage’.

Figure 5.8 shows aligned pieces of HIV’sGagprotein from several different strains, with

two variable sites marked by arrows as well as known or predicted T-cell epitopes for the MHC
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Figure 5.8: Fragments of Gag protein with epitopes recognized by several HIV-infected pa-
tients. Epitopes recognizable by a single patient are shown in a single color; mutations marked
by red arrows escape MHC I binding.

molecules of five different patients taken from the Western Australia cohort [71]. Epitopes

recognizable by a single patient are shown in a single color, and each patient is assigned a

different color. Some mutations (marked by red arrows) ‘escape’ MHC I binding. For example,

the red patient can react to the 9-mer epitope VLSGGKLDK in the first sequence, but not to

VLSGGKLDR in the second. On the other hand, other mutations do not affect MHC binding,

but may affect T-cell binding (a different set of T-cells will target different versions). The

white patient could be immunized against three forms of the same epitope: KKYKLKHIV,

KKYQLKHIV, KKYRLKHIV. In this small example, a vaccine can be designed consisting of

the following segments which epitomizes (in an immunological sense) the seven strains shown

in the figure: VLSGGKLDKWEKIRLRPGGKKKYKLKHIVWASRELERFLSGGKLDRW-

EKIRLRKKYQLKHIVWKKKYRLKHIVW.

Much discussion among HIV vaccine experts has been focused on the need for constraining
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vaccine constructs optimized for coverage to resemble naturally-occurring strains [30,81]. This

is motivated by several pieces of evidence suggesting that deviation from naturally-occurring

strains often reduces efficacy in animal models as well as in vaccine trials, both in terms of

the cellular and antibody responses. Thus, [81] proposes enrichment of the vaccine with a

sequence that sits in the center of the HIV phylogenetic tree, so that this single native-like

(but still artificially-derived) strain is used to provide coverage of immune targets in as natural

a way as possible, while the additional coverage is achieved with an epitome fragment(s).

In contrast, in their recent paper [30], Fischeret al. avoid the use of fragments altogether

and propose building the entire vaccine out of multiple strain-like constructs optimized by

simulated strain recombination, dubbed ‘mosaics’. A mosaic vaccine is therefore a cocktail of

artificially-derived strains, not existent among the observed strains of the virus, but achievable

by recombining the existing strains many times. These vaccine components resemble natural

strains, but have higher 9-mer coverage than would be expected from a cocktail of natural

strains. Mosaics can always achieve higher coverage than natural strains, so while they may

not be viable as vaccines, they provide an upper bound on potential coverage.

As the dataset of known HIV sequences is constantly growing, the potential for achieving

high coverage with a cocktail of true natural strains is growing as well. Newly-discovered

strains differ from existing ones mostly by the combination of previously-seen mutations rather

than by the presence of completely-new 9-mers. In fact, Fischeret al. have increased the

Gag vaccine coverage with their use of mosaic by some 4–5% in comparison to natural strain

cocktails. As the problem isNP-hard, the natural strain cocktails (treatment portfolios) in

their paper are found by a greedy technique analogous to the vertex substitution heuristic,

which may further decrease the perceived potential of natural strain cocktails, especially for

a larger number of components. For a large dataset consisting of 1755 Gag proteins from the

LANL database, a Gag sequence consisting of the best four natural strains affinity propagation

could find had only 3% lower coverage than the mosaic of the same size optimized on the same

data (69% vs. 66%). Obviously, as the dataset grows, the computational burden for finding the
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optimal cocktail grows exponentially, as is the case for the general TPD problem.

Furthermore, while potentially-important for the cellular arm of the immune system, the

closeness of vaccine components to natural strains is even more important for properly pre-

senting potential targets of the humoral (antibody) arm of the immune system. As opposed

to the T-cell epitopes, antibody epitopes are found on the surface of the folded proteins. It

has been shown that slight changes in HIV’sEnv protein can cause it to mis-fold, and so

naturally-occurring HIV strains are more likely to function properly than artificially-derived

Env proteins.

In these experiments, the TPD problem for Gag vaccine cocktail optimization is performed

with larger cocktails, where the coverage approaches 80% or more and exhaustive search is

computationally infeasible. Affinity propagation is used to find an approximate solution, and its

achieved utility is compared with that of the greedy method and the mosaic upper bound [30].

Table 5.1 summarizes these results on 1755 strains.

Table 5.1: The utility (“epitope coverage”) of vaccine portfolios found by affinity propagation
and a greedy method, including an upper bound on utility (found using mosaics).

vaccine Natural strains Artificial mosaic strains
portfolio size Affinity propagation Greedy Method (upper bound)
K = 20 77.54% 77.34% 80.84%
K = 30 80.92% 80.14% 82.74%
K = 38 82.13% 81.62% 83.64%
K = 52 84.19% 83.53% 84.83%

These results show that affinity propagation achieves higher coverage than the greedy

method. Importantly, these results also suggest that the sacrifice in coverage necessary to

satisfy the vaccine community’s oft-emphasized need for natural components may in fact be

bearable if large datasets and appropriate algorithms are used to optimize coverage.



Chapter 6

Conclusions and Future Directions

In conclusion, clustering data by identifying exemplar data points rather than parametric meth-

ods allows for rich domain-specific models that can achieve superior results, as explored in

Chapter 5. Affinity propagation (see Section 3.2) is an innovative and readily-extensible clus-

tering algorithm that identifies exemplars quickly and successfully. It consistently finds better

solutions than standard exemplar-based clustering algorithms such ask-medoids, and achieves

comparable or better results to workhorse algorithms such as the vertex substitution heuristic

(VSH) in far less time for large datasets.

Specifically, the benchmarks in Section 4 show that for large datasets with thousands of

data points, many restarts ofk-medoids clustering (Section 2.4) will achieve mediocre results

within a few minutes; allotting the algorithm more hours or days of CPU time will only yield

slight improvements in solution quality. Affinity propagation requires more minutes (or, for the

largest dataset examined, hours) thank-medoids but achieves vastly superior results. For large

datasets, the vertex substitution heuristic with variable neighbor search (Section 2.5) achieves

comparable or worse results than affinity propagation but requires days or weeks of CPU time.

For small datasets with hundreds of data points, affinity propagation and the vertex substitution

heuristic both achieve near-optimal results though for realistic problems (where the number of

clusters is much less than half the number of points), VSH initialized with affinity propagation
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seems to be the best balance between computation time and solution quality. In any case,

optimal clusterings of these small datasets can be found with linear programming techniques

in a matter of hours.

In the two years since its introduction, affinity propagation has spawned a growing volume

of research, such as:

• Vector quantization codebook design (Jianget al. in [51])
• Soft-constraint affinity propagation for gene expression data (Leoneet al. in [68])
• Multiple view image segmentation (Xiaoet al. in [108])
• Finding light sources using images (Anet al. in [2])
• Image categorization and normalized mutual information analysis (Griraet al. in [44])
• Semi-supervised object classification (Fuet al. in [39])
• Image-audio dataset analysis (Zhanget al. in [113])
• Gene3D: Protein analysis (Yeatset al. in [110])
• Protein sequence clustering (Wittkopet al. in [107])
• Affinity propagation with isomap-based metrics (Bayaet al. in [4])
• Data streaming and analysis of grid computing jobs (Zhanget al. in [114])
• Analysis of cuticular hydrocarbons (Kentet al. in [58])
• Analysis of brain tissue MRI data (Vermaet al. in [100])
• Clustering speakers from audio data (Zhanget al. in [115])
• Color-based clustering for text detection in images (Yiet al. in [112])
• Analysis of hydrophobic-polar protein model (Santanaet al. in [89])
• Face recognition with linear discriminant analysis (Duet al. in [24])
• Clustering text data (Kimet al. in [59])
• Adaptive extensions of affinity propagation (Wanget al. in [102])
• Knowledge discovery in medical data sources (Senfet al. in [91])
• Analysis of land-use and land-cover data (Cardilleet al. in [12])
• Customer micro-targeting (Jianget al. in [50])

An interesting and recent research thrust is Dirichlet process affinity propagation [95]

which involves adapting the graphical model in Figure 3.5 to incorporate a Dirichlet prior

over the size of clusters into the factor graph. This representation can then be viewed as max-

imum a posterioriinference of a Dirichlet mixture model where the means are constrained to

be exemplars (co-located with data points) and variances are fixed.

The affinity propagation algorithm raises many new questions for further research:

The relationship between max-product belief propagation and linear programming relax-

ations is not well-understood but is beginning to be more widely investigated (e.g., [94, 109]).

In [88], a linear programming relaxation for the weighted matching problem is compared to

max-product belief propagation with a proof that “if the [linear programming] relaxation is
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tight, i.e., if the unique solution is integral, then the max-sum algorithm converges and the re-

sulting estimate is the optimal matching”. Much theoretical work remains in analyzing affinity

propagation but this suggests a starting approach.

Clustering is traditionally an unsupervised learning task, but there are many applications

where some labeled (or at least partially-labeled) data is available for semi-supervised learning.

The affinity propagation factor graph can easily be extended to incorporate additional pairwise

constrains such as requiring points with the same label to appear in the same cluster with just an

extra layer of function nodes. The model is flexible enough for information other than explicit

constraints such as two points being in different clusters or even higher-order constraints (e.g.,

two of three points must be in the same cluster). There may also be applications wheren-wise

similarities are useful, such as triple-wise similarities for finding collinear points (e.g., data

from astronomical tracking)

Finally, the paradigm shift of using pointers to exemplar data instead of problem-specific

parameters may have wider applicability. A cluster is a simple structure, perhaps requiring

only one exemplar to identify the location of its center. More complex structures such as

d-dimensional subspaces could used+1 data points to be specified, or clusters could have

additional attributes such as a scale or shape—analogous to a Gaussian’s covariance matrix—

that could be specified by multiple exemplars.
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Appendix A

The Bethe free energy approximation

Using the notation from Section 2.6.3, a factor graph withN nodes representing variablesX =

{X1, X2, . . . , XN} andM nodes representing functions{f1, f2, . . . , fM} describes a global

function that can be factorized asf(X=x)=
∏M

m=1fm

(
xN(m)

)
. We letN(n)⊆{1, 2, . . . ,M}

represent the set of function nodes neighboring variable noden andN(m)⊆{1, 2, . . . , N} the

set of variable nodes connected to function nodem, such thatxN(m) is the argument of function

fm and is shorthand for the set{xn}n∈N(m). The current beliefs or marginal of each variable

node are referred to asqn(xn) and the clique marginal of variable nodes connected to function

nodefm areqm(xN(m)).

Belief propagation updates are now shown to be equivalent to coordinate descent minimiza-

tion performed on the Bethe free energy expression in equation (2.21), reproduced here:

FBethe =
∑

m

∑

xN(m)

qm(xN(m))·log qm(xN(m))−
∑

m

∑

xN(m)

qm(xN(m))·log fm(xN(m))

−∑
n

(|N(n)|−1)
∑

xn

qn(xn)·log qn(xn)

Constraints must be added to ensure that theq-distributions are valid probability distributions,

i.e., ∀n :
∑

xn
qn(xn)=1 and∀m :

∑

xN(m)
qm(xN(m))=1, and that the single-node marginals are

consistent with clique marginals∀m,n∈N(m) : qn(xn) =
∑

xN(m)\n
qm(xN(m)). Incorporat-

ing these as Lagrange multipliers, the expression to minimize becomes:

129



APPENDIX A. THE BETHE FREE ENERGY APPROXIMATION 130

L = FBethe +
∑

m

∑

n∈N(m)

∑

xn
λmn(xn)

[

qn(xn)−∑
xN(m)\n

qm(xN(m))
]

+
∑

m αm

[

1−∑
xN(m)

qm(xN(m))
]

+
∑

n βn

[
1−∑xn

qn(xn)
]

Taking partial derivatives with respect to the marginals and setting them to zero yields:

∂L/∂qn(xn) : −(|N(n)|−1)− (|N(n)|−1) · log qn(xn) +
∑

m∈N(n) λmn(xn)− βn = 0 ,

∂L
/
∂qm(xN(m)) : 1 + log qm(xN(m))− log fm(xN(m))−

∑

n∈N(m)
λmn(xn)

︸ ︷︷ ︸

because∑

n∈N(m)

∑

xn

λmn(xn)
∑

xN(m)\n

qm(xN(m)) =
∑

n∈N(m)

∑

xN(m)

λmn(xn)qm(xN(m))

−αm = 0 .

(A.1)

Solving for the marginals yields an update equation in terms of the Lagrange multipliers

αm, βn, andλmn(xn). The first two are constant with respect tox and can be dropped if unit

normalization is performed after each update.

qn(xn) = e
1

|N(n)|−1

∑

m∈N(n) λmn(xn)−
βn

|N(n)|−1
−1 ∝ ∏

m∈N(n)

eλmn(xn)/(|N(m)|−1) ,

qm(xN(m)) = e
∑

n∈N(m) λmn(xn)+log fm(xN(m))+αm−1 ∝ fm(xN(m)) ·
∏

n∈N(m)

eλmn(xn) .
(A.2)

The “message” from variable nodeXn to function nodefm can be defined asνn→m(xn) =

eλmn(xn), which leads to simple expressions for the marginals,qn(xn) ∝ ∏m∈N(n) ν
1/(|N(m)|−1)
n→m′

andqm(xN(m)) ∝ fm(xN(m)) ·
∏

n∈N(m) νn→m(xn). These expressions can be substituted into

the marginals’ consistency constraint,
∑

xN(m)\n
qm(xN(m)) = qn(xn), to yield:

∑

xN(m)\n

(

fm(xN(m)) ·
∏

n′∈N(m)

νn′→m(xn′)

)

∝ ∏

m′∈N(n)

ν
1/(|N(m′)|−1)
n→m′

⇓
∑

xN(m)\n

(

fm(xN(m)) ·
∏

n′∈N(m)\n

νn′→m(xn′)

)

∝ νn→m(xn)−1 · ∏
m′∈N(n)

ν
1/(|N(m′)|−1)
n→m′

(A.3)

Finally, the “message” from function nodefm to variable nodeXn is defined to beµm→n(xn) =
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∑

xN(m)\n
fm(xN(m)) ·

∏

n′∈N(m)\n νn′→m(xn′). In this case, the final expression can be manip-

ulated from equation (A.3) to make the following simplifications:

µm→n(xn) ∝ νn→m(xn)−1 · ∏
m′∈N(n)

νn→m′(xn)1/(|N(m′)|−1)

⇓
∏

m∈N(n)

µm→n(xn) ∝ ∏

m∈N(n)

[

νn→m(xn)−1 ·∏m′∈N(n) νn→m′(xn)1/(|N(m′)|−1)
]

=

[

∏

m∈N(n)

νn→m(xn)−1

]

·
[

∏

m∈N(n)

νn→m(xn)|N(m)|/(|N(m)|−1)

]

=
∏

m∈N(n)

νn→m(xn)−1+|N(m)|/(|N(m)|−1) =
∏

m∈N(n)

νn→m(xn)1/(|N(m)|−1) ∝ qn(xn)

and

µm→n(xn) ∝ νn→m(xn)−1 · ∏
m′∈N(n)

νn→m′(xn)1/(|N(m′)|−1)

⇓
∏

m′∈N(n)\m

µm′→n(xn) ∝ ∏

m′∈N(n)\m

[

νn→m′(xn)−1 ·∏m′′∈N(n) νn→m′′(xn)1/(|N(m′′)|−1)
]

=

[

νn→m(xn) · ∏
m′∈N(n)

νn→m′(xn)−1

]

·
[

∏

m′∈N(n)

νn→m′(xn)
|N(m′)\m|

|N(m′)|−1

]

= νn→m(xn) .

To summarize, we find the now-familiar belief propagation update equations:

νn→m(xn) ∝ ∏

m′∈N(n)\m

µm′→n(xn) and µm→n(xn) ∝ ∑

xN(m)\n

fm(xN(m)) ·
∏

n′∈N(m)\n

νn′→m(xn′) ,

qn(xn) ∝ ∏
m∈N(n)

µm→n(xn) and qm(xN(m)) ∝ fm(xN(m)) ·
∏

n∈N(m)

νn→m(xn) .

(A.4)
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